Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T19:44:54.385Z Has data issue: false hasContentIssue false

Systematic review of gene expression studies in people with Lewy body dementia

Published online by Cambridge University Press:  17 March 2020

Anisa Chowdhury
Affiliation:
Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, 16, De Crespigny Park, London-SE5 8AF, UK
Anto P. Rajkumar*
Affiliation:
Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, 16, De Crespigny Park, London-SE5 8AF, UK Institute of Mental Health, Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham-NG7 2TU, UK
*
Author for correspondence: Anto P. Rajkumar, Email: [email protected]

Abstract

Objectives:

Lewy body dementia (LBD) is the second most prevalent neurodegenerative dementia and it causes more morbidity and mortality than Alzheimer’s disease. Several genetic associations of LBD have been reported and their functional implications remain uncertain. Hence, we aimed to do a systematic review of all gene expression studies that investigated people with LBD for improving our understanding of LBD molecular pathology and for facilitating discovery of novel biomarkers and therapeutic targets for LBD.

Methods:

We systematically reviewed five online databases (PROSPERO protocol: CRD42017080647) and assessed the functional implications of all reported differentially expressed genes (DEGs) using Ingenuity Pathway Analyses.

Results:

We screened 3,809 articles and identified 31 eligible studies. In that, 1,242 statistically significant (p < 0.05) DEGs including 70 microRNAs have been reported in people with LBD. Expression levels of alternatively spliced transcripts of SNCA, SNCB, PRKN, APP, RELA, and ATXN2 significantly differ in LBD. Several mitochondrial genes and genes involved in ubiquitin proteasome system and autophagy–lysosomal pathway were significantly downregulated in LBD. Evidence supporting chronic neuroinflammation in LBD was inconsistent. Our functional analyses highlighted the importance of ribonucleic acid (RNA)-mediated gene silencing, neuregulin signalling, and neurotrophic factors in the molecular pathology of LBD.

Conclusions:

α-synuclein aggregation, mitochondrial dysfunction, defects in molecular networks clearing misfolded proteins, and RNA-mediated gene silencing contribute to neurodegeneration in LBD. Larger longitudinal transcriptomic studies investigating biological fluids of people living with LBD are needed for molecular subtyping and staging of LBD. Diagnostic biomarker potential and therapeutic promise of identified DEGs warrant further research.

Type
Review Article
Copyright
© Scandinavian College of Neuropsychopharmacology 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, EL, Kierzkowska, M, Hull, J, Kehoe, PG, Hutson, SM and Conway, ME (2017) Altered expression of human mitochondrial branched chain aminotransferase in dementia with lewy bodies and vascular dementia. Neurochemical Research 42, 306319.CrossRefGoogle ScholarPubMed
Barrachina, M, Castano, E, Dalfo, E, Maes, T, Buesa, C and Ferrer, I (2006) Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Diseases 22, 265273.CrossRefGoogle ScholarPubMed
Barrachina, M, Dalfó, E, Puig, B, Vidal, N, Freixes, M, Castaño, E and Ferrer, I (2005) Amyloid-beta deposition in the cerebral cortex in Dementia with Lewy bodies is accompanied by a relative increase in AbetaPP mRNA isoforms containing the Kunitz protease inhibitor. Neurochemistry International 46, 253260.CrossRefGoogle ScholarPubMed
Beyer, K, Domingo-Sabat, M and Ariza, A (2009) Molecular pathology of Lewy body diseases. International Journal of Molecular Sciences 10, 724745.CrossRefGoogle ScholarPubMed
Beyer, K, Domingo-Sabat, M, Lao, JI, Carrato, C, Ferrer, I and Ariza, A (2008) Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases. Neurogenetics 9, 1523.CrossRefGoogle ScholarPubMed
Beyer, K, Domingo-Sabat, M, Santos, C, Tolosa, E, Ferrer, I and Ariza, A (2010) The decrease of beta-synuclein in cortical brain areas defines a molecular subgroup of dementia with Lewy bodies. Brain 133, 37243733.CrossRefGoogle ScholarPubMed
Beyer, K, Humbert, J, Ferrer, A, Lao, JI, Carrato, C, Lopez, D, Ferrer, I and Ariza, A (2006) Low alpha-synuclein 126 mRNA levels in dementia with Lewy bodies and Alzheimer disease. Neuroreport 17, 13271330.CrossRefGoogle ScholarPubMed
Beyer, K, Ispierto, L, Latorre, P, Tolosa, E and Ariza, A (2011) Alpha- and beta-synuclein expression in Parkinson disease with and without dementia. Journal of the Neurological Sciences 310, 112117.CrossRefGoogle ScholarPubMed
Beyer, K, Lao, JI, Carrato, C, Mate, JL, Lopez, D, Ferrer, I and Ariza, A (2004a) Differential expression of alpha-synuclein isoforms in dementia with Lewy bodies. Neuropathology and Applied Neurobiology 30, 601607.CrossRefGoogle ScholarPubMed
Beyer, K, Lao, JI, Carrato, C, Mate, JL, Lopez, D, Ferrer, I and Ariza, A (2004b) Upregulation of amyloid precursor protein isoforms containing Kunitz protease inhibitor in dementia with Lewy bodies. Brain Research. Molecular Brain Research 131, 131135.CrossRefGoogle ScholarPubMed
Bychkov, ER, Gurevich, VV, Joyce, JN, Benovic, JL and Gurevich, EV (2008) Arrestins and two receptor kinases are upregulated in Parkinson’s disease with dementia. Neurobiology of Aging 29, 379396.CrossRefGoogle ScholarPubMed
Cantuti-Castelvetri, I, Klucken, J, Ingelsson, M, Ramasamy, K, Mclean, PJ, Frosch, MP, Hyman, BT and Standaert, DG (2005) Alpha-synuclein and chaperones in dementia with Lewy bodies. Journal of Neuropathology and Experimental Neurology 64, 10581066.CrossRefGoogle ScholarPubMed
Chen, Z, Jalabi, W, Hu, W, Park, HJ, Gale, JT, Kidd, GJ, Bernatowicz, R, Gossman, ZC, Chen, JT, Dutta, R and Trapp, BD (2014) Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nature Communications 5, 4486.CrossRefGoogle ScholarPubMed
Chiasserini, D, Paciotti, S, Eusebi, P, Persichetti, E, Tasegian, A, Kurzawa-Akanbi, M, Chinnery, PF, Morris, CM, Calabresi, P, Parnetti, L and Beccari, T (2015) Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Molecular Neurodegeneration 10, 15.CrossRefGoogle ScholarPubMed
Chinnery, PF, Taylor, GA, Howell, N, Andrews, RM, Morris, CM, Taylor, RW, Mckeith, IG, Perry, RH, Edwardson, JA and Turnbull, DM (2000) Mitochondrial Dna haplogroups and susceptibility to AD and dementia with Lewy bodies. Neurology 55, 302304.CrossRefGoogle ScholarPubMed
Ciechanover, A, Orian, A and Schwartz, AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442451.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Coulson, DT, Beyer, N, Quinn, JG, Brockbank, S, Hellemans, J, Irvine, GB, Ravid, R and Johnston, JA (2010) BACE1 mRNA expression in Alzheimer’s disease postmortem brain tissue. Journal of Alzheimer’s Disease 22, 11111122.CrossRefGoogle ScholarPubMed
Erskine, D, Ding, J, Thomas, AJ, Kaganovich, A, Khundakar, AA, Hanson, PS, Taylor, JP, Mckeith, IG, Attems, J, Cookson, MR and Morris, CM (2018) Molecular changes in the absence of severe pathology in the pulvinar in dementia with Lewy bodies. Movement Disorders 33, 982991.CrossRefGoogle ScholarPubMed
Freer, J (2017) UK lags far behind Europe on diagnosis of dementia with Lewy bodies. British Medical Journal 358, j3319.CrossRefGoogle ScholarPubMed
Funahashi, Y, Yoshino, Y, Yamazaki, K, Mori, Y, Mori, T, Ozaki, Y, Sao, T, Ochi, S, Iga, JI and Ueno, SI (2017) DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry and Clinical Neurosciences 71, 2835.CrossRefGoogle ScholarPubMed
Gamez-Valero, A and Beyer, K (2018) Alternative splicing of Alpha- and Beta-synuclein genes plays differential roles in synucleinopathies. Genes, 9, 63.CrossRefGoogle ScholarPubMed
Gan-OR, Z, Dion, PA and Rouleau, GA (2015) Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy 11, 14431457.CrossRefGoogle ScholarPubMed
Garcia-Esparcia, P, Lopez-Gonzalez, I, Grau-Rivera, O, Garcia-Garrido, MF, Konetti, A, Llorens, F, Zafar, S, Carmona, M, Del Rio, JA, Zerr, I, Gelpi, E and Ferrer, I (2017) Dementia with lewy bodies: molecular pathology in the frontal cortex in typical and rapidly progressive forms. Frontiers in Neurology 8, 89.CrossRefGoogle ScholarPubMed
Gatt, AP, Jones, EL, Francis, PT, Ballard, C and Bateman, JM (2013) Association of a polymorphism in mitochondrial transcription factor A (TFAM) with Parkinson’s disease dementia but not dementia with Lewy bodies. Neuroscience Letters 557, 177180.CrossRefGoogle Scholar
Ginns, EI, Mak, SK, KO, N, Karlgren, J, Akbarian, S, Chou, VP, Guo, Y, Lim, A, Samuelsson, S, Lamarca, ML, Vazquez-Derose, J and Manning-Bog, AB (2014) Neuroinflammation and alpha-synuclein accumulation in response to glucocerebrosidase deficiency are accompanied by synaptic dysfunction. Molecular Genetics and Metabolism 111, 152162.CrossRefGoogle ScholarPubMed
Guerreiro, R, Escott-Price, V, Hernandez, DG, Kun-Rodrigues, C, Ross, OA, Orme, T, Neto, JL, Carmona, S, Dehghani, N, Eicher, JD, Shepherd, C, Parkkinen, L, Darwent, L, Heckman, MG, Scholz, SW, Troncoso, JC, Pletnikova, O, Dawson, T, Rosenthal, L, Ansorge, O, Clarimon, J, Lleo, A, Morenas-Rodriguez, E, Clark, L, Honig, LS, Marder, K, Lemstra, A, Rogaeva, E, ST George-Hyslop, P, Londos, E, Zetterberg, H, Barber, I, Braae, A, Brown, K, Morgan, K, Troakes, C, AL-Sarraj, S, Lashley, T, Holton, J, Compta, Y, Van Deerlin, V, Serrano, GE, Beach, TG, Lesage, S, Galasko, D, Masliah, E, Santana, I, Pastor, P, Diez-Fairen, M, Aguilar, M, Tienari, PJ, Myllykangas, L, Oinas, M, Revesz, T, Lees, A, Boeve, BF, Petersen, RC, Ferman, TJ, Graff-Radford, N, Cairns, NJ, Morris, JC, Pickering-Brown, S, Mann, D, Halliday, GM, Hardy, J, Trojanowski, JQ, Dickson, DW, Singleton, A, International Parkinson’S Disease Genomics, Stone, DJ and Bras, J (2019) Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease 127, 492501.CrossRefGoogle ScholarPubMed
Guerreiro, R, Ross, OA, Kun-Rodrigues, C, Hernandez, DG, Orme, T, Eicher, JD, Shepherd, CE, Parkkinen, L, Darwent, L, Heckman, MG, Scholz, SW, Troncoso, JC, Pletnikova, O, Ansorge, O, Clarimon, J, Lleo, A, Morenas-Rodriguez, E, Clark, L, Honig, LS, Marder, K, Lemstra, A, Rogaeva, E, ST George-Hyslop, P, Londos, E, Zetterberg, H, Barber, I, Braae, A, Brown, K, Morgan, K, Troakes, C, AL-Sarraj, S, Lashley, T, Holton, J, Compta, Y, Van Deerlin, V, Serrano, GE, Beach, TG, Lesage, S, Galasko, D, Masliah, E, Santana, I, Pastor, P, Diez-Fairen, M, Aguilar, M, Tienari, PJ, Myllykangas, L, Oinas, M, Revesz, T, Lees, A, Boeve, BF, Petersen, RC, Ferman, TJ, Escott-Price, V, Graff-Radford, N, Cairns, NJ, Morris, JC, Pickering-Brown, S, Mann, D, Halliday, GM, Hardy, J, Trojanowski, JQ, Dickson, DW, Singleton, A, Stone, DJ and Bras, J (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology 17, 6474.CrossRefGoogle ScholarPubMed
Harries, LW (2019) RNA biology provides new therapeutic targets for human disease. Frontiers in Genetics 10, 205.CrossRefGoogle ScholarPubMed
Hebert, SS, Wang, WX, Zhu, Q and Nelson, PT (2013) A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer’s disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. Journal of Alzheimer’s Disease 35, 335348.CrossRefGoogle ScholarPubMed
Henderson-Smith, A, Corneveaux, JJ, DE Both, M, Cuyugan, L, Liang, WS, Huentelman, M, Adler, C, Driver-Dunckley, E, Beach, TG and Dunckley, TL (2016) Next-generation profiling to identify the molecular etiology of Parkinson dementia. Neurology. Genetics 2, e75.CrossRefGoogle ScholarPubMed
Higashi, S, Moore, DJ, Minegishi, M, Kasanuki, K, Fujishiro, H, Kabuta, T, Togo, T, Katsuse, O, Uchikado, H, Furukawa, Y, Hino, H, Kosaka, K, Sato, K, Arai, H, Wada, K and Iseki, E (2011) Localization of MAP1-LC3 in vulnerable neurons and Lewy bodies in brains of patients with dementia with Lewy bodies. Journal of Neuropathology and Experimental Neurology 70, 264280.CrossRefGoogle ScholarPubMed
Hoss, AG, Labadorf, A, Beach, TG, Latourelle, JC and Myers, RH 2016. microRNA Profiles in Parkinson’s Disease Prefrontal Cortex. Frontiers in Aging Neuroscience, 8, 36.CrossRefGoogle ScholarPubMed
Humbert, J, Beyer, K, Carrato, C, Mate, JL, Ferrer, I and Ariza, A (2007) Parkin and synphilin-1 isoform expression changes in Lewy body diseases. Neurobiology of Disease 26, 681687.CrossRefGoogle ScholarPubMed
Imamura, K, Hishikawa, N, Ono, K, Suzuki, H, Sawada, M, Nagatsu, T, Yoshida, M and Hashizume, Y (2005) Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathologica 109, 141150.CrossRefGoogle ScholarPubMed
Kramer, A, Green, J, Pollard, J Jr. and Tugendreich, S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523530.CrossRefGoogle ScholarPubMed
Kun-Rodrigues, C, Orme, T, Carmona, S, Hernandez, DG, Ross, OA, Eicher, JD, Shepherd, C, Parkkinen, L, Darwent, L, Heckman, MG, Scholz, SW, Troncoso, JC, Pletnikova, O, Dawson, T, Rosenthal, L, Ansorge, O, Clarimon, J, Lleo, A, Morenas-Rodriguez, E, Clark, L, Honig, LS, Marder, K, Lemstra, A, Rogaeva, E, ST George-Hyslop, P, Londos, E, Zetterberg, H, Barber, I, Braae, A, Brown, K, Morgan, K, Troakes, C, AL-Sarraj, S, Lashley, T, Holton, J, Compta, Y, Van Deerlin, V, Serrano, GE, Beach, TG, Lesage, S, Galasko, D, Masliah, E, Santana, I, Pastor, P, Diez-Fairen, M, Aguilar, M, Tienari, PJ, Myllykangas, L, Oinas, M, Revesz, T, Lees, A, Boeve, BF, Petersen, RC, Ferman, TJ, Escott-Price, V, Graff-Radford, N, Cairns, NJ, Morris, JC, Pickering-Brown, S, Mann, D, Halliday, GM, Hardy, J, Trojanowski, JQ, Dickson, DW, Singleton, A, Stone, DJ, Guerreiro, R and Bras, J (2019) A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging 75, 223 e221223 e210.CrossRefGoogle ScholarPubMed
Lee, VM and Trojanowski, JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52, 3338.CrossRefGoogle ScholarPubMed
Mazzulli, JR, XU, YH, Sun, Y, Knight, AL, Mclean, PJ, Caldwell, GA, Sidransky, E, Grabowski, GA and Krainc, D (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 3752.CrossRefGoogle Scholar
Mckeith, IG, Boeve, BF, Dickson, DW, Halliday, G, Taylor, JP, Weintraub, D, Aarsland, D, Galvin, J, Attems, J, Ballard, CG, Bayston, A, Beach, TG, Blanc, F, Bohnen, N, Bonanni, L, Bras, J, Brundin, P, Burn, D, Chen-Plotkin, A, Duda, JE, EL-Agnaf, O, Feldman, H, Ferman, TJ, Ffytche, D, Fujishiro, H, Galasko, D, Goldman, JG, Gomperts, SN, Graff-Radford, NR, Honig, LS, Iranzo, A, Kantarci, K, Kaufer, D, Kukull, W, Lee, VMY, Leverenz, JB, Lewis, S, Lippa, C, Lunde, A, Masellis, M, Masliah, E, Mclean, P, Mollenhauer, B, Montine, TJ, Moreno, E, Mori, E, Murray, M, O’brien, JT, Orimo, S, Postuma, RB, Ramaswamy, S, Ross, OA, Salmon, DP, Singleton, A, Taylor, A, Thomas, A, Tiraboschi, P, Toledo, JB, Trojanowski, JQ, Tsuang, D, Walker, Z, Yamada, M and Kosaka, K (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology 89, 88100.CrossRefGoogle ScholarPubMed
Moher, D, Liberati, A, Tetzlaff, J, Altman, DG and Group, P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery (London, England) 8, 336341.CrossRefGoogle ScholarPubMed
Muller, M, Kuiperij, HB, Versleijen, AA, Chiasserini, D, Farotti, L, Baschieri, F, Parnetti, L, Struyfs, H, DE Roeck, N, Luyckx, J, Engelborghs, S, Claassen, JA and Verbeek, MM (2016) Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. Journal of Alzheimer’s Disease 52, 13211333.CrossRefGoogle ScholarPubMed
Mustapic, M, Eitan, E, Werner, JK Jr., Berkowitz, ST, Lazaropoulos, MP, Tran, J, Goetzl, EJ and Kapogiannis, D (2017) Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Frontiers in Neuroscience 11, 278.CrossRefGoogle ScholarPubMed
Navarro, A, Boveris, A, Bandez, MJ, Sanchez-Pino, MJ, Gomez, C, Muntane, G and Ferrer, I (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radical Biology & Medicine 46, 15741580.CrossRefGoogle ScholarPubMed
Nelson, PT, Wang, WX, Janse, SA and Thompson, KL (2018) MicroRNA expression patterns in human anterior cingulate and motor cortex: a study of dementia with Lewy bodies cases and controls. Brain Research 1678, 374383.CrossRefGoogle ScholarPubMed
Nervi, A, Reitz, C, Tang, MX, Santana, V, Piriz, A, Reyes, D, Lantigua, R, Medrano, M, Jimenez-Velazquez, IZ, Lee, JH and Mayeux, R (2011) Familial aggregation of dementia with Lewy bodies. Archives of Neurology 68, 9093.CrossRefGoogle ScholarPubMed
Oesterhus, R, Soennesyn, H, Rongve, A, Ballard, C, Aarsland, D and Vossius, C (2014) Long-term mortality in a cohort of home-dwelling elderly with mild Alzheimer’s disease and Lewy body dementia. Dementia and Geriatric Cognitive Disorders 38, 161169.CrossRefGoogle Scholar
Outeiro, TF, Klucken, J, Strathearn, KE, Liu, F, Nguyen, P, Rochet, JC, Hyman, BT and Mclean, PJ (2006) Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochemical and Biophysical Research Communications 351, 631638.CrossRefGoogle ScholarPubMed
Perez, F, Helmer, C, Dartigues, JF, Auriacombe, S and Tison, F (2010) A 15-year population-based cohort study of the incidence of Parkinson’s disease and dementia with Lewy bodies in an elderly French cohort. Journal of Neurology, Neurosurgery, and Psychiatry 81, 742746.CrossRefGoogle Scholar
Perry, VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain, Behavior, and Immunity 18, 407413.CrossRefGoogle ScholarPubMed
Pietrzak, M, Papp, A, Curtis, A, Handelman, SK, Kataki, M, Scharre, DW, Rempala, G and Sadee, W (2016) Gene expression profiling of brain samples from patients with Lewy body dementia. Biochemical and Biophysical Research Communications 479, 875880.CrossRefGoogle ScholarPubMed
Postuma, RB, Berg, D, Stern, M, Poewe, W, Olanow, CW, Oertel, W, Marek, K, Litvan, I, Lang, AE, Halliday, G, Goetz, CG, Gasser, T, Dubois, B, Chan, P, Bloem, BR, Adler, CH and Deuschl, G (2016) Abolishing the 1-year rule: how much evidence will be enough?. Movement Disorders 31, 16231627.CrossRefGoogle Scholar
Quinn, JG, Coulson, DTR, Brockbank, S, Beyer, N, Ravid, R, Hellemans, J, Irvine, GB and Johnston, JA (2012) α-Synuclein mRNA and soluble α-synuclein protein levels in post-mortem brain from patients with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. Brain Research 1459, 7180.CrossRefGoogle ScholarPubMed
Rajkumar, AP, Bidkhori, G, Shoaie, S, Clarke, E, Morrin, H, Hye, A, Williams, G, Ballard, C, Francis, P and Aarsland, D (2020). Postmortem Cortical Transcriptomics of Lewy Body Dementia Reveal Mitochondrial Dysfunction and Lack of Neuroinflammation. The American Journal of Geriatric Psychiatry: Official Journal of The American Association for Geriatric Psychiatry 28, 7586.CrossRefGoogle ScholarPubMed
Roberts, HL, Schneider, BL and Brown, DR (2017). alpha-Synuclein increases beta-amyloid secretion by promoting beta-/gamma-secretase processing of APP. PLoS One, 12, e0171925.CrossRefGoogle ScholarPubMed
Rongve, A, Witoelar, A, Ruiz, A, Athanasiu, L, Abdelnour, C, Clarimon, J, Heilmann-Heimbach, S, Hernandez, I, Moreno-Grau, S, DE Rojas, I, Morenas-Rodriguez, E, Fladby, T, Sando, SB, Brathen, G, Blanc, F, Bousiges, O, Lemstra, AW, Van Steenoven, I, Londos, E, Almdahl, IS, Palhaugen, L, Eriksen, JA, Djurovic, S, Stordal, E, Saltvedt, I, Ulstein, ID, Bettella, F, Desikan, RS, Idland, AV, Toft, M, Pihlstrom, L, Snaedal, J, Tarraga, L, Boada, M, Lleo, A, Stefansson, H, Stefansson, K, Ramirez, A, Aarsland, D and Andreassen, OA (2019) GBA and APOE epsilon4 associate with sporadic dementia with Lewy bodies in European genome wide association study. Scientific Reports 9, 7013.CrossRefGoogle ScholarPubMed
Ryan, MC, Cleland, J, Kim, R, Wong, WC and Weinstein, JN (2012) SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 28, 23852387.CrossRefGoogle ScholarPubMed
Saigoh, K, Wang, YL, Suh, JG, Yamanishi, T, Sakai, Y, Kiyosawa, H, Harada, T, Ichihara, N, Wakana, S, Kikuchi, T and Wada, K (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genetics 23, 4751.CrossRefGoogle ScholarPubMed
Saldaña, M, Pujols, L, Mullol, J, Roca-Ferrer, J, Cardozo, A, Aguilar, E, Bonastre, M and Marin, C (2008) Relevance of COX-2 gene expression in dementia with lewy bodies associated with Alzheimer pathology. Movement Disorders 23, 804810.CrossRefGoogle ScholarPubMed
Salemi, M, Cantone, M, Salluzzo, MG, Giambirtone, M, Spada, R and Ferri, R (2017) Reduced mitochondrial mRNA expression in dementia with Lewy bodies. Journal of The Neurological Sciences 380, 122123.CrossRefGoogle ScholarPubMed
Santpere, G, Garcia-Esparcia, P, Andres-Benito, P, Lorente-Galdos, B, Navarro, A and Ferrer, I (2018) Transcriptional network analysis in frontal cortex in Lewy body diseases with focus on dementia with Lewy bodies. Brain Pathology (Zurich, Switzerland) 28, 315333.CrossRefGoogle ScholarPubMed
Schiera, G, Di Liegro, CM and Di Liegro, I (2015) Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions. BioMed Research International 2015, 152926.CrossRefGoogle ScholarPubMed
Segundo-Val, IS and Sanz-Lozano, CS (2016) Introduction to the gene expression analysis. Methods in Molecular Biology (Clifton, N.J.) 1434, 2943.CrossRefGoogle ScholarPubMed
Sertbas, M, Ulgen, K and Cakir, T (2014) Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 4, 542553.CrossRefGoogle ScholarPubMed
Sheinerman, KS, Toledo, JB, Tsivinsky, VG, Irwin, D, Grossman, M, Weintraub, D, Hurtig, HI, Chen-Plotkin, A, Wolk, DA, Mccluskey, LF, Elman, LB, Trojanowski, JQ and Umansky, SR (2017) Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimer’s Research & Therapy 9, 89.CrossRefGoogle ScholarPubMed
Shibata, N, Motoi, Y, Tomiyama, H, Ohnuma, T, Kuerban, B, Tomson, K, Komatsu, M, Hattori, N and Arai, H (2012) Lack of genetic association of the UCHL1 gene with Alzheimer’s disease and Parkinson’s disease with dementia. Dementia and Geriatric Cognitive Disorders 33, 250254.CrossRefGoogle ScholarPubMed
Shimura, H, Hattori, N, Kubo, S, Mizuno, Y, Asakawa, S, Minoshima, S, Shimizu, N, Iwai, K, Chiba, T, Tanaka, K and Suzuki, T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics 25, 302305.CrossRefGoogle ScholarPubMed
Shyu, WC, Kao, MC, Chou, WY, Hsu, YD and Soong, BW (2000) Creutzfeldt-Jakob disease: heat shock protein 70 mRNA levels in mononuclear blood cells and clinical study. Journal of Neurology 247, 929934.CrossRefGoogle ScholarPubMed
Snyder, H, Mensah, K, Hsu, C, Hashimoto, M, Surgucheva, IG, Festoff, B, Surguchov, A, Masliah, E, Matouschek, A & Wolozin, B 2005. beta-Synuclein reduces proteasomal inhibition by alpha-synuclein but not gamma-synuclein. The Journal of Biological Chemistry 280, 75627569.CrossRefGoogle Scholar
Sohani, ZN, Meyre, D, DE Souza, RJ, Joseph, PG, Gandhi, M, Dennis, BB, Norman, G and Anand, SS (2015) Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genetics 16, 50.CrossRefGoogle ScholarPubMed
Sohani, ZN, Sarma, S, Alyass, A, DE Souza, RJ, Robiou-DU-Pont, S, LI, A, Mayhew, A, Yazdi, F, Reddon, H, Lamri, A, Stryjecki, C, Ishola, A, Lee, YK, Vashi, N, Anand, SS and Meyre, D (2016) Empirical evaluation of the Q-Genie tool: a protocol for assessment of effectiveness. BMJ Open 6, e010403.CrossRefGoogle ScholarPubMed
Spano, M, Signorelli, M, Vitaliani, R, Aguglia, E and Giometto, B (2015) The possible involvement of mitochondrial dysfunctions in Lewy body dementia: a systematic review. Functional Neurology 30, 151158.Google ScholarPubMed
Stamper, C, Siegel, A, Liang, WS, Pearson, JV, Stephan, DA, Shill, H, Connor, D, Caviness, JN, Sabbagh, M, Beach, TG, Adler, CH and Dunckley, T (2008) Neuronal gene expression correlates of Parkinson’s disease with dementia. Movement Disorders 23, 15881595.CrossRefGoogle ScholarPubMed
Stuendl, A, Kunadt, M, Kruse, N, Bartels, C, Moebius, W, Danzer, KM, Mollenhauer, B and Schneider, A (2016) Induction of alpha-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139, 481494.CrossRefGoogle ScholarPubMed
Swerdlow, RH (2011) Brain aging, Alzheimer’s disease, and mitochondria. Biochimica et Biophysica Acta 1812, 16301639.CrossRefGoogle ScholarPubMed
Szot, P, White, SS, Greenup, JL, Leverenz, JB, Peskind, ER and Raskind, MA (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. Journal of the Neurological Sciences 26, 467478.Google ScholarPubMed
Taylor, DD and Gercel-Taylor, C (2013) The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Frontiers in Genetics 4, 142.CrossRefGoogle ScholarPubMed
Tsuang, DW, Digiacomo, L and Bird, TD (2004) Familial occurrence of dementia with Lewy bodies. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry 12, 179188.CrossRefGoogle ScholarPubMed
Van Giau, V and An, SS (2016) Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. Journal of the Neurological Sciences 360, 141152.CrossRefGoogle ScholarPubMed
Velayudhan, L, Ffytche, D, Ballard, C and Aarsland, D (2017) New therapeutic strategies for lewy body dementias. Current Neurology and Neuroscience Reports 17, 68.CrossRefGoogle ScholarPubMed
Vossius, C, Rongve, A, Testad, I, Wimo, A and Aarsland, D (2014) The use and costs of formal care in newly diagnosed dementia: a three-year prospective follow-up study. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry 22, 381388.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Tanji, K, Odagiri, S, Miki, Y, Mori, F and Takahashi, H (2013) The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Molecular Neurobiology 47, 495508.CrossRefGoogle ScholarPubMed
Walker, Z, Possin, KL, Boeve, BF and Aarsland, D (2015) Lewy body dementias. Lancet 386, 16831697.CrossRefGoogle ScholarPubMed
Winslow, AR, Moussaud, S, Zhu, L, Post, KL, Dickson, DW, Berezovska, O and Mclean, PJ (2014) Convergence of pathology in dementia with Lewy bodies and Alzheimer’s disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease. Brain 137, 19581970.CrossRefGoogle Scholar
Supplementary material: File

Chowdhury and Rajkumar supplementary material

Chowdhury and Rajkumar supplementary material

Download Chowdhury and Rajkumar supplementary material(File)
File 120.1 KB