Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T16:46:42.288Z Has data issue: false hasContentIssue false

Limited evidence of association between dysregulated immune marker levels and telomere length in severe mental disorders

Published online by Cambridge University Press:  23 January 2025

Monica B.E.G. Ormerod*
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Thor Ueland
Affiliation:
Institute of Clinical Medicine, University of Oslo, Oslo, Norway Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
Monica Aas
Affiliation:
Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, England, UK Department of Behavioural Sciences, OsloMet – Oslo Metropolitan University, Oslo, Norway
Gabriela Hjell
Affiliation:
Department of Psychiatry, Ostfold Hospital, Graalum, Norway
Linn Rødevand
Affiliation:
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Linn Sofie Sæther
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Department of Psychology, University of Oslo, Oslo, Norway
Synve Hoffart Lunding
Affiliation:
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Ingrid Torp Johansen
Affiliation:
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Vid Mlakar
Affiliation:
Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
Dimitrios Andreou
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
Torill Ueland
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Department of Psychology, University of Oslo, Oslo, Norway
Trine V. Lagerberg
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Department of Psychology, University of Oslo, Oslo, Norway
Ingrid Melle
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Srdjan Djurovic
Affiliation:
Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
Ole A. Andreassen
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Nils Eiel Steen
Affiliation:
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway Institute of Clinical Medicine, University of Oslo, Oslo, Norway Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
*
Corresponding author: Monica B.E.G. Ormerod; Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Objective:

Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders.

Methods:

Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ (N = 301) or BD (N = 211) and a healthy control group (HC, N = 378). TL was analysed with linear regressions for associations with levels of 12 immune markers linked to SCZ or BD. Adjustments were made for a broad range of potential confounding variables. TL was measured by quantitative polymerase chain reaction (qPCR) and the immune markers were measured by enzyme immunoassays.

Results:

A positive association between levels of soluble tumour necrosis factor receptor 1A (sTNF-R1) and TL in SCZ (β = 0.191, p = 0.012) was observed. Plasma levels of the other immune markers were not significantly associated with TL in the BD, SCZ or HC groups.

Conclusion:

There was limited evidence of association between immune markers and TL in SCZ and BD. The results provide little support for involvement of immune dysregulation, as reflected by current systemic markers, in telomere attrition-related accelerated ageing in severe mental disorders.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Significant outcomes

  • Accelerated ageing indexed by TL attrition is suggested in SCZ.

  • A positive association between TL and levels of sTNF-R1 in SCZ was observed.

  • No associations between TL and most immune markers in total sample, SCZ, BD or HC.

Limitations

  • Immune marker selection might fail in capturing immune signalling associated with TL attrition.

  • A relatively young participant sample might reduce the ability to detect associations with TL.

  • Potential residual confounding factors cannot be ruled out despite extensive adjustments.

Introduction

Schizophrenia spectrum disorders (SCZ) and bipolar disorders (BD) are severe mental disorders (SMDs) with overlapping clinical characteristics and etiopathogenic factors (Mccutcheon et al., Reference Mccutcheon, Reis Marques and Howes2020; Mcintyre et al., Reference McIntyre, Berk, Brietzke, Goldstein, López-Jaramillo, Kessing, Malhi, Nierenberg, Rosenblat, Majeed, Vieta, Vinberg, Young and Mansur2020). SMDs are associated with a shortened life expectancy of about 15 years (Hjorthoj et al., Reference Hjorthoj, Sturup, Mcgrath and Nordentoft2017; Chan et al., Reference Chan, Tong, Wong, Chen and Chang2022), mainly caused by suicide and somatic comorbidities such as cardiovascular disease (Correll et al., Reference Correll, Solmi, Croatto, Schneider, Rohani‐Montez, Fairley, Smith, Bitter, Gorwood, Taipale and Tiihonen2022; Biazus et al., Reference Biazus, Beraldi, Tokeshi, Rotenberg, Dragioti, Carvalho, Solmi and Lafer2023). While lifestyle factors and cardiometabolic effects of psychotropic agents are established risk factors of the excessive somatic comorbidity and mortality (Dieset et al., Reference Dieset, Andreassen and Haukvik2016), accelerated ageing is a less studied candidate (Kirkpatrick et al., Reference Kirkpatrick, Messias, Harvey, Fernandez-Egea and Bowie2008; Lima et al., Reference Lima, Barros, Rosa, Albuquerque, Malloy-Diniz, Neves, Romano-Silva and de Miranda2015; Teeuw et al., Reference Teeuw, Ori, Brouwer, de Zwarte, Schnack, Hulshoff Pol and Ophoff2021).

Telomere attrition of chromosomes during cell divisions entails cell senescence at a critical telomere length (TL) (Rode et al., Reference Rode, Nordestgaard and Bojesen2015). Senescent cells accumulate in proliferative tissue during ageing (Rossiello et al., Reference Rossiello, Jurk, Passos and Di Fagagna2022), and TL shortening in leucocytes correlates positively with age and mortality in the general population (Rode et al., Reference Rode, Nordestgaard and Bojesen2015). TL shortening is used as an indicator of accelerated ageing and is demonstrated in the majority of studies of SMDs (Simon et al., Reference Simon, Smoller, McNamara, Maser, Zalta, Pollack, Nierenberg, Fava and Wong2006; Elvsashagen et al., Reference Elvsåshagen, Vera, Bøen, Bratlie, Andreassen, Josefsen, Malt, Blasco and Boye2011; Rizzo et al., Reference Rizzo, Do Prado, Grassi-Oliveira, Wieck, Correa, Teixeira and Bauer2013; Lima et al., Reference Lima, Barros, Rosa, Albuquerque, Malloy-Diniz, Neves, Romano-Silva and de Miranda2015; Lindqvist et al., Reference Lindqvist, Epel, Mellon, Penninx, Révész, Verhoeven, Reus, Lin, Mahan, Hough, Rosser, Bersani, Blackburn and Wolkowitz2015; Pawelczyk et al., Reference Pawelczyk, Szymanska, Grancow-Grabka, Kotlicka-Antczak and Pawelczyk2015; Barbe-Tuana et al., Reference Barbé-Tuana, Parisi, Panizzutti, Fries, Grun, Guma, Kapczinski, Berk, Gama and Rosa2016; Darrow et al., Reference Darrow, Verhoeven, Révész, Lindqvist, Penninx, Delucchi, Wolkowitz and Mathews2016; Rao et al., Reference Rao, Kota, Li, Yao, Tang, Mao, Jain, Xu and Xu2016; Maurya et al., Reference Maurya, Rizzo, Xavier, Tempaku, Zeni-Graiff, Santoro, Mazzotti, Zugman, Pan, Noto, Maes, Asevedo, Mansur, Cunha, Gadelha, Bressan, Belangero and Brietzke2017; Wolkowitz et al., Reference Wolkowitz, Jeste, Martin, Lin, Daly, Reuter and Kraemer2017; Russo et al., Reference Russo, Prinzi, Proietti, Lamonaca, Frustaci, Boccia, Amore, Lorenzi, Onder, Marzetti, Valdiglesias, Guadagni, Valente, Cascio, Fraietta, Ducci and Bonassi2018; Vakonaki et al., Reference Vakonaki, Tsiminikaki, Plaitis, Fragkiadaki, Tsoukalas, Katsikantami, Vaki, Tzatzarakis, Spandidos and Tsatsakis2018; Aas et al., Reference Aas, Elvsåshagen, Westlye, Kaufmann, Athanasiu, Djurovic, Melle, van der Meer, Martin-Ruiz, Steen, Agartz and Andreassen2019; Birkenaes et al., Reference Birkenæs, Elvsåshagen, Westlye, Høegh, Haram, Werner, Quintana, Lunding, Martin-Ruiz, Agartz, Djurovic, Steen, Andreassen and Aas2021). However, a few studies report longer (Nieratschker et al., Reference Nieratschker, Lahtinen, Meier, Strohmaier, Frank, Heinrich, Breuer, Witt, Nöthen, Rietschel and Hovatta2013; Maurya et al., Reference Maurya, Rizzo, Xavier, Tempaku, Ota, Santoro, Spíndola, Moretti, Mazzotti, Gadelha, Gouvea, Noto, Maes, Cordeiro, Bressan, Brietzke and Belangero2018) or similar TL in SCZ relative to controls (Lindqvist et al., Reference Lindqvist, Epel, Mellon, Penninx, Révész, Verhoeven, Reus, Lin, Mahan, Hough, Rosser, Bersani, Blackburn and Wolkowitz2015; Polho et al., Reference Polho, De-Paula, Cardillo, Dos Santos and Kerr2015; Cevik et al., Reference Çevik, Mançe-Çalışır, Atbaşoğlu, Saka, Alptekin, Üçok, Sırmatel, Gülöksüz, Tükün, van Os and Gümüş-Akay2019; Schurhoff et al., Reference Schürhoff, Corfdir, Pignon, Lajnef, Richard, Marcos, Pelissolo, Leboyer, Adnot, Jamain and Szöke2021). Longer TL is reported in patients with BD using lithium compared to non-lithium users (Martinsson et al., Reference Martinsson, Wei, Xu, Melas, Mathé, Schalling, Lavebratt and Backlund2013; Squassina et al., Reference Squassina, Pisanu, Congiu, Caria, Frau, Niola, Melis, Baggiani, Lopez, Cruceanu, Turecki, Severino, Bocchetta, Vanni, Chillotti and Del Zompo2016; Coutts et al., Reference Coutts, Palmos, Duarte, de Jong, Lewis, Dima and Powell2019; Pisanu et al., Reference Pisanu, Congiu, Manchia, Caria, Cocco, Dettori, Frau, Manca, Meloni, Nieddu, Noli, Pinna, Robledo, Sogos, Ferri, Carpiniello, Vanni, Bocchetta, Severino, Ardau, Chillotti, Zompo and Squassina2020). While the indicated increased telomere attrition in SCZ and BD supports accelerated ageing, the biological processes underlying the TL abnormalities are unclear.

Immune abnormalities and inflammation may be involved in the pathophysiology of SCZ and BD as evidenced by molecular genetics, central and peripheral biological associations, and epidemiological data (Miller and Goldsmith, Reference Miller and Goldsmith2017; Kroken et al., Reference Kroken, Sommer, Steen, Dieset and Johnsen2018; Chen et al., Reference Chen, Tan and Tian2024). Associations with the immune-related major histocompatibility complex (MHC) locus and with immune loci outside of the MHC region are demonstrated in genome-wide association studies of both disorders (Andreassen et al., Reference Andreassen, Djurovic, Thompson, Schork, Kendler, O’Donovan, Rujescu, Werge, van de Bunt, Morris, McCarthy, Roddey, McEvoy, Desikan and Dale2013; Pouget, Reference Pouget2018; Mullins et al., Reference Mullins, Forstner, O’Connell, Coombes, Coleman, Qiao, Als, Bigdeli, Børte, Bryois, Charney, Drange, Gandal, Hagenaars, Ikeda, Kamitaki, Kim, Krebs, Panagiotaropoulou, Schilder, Sloofman, Steinberg, Trubetskoy, Winsvold, Won, Abramova, Adorjan, Agerbo, Al Eissa, Albani, Alliey-Rodriguez, Anjorin, Antilla, Antoniou, Awasthi, Baek, Bækvad-Hansen, Bass, Bauer, Beins, Bergen, Birner, Bøcker Pedersen, Bøen, Boks, Bosch, Brum, Brumpton, Brunkhorst-Kanaan, Budde, Bybjerg-Grauholm, Byerley, Cairns, Casas, Cervantes, Clarke, Cruceanu, Cuellar-Barboza, Cunningham, Curtis, Czerski, Dale, Dalkner, David, Degenhardt, Djurovic, Dobbyn, Douzenis, Elvsåshagen, Escott-Price, Ferrier, Fiorentino, Foroud, Forty, Frank, Frei, Freimer, Frisén, Gade, Garnham, Gelernter, Giørtz Pedersen, Gizer, Gordon, Gordon-Smith, Greenwood, Grove, Guzman-Parra, Ha, Haraldsson, Hautzinger, Heilbronner, Hellgren, Herms, Hoffmann, Holmans, Huckins, Jamain, Johnson, Kalman, Kamatani, Kennedy, Kittel-Schneider, Knowles, Kogevinas, Koromina, Kranz, Kranzler, Kubo, Kupka, Kushner, Lavebratt, Lawrence, Leber, Lee, Lee, Levy, Lewis, Liao, Lucae, Lundberg, MacIntyre, Magnusson, Maier, Maihofer, Malaspina, Maratou, Martinsson, Mattheisen, McCarroll, McGregor, McGuffin, McKay, Medeiros, Medland, Millischer, Montgomery, Moran, Morris, Mühleisen, O’Brien, O’Donovan, Olde Loohuis, Oruc, Papiol, Pardiñas, Perry, Pfennig, Porichi, Potash, Quested, Raj, Rapaport, DePaulo, Regeer, Rice, Rivas, Rivera, Roth, Roussos, Ruderfer, Sánchez-Mora, Schulte, Senner, Sharp, Shilling, Sigurdsson, Sirignano, Slaney, Smeland, Smith, Sobell, Søholm Hansen, Soler Artigas, Spijker, Stein, Strauss, Świątkowska, Terao, Thorgeirsson, Toma, Tooney, Tsermpini, Vawter, Vedder, Walters, Witt, Xi, Xu, Yang, Young, Young, Zandi, Zhou, Zillich, Agartz, Alda, Alfredsson, Babadjanova, Backlund, Baune, Bellivier, Bengesser, Berrettini, Blackwood, Boehnke, Børglum, Breen, Carr, Catts, Corvin, Craddock, Dannlowski, Dikeos, Esko, Etain, Ferentinos, Frye, Fullerton, Gawlik, Gershon, Goes, Green, Grigoroiu-Serbanescu, Hauser, Henskens, Hillert, Hong, Hougaard, Hultman, Hveem, Iwata, Jablensky, Jones, Jones, Kahn, Kelsoe, Kirov, Landén, Leboyer, Lewis, Li, Lissowska, Lochner, Loughland, Martin, Mathews, Mayoral, McElroy, McIntosh, McMahon, Melle, Michie, Milani, Mitchell, Morken, Mors, Mortensen, Mowry, Müller-Myhsok, Myers, Neale, Nievergelt, Nordentoft, Nöthen, O’Donovan, Oedegaard, Olsson, Owen, Paciga, Pantelis, Pato, Pato, Patrinos, Perlis, Posthuma, Ramos-Quiroga, Reif, Reininghaus, Ribasés, Rietschel, Ripke, Rouleau, Saito, Schall, Schalling, Schofield, Schulze, Scott, Scott, Serretti, Shannon Weickert, Smoller, Stefansson, Stefansson, Stordal, Streit, Sullivan, Turecki, Vaaler, Vieta, Vincent, Waldman, Weickert, Werge, Wray, Zwart, Biernacka, Nurnberger, Cichon, Edenberg, Stahl, McQuillin, Di Florio, Ophoff and Andreassen2021; Trubetskoy et al., Reference Trubetskoy, Pardiñas, Qi, Panagiotaropoulou, Awasthi, Bigdeli, Bryois, Chen, Dennison, Hall, Lam, Watanabe, Frei, Ge, Harwood, Koopmans, Magnusson, Richards, Sidorenko, Wu, Zeng, Grove, Kim, Li, Voloudakis, Zhang, Adams, Agartz, Atkinson, Agerbo, Al Eissa, Albus, Alexander, Alizadeh, Alptekin, Als, Amin, Arolt, Arrojo, Athanasiu, Azevedo, Bacanu, Bass, Begemann, Belliveau, Bene, Benyamin, Bergen, Blasi, Bobes, Bonassi, Braun, Bressan, Bromet, Bruggeman, Buckley, Buckner, Bybjerg-Grauholm, Cahn, Cairns, Calkins, Carr, Castle, Catts, Chambert, Chan, Chaumette, Cheng, Cheung, Chong, Cohen, Consoli, Cordeiro, Costas, Curtis, Davidson, Davis, de Haan, Degenhardt, DeLisi, Demontis, Dickerson, Dikeos, Dinan, Djurovic, Duan, Ducci, Dudbridge, Eriksson, Fañanás, Faraone, Fiorentino, Forstner, Frank, Freimer, Fromer, Frustaci, Gadelha, Genovese, Gershon, Giannitelli, Giegling, Giusti-Rodríguez, Godard, Goldstein, González Peñas, González-Pinto, Gopal, Gratten, Green, Greenwood, Guillin, Gülöksüz, Gur, Gur, Gutiérrez, Hahn, Hakonarson, Haroutunian, Hartmann, Harvey, Hayward, Henskens, Herms, Hoffmann, Howrigan, Ikeda, Iyegbe, Joa, Julià, Kähler, Kam-Thong, Kamatani, Karachanak-Yankova, Kebir, Keller, Kelly, Khrunin, Kim, Klovins, Kondratiev, Konte, Kraft, Kubo, Kučinskas, Kučinskiene, Kusumawardhani, Kuzelova-Ptackova, Landi, Lazzeroni, Lee, Legge, Lehrer, Lencer, Lerer, Li, Lieberman, Light, Limborska, Liu, Lönnqvist, Loughland, Lubinski, Luykx, Lynham, Macek, Mackinnon, Magnusson, Maher, Maier, Malaspina, Mallet, Marder, Marsal, Martin, Martorell, Mattheisen, McCarley, McDonald, McGrath, Medeiros, Meier, Melegh, Melle, Mesholam-Gately, Metspalu, Michie, Milani, Milanova, Mitjans, Molden, Molina, Molto, Mondelli, Moreno, Morley, Muntané, Murphy, Myin-Germeys, Nenadić, Nestadt, Nikitina-Zake, Noto, Nuechterlein, O’Brien, O’Neill, Oh, Olincy, Ota, Pantelis, Papadimitriou, Parellada, Paunio, Pellegrino, Periyasamy, Perkins, Pfuhlmann, Pietiläinen, Pimm, Porteous, Powell, Quattrone, Quested, Radant, Rampino, Rapaport, Rautanen, Reichenberg, Roe, Roffman, Roth, Rothermundt, Rutten, Saker-Delye, Salomaa, Sanjuan, Santoro, Savitz, Schall, Scott, Seidman, Sharp, Shi, Siever, Sigurdsson, Sim, Skarabis, Slominsky, So, Sobell, Söderman, Stain, Steen, Steixner-Kumar, Stögmann, Stone, Straub, Streit, Strengman, Stroup, Subramaniam, Sugar, Suvisaari, Svrakic, Swerdlow, Szatkiewicz, Ta, Takahashi, Terao, Thibaut, Toncheva, Tooney, Torretta, Tosato, Tura, Turetsky, Üçok, Vaaler, van Amelsvoort, van Winkel, Veijola, Waddington, Walter, Waterreus, Webb, Weiser, Williams, Witt, Wormley, Wu, Xu, Yolken, Zai, Zhou, Zhu, Zimprich, Atbaşoğlu, Ayub, Benner, Bertolino, Black, Bray, Breen, Buccola, Byerley, Chen, Cloninger, Crespo-Facorro, Donohoe, Freedman, Galletly, Gandal, Gennarelli, Hougaard, Hwu, Jablensky, McCarroll, Moran, Mors, Mortensen, Müller-Myhsok, Neil, Nordentoft, Pato, Petryshen, Pirinen, Pulver, Schulze, Silverman, Smoller, Stahl, Tsuang, Vilella, Wang, Xu, Wenwen, Wildenauer, Agiananda, Amir, Antoni, Arsianti, Asmarahadi, Diatri, Djatmiko, Irmansyah, Khalimah, Kusumadewi, Kusumaningrum, Lukman, Nasrun, Safyuni, Prasetyawan, Semen, Siste, Tobing, Widiasih, Wiguna, Wulandari, Evalina, Hananto, Ismoyo, Marini, Henuhili, Reza, Yusnadewi, Akbarian, Ashley-Koch, van Bakel, Breen, Brown, Bryois, Carlyle, Charney, Coetzee, Crawford, Dracheva, Emani, Farnham, Fromer, Galeev, Gandal, Gerstein, Giase, Girdhar, Goes, Grennan, Gu, Guerra, Gursoy, Hoffman, Hyde, Jaffe, Jiang, Jiang, Kefi, Kim, Kitchen, Knowles, Lay, Lee, Li, Liu, Liu, Mattei, Navarro, Pan, Peters, Pinto, Pochareddy, Polioudakis, Purcaro, Purcell, Pratt, Reddy, Rhie, Roussos, Rozowsky, Sanders, Sestan, Sethi, Shi, Shieh, Swarup, Szekely, Wang, Warrell, Weissman, Weng, White, Wiseman, Witt, Won, Wood, Wu, Xu, Yao, Zandi, Bakker, Bender, Bramon, Collier, Crepo-Facorro, Hall, Iyegbe, Kahn, Lawrie, Lewis, Lin, Linszen, Mata, McIntosh, Murray, Ophoff, van Os, Powell, Rujescu, Walshe, Weisbrod, Andres-Alonso, Bagni, Bayés, Biederer, Brose, Brown, Chua, Coba, Cornelisse, de Jong, de Juan-Sanz, Dieterich, Feng, Goldschmidt, Gundelfinger, Hoogenraad, Huganir, Hyman, Imig, Jahn, Jung, Kaeser, Kim, Koopmans, Kreutz, Lipstein, MacGillavry, Malenka, McPherson, O’Connor, Pielot, Ryan, Sahasrabudhe, Sala, Sheng, Smalla, Smit, Südhof, Thomas, Toonen, van Weering, Verhage, Verpelli, Adolfsson, Arango, Baune, Belangero, Børglum, Braff, Bramon, Buxbaum, Campion, Cervilla, Cichon, Collier, Corvin, Curtis, Forti, Domenici, Ehrenreich, Escott-Price, Esko, Fanous, Gareeva, Gawlik, Gejman, Gill, Glatt, Golimbet, Hong, Hultman, Hyman, Iwata, Jönsson, Kahn, Kennedy, Khusnutdinova, Kirov, Knowles, Krebs, Laurent-Levinson, Lee, Lencz, Levinson, Li, Liu, Malhotra, Malhotra, McIntosh, McQuillin, Menezes, Morgan, Morris, Mowry, Murray, Nimgaonkar, Nöthen, Ophoff, Paciga, Palotie, Pato, Qin, Rietschel, Riley, Rivera, Rujescu, Saka, Sanders, Schwab, Serretti, Sham, Shi, St Clair, Stefánsson, Stefansson, Tsuang, van Os, Vawter, Weinberger, Werge, Wildenauer, Yu, Yue, Holmans, Pocklington, Roussos, Vassos, Verhage, Visscher, Yang, Posthuma, Andreassen, Kendler, Owen, Wray, Daly, Huang, Neale, Sullivan, Ripke, Walters, O’Donovan, van Amelsvoort, van Winkel, Gareeva, Sham, Shi, St Clair and van Os2022). SCZ and BD share genetics with immune-mediated diseases such as cardiovascular disease, multiple sclerosis and inflammatory bowel disease (Andreassen et al., Reference Andreassen, Djurovic, Thompson, Schork, Kendler, O’Donovan, Rujescu, Werge, van de Bunt, Morris, McCarthy, Roddey, McEvoy, Desikan and Dale2013; Andreassen et al., Reference Andreassen, Harbo, Wang, Thompson, Schork, Mattingsdal, Zuber, Bettella, Ripke, Kelsoe, Kendler, O’Donovan, Sklar, McEvoy, Desikan, Lie, Djurovic and Dale2015; Kember et al., Reference Kember, Hou, Ji, Andersen, Ghorai, Estrella, Almasy, McMahon, Brown and Bućan2018; Pouget et al., Reference Pouget, Han, Wu, Mignot, Ollila, Barker, Spain, Dand, Trembath, Martin, Mayes, Bossini-Castillo, López-Isac, Jin, Santorico, Spritz, Hakonarson, Polychronakos, Raychaudhuri and Knight2019; Rodevand et al., Reference Rødevand, Bahrami, Frei, Chu, Shadrin, O’Connell, Smeland, Elvsåshagen, Hindley, Djurovic, Dale, Lagerberg, Steen and Andreassen2021). Brain imaging and markers in cerebrospinal fluid and post-mortem brain tissue indicate low-grade neuroinflammation in SMDs (Bechter et al., Reference Bechter, Reiber, Herzog, Fuchs, Tumani and Maxeiner2010; Trepanier et al., Reference Trepanier, Hopperton, Mizrahi, Mechawar and Bazinet2016; Marques et al., Reference Marques, Ashok, Pillinger, Veronese, Turkheimer, Dazzan, Sommer and Howes2019; Benedetti et al., Reference Benedetti, Aggio, Pratesi, Greco and Furlan2020; Giridharan et al., Reference Giridharan, Sayana, Pinjari, Ahmad, da Rosa, Quevedo and Barichello2020), and low-grade systemic inflammation is evidenced by a range of blood immune marker studies (Goldsmith et al., Reference Goldsmith, Rapaport and Miller2016; Muneer, Reference Muneer2016; Frydecka et al., Reference Frydecka, Krzystek-Korpacka, Lubeiro, Stramecki, Stańczykiewicz, Beszłej, Piotrowski, Kotowicz, Szewczuk-Bogusławska, Pawlak-Adamska and Misiak2018; Khoury and Nasrallah, Reference Khoury and Nasrallah2018; Kroken et al., Reference Kroken, Sommer, Steen, Dieset and Johnsen2018; Benedetti et al., Reference Benedetti, Aggio, Pratesi, Greco and Furlan2020). Systemic immune pathways and markers typically associated with SMDs include tumour necrosis factor (TNF), interleukin (IL)-1, -2, -6 and -18 signalling (Goldsmith et al., Reference Goldsmith, Rapaport and Miller2016; Kroken et al., Reference Kroken, Sommer, Steen, Dieset and Johnsen2018), adhesion molecules (Muller, Reference Muller2019), C-reactive protein (CRP) (Lestra et al., Reference Lestra, Romeo, Martelli, Benyamina and Hamdani2022) and chemokines (Misiak et al., Reference Misiak, Bartoli, Carrà, Małecka, Samochowiec, Jarosz, Banik and Stańczykiewicz2020; Ermakov et al., Reference Ermakov, Mednova, Boiko, Buneva and Ivanova2023). Lastly, large epidemiological studies of SMDs demonstrate co-occurrence with autoimmune disorders and severe infections as risk factors (Benros et al., Reference Benros, Nielsen, Nordentoft, Eaton, Dalton and Mortensen2011; Bergink et al., Reference Bergink, Gibney and Drexhage2014; Najjar et al., Reference Najjar, Steiner, Najjar and Bechter2018; Cullen et al., Reference Cullen, Holmes, Pollak, Blackman, Joyce, Kempton, Murray, McGuire and Mondelli2019; Köhler-Forsberg et al., Reference Köhler-Forsberg, Petersen, Gasse, Mortensen, Dalsgaard, Yolken, Mors and Benros2019).

Chronic low-grade inflammation has been reported to induce telomere attrition and accelerated senescence by enhancing cell turnover, as well as to induce telomere and DNA damage by increasing reactive oxygen species load (Jurk et al., Reference Jurk, Wilson, Passos, Oakley, Correia-Melo, Greaves, Saretzki, Fox, Lawless, Anderson, Hewitt, Pender, Fullard, Nelson, Mann, van de Sluis, Mann and von Zglinicki2014; Barnes et al., Reference Barnes, Fouquerel and Opresko2019). Accelerated telomere attrition is associated with various immune-related somatic conditions, including infections, cardiometabolic and autoimmune disorders (Zhang et al., Reference Zhang, Rane, Dai, Shanmugam, Arfuso, Samy, Lai, Kappei, Kumar and Sethi2016; Squassina et al., Reference Squassina, Pisanu and Vanni2019). A bidirectional relationship is also suggested, with telomere attrition-mediated immune dysregulation and inflammation involving the production of pro-inflammatory cytokines by senescent cells (Zhang et al., Reference Zhang, Rane, Dai, Shanmugam, Arfuso, Samy, Lai, Kappei, Kumar and Sethi2016; Lustig et al., Reference Lustig, Liu, Metter, An, Swaby, Elango, Ferrucci, Hodes and Weng2017; Rossiello et al., Reference Rossiello, Jurk, Passos and Di Fagagna2022). In SMDs, some studies suggest that systemic immune abnormalities and inflammation are involved in TL abnormalities. Negative associations between TL and levels of the chemokine eotaxin and high-sensitivity CRP have been reported in SCZ (Czepielewski et al., Reference Czepielewski, Massuda, Panizzutti, Grun, Barbé-Tuana, Teixeira, Barch and Gama2018) and a mixed sample of SCZ, BD, major depressive disorder and non-psychiatric controls (Squassina et al., Reference Squassina, Manchia, Pisanu, Ardau, Arzedi, Bocchetta, Caria, Cocco, Congiu, Cossu, Dettori, Frau, Garzilli, Manca, Meloni, Montis, Mura, Nieddu, Noli, Paribello, Pinna, Robledo, Severino, Sogos, Del Zompo, Ferri, Chillotti, Vanni and Carpiniello2020), respectively. However, few studies have been conducted and the sample sizes are small (Lindqvist et al., Reference Lindqvist, Epel, Mellon, Penninx, Révész, Verhoeven, Reus, Lin, Mahan, Hough, Rosser, Bersani, Blackburn and Wolkowitz2015; Squassina et al., Reference Squassina, Pisanu and Vanni2019).

To identify potential underlying mechanisms of accelerated telomere attrition in SCZ and BD, we aimed to investigate associations between levels of peripheral immune markers with established links to these disorders and leucocyte TL. We hypothesised that a shortening of telomeres was associated with increasing aberrations in immune marker levels in SCZ and BD, in line with the concept of immune dysregulation involvement in the causal mechanism of accelerated telomere attrition. Twelve immune markers reflecting well-studied immune pathways in SCZ and BD were analysed, including soluble tumour necrosis factor receptor 1A (sTNF-R1) (Morch et al., Reference Mørch, Dieset, Færden, Hope, Aas, Nerhus, Gardsjord, Haram, Falk, Joa, Morken, Agartz, Aukrust, Djurovic, Melle, Ueland and Andreassen2017), interleukin-1 receptor antagonist (IL-1Ra) (Hope et al., Reference Hope, Hoseth, Dieset, Mørch, Aas, Aukrust, Djurovic, Melle, Ueland, Agartz, Ueland, Westlye and Andreassen2015; Morch et al., Reference Mørch, Dieset, Færden, Hope, Aas, Nerhus, Gardsjord, Haram, Falk, Joa, Morken, Agartz, Aukrust, Djurovic, Melle, Ueland and Andreassen2017; Werner et al., Reference Werner, Wirgenes, Shadrin, Lunding, Rødevand, Hjell, Ormerod, Haram, Agartz, Djurovic, Melle, Aukrust, Ueland, Andreassen and Steen2022a), IL-18 (Hjell et al., Reference Hjell, Szabo, Mørch-Johnsen, Holst, Tesli, Bell, Fischer-Vieler, Werner, Lunding, Ormerod, Johansen, Dieset, Djurovic, Melle, Ueland, Andreassen, Steen and Haukvik2022), soluble interleukin-2 receptor (sIL-2R) (Werner et al., Reference Werner, Wirgenes, Shadrin, Lunding, Rødevand, Hjell, Ormerod, Haram, Agartz, Djurovic, Melle, Aukrust, Ueland, Andreassen and Steen2022a), soluble glycoprotein 130 (sgp130) (Aas et al., Reference Aas, Dieset, Hope, Hoseth, Mørch, Reponen, Steen, Laskemoen, Ueland, Aukrust, Agartz, Andreassen and Melle2017), intercellular adhesion molecule -1 (ICAM-1) (Werner et al., Reference Werner, Wirgenes, Shadrin, Lunding, Rødevand, Hjell, Ormerod, Haram, Agartz, Djurovic, Melle, Aukrust, Ueland, Andreassen and Steen2022b), a proliferation-inducing ligand (APRIL) (Engh et al., Reference Engh, Ueland, Agartz, Andreou, Aukrust, Boye, Bøen, Drange, Elvsåshagen, Hope, Høegh, Joa, Johnsen, Kroken, Lagerberg, Lekva, Malt, Melle, Morken, Nærland, Steen, Wedervang-Resell, Weibell, Westlye, Djurovic, Steen and Andreassen2021), chitinase-3-like protein 1 (YKL-40) (Dieset et al., Reference Dieset, Mørch, Hope, Hoseth, Reponen, Gran, Aas, Michelsen, Reichborn‐Kjennerud, Nesvåg, Agartz, Melle, Aukrust, Djurovic, Ueland and Andreassen2019), myeloperoxidase (MPO) (Reponen et al., Reference Reponen, Dieset, Tesli, Mørch, Aas, Vedal, Haug, Drange, Steen, Hope, Szabo, Gohar, Wedervang-Resell, Djurovic, Melle, Aukrust, Andreassen and Ueland2020), neuron specific enolase (NSE) (Andreou et al., Reference Andreou, Steen, Jørgensen, Smelror, Wedervang-Resell, Nerland, Westlye, Nærland, Myhre, Joa, Reitan, Vaaler, Morken, Bøen, Elvsåshagen, Boye, Malt, Aukrust, Skrede, Kroken, Johnsen, Djurovic, Andreassen, Ueland and Agartz2021), CRP (Dieset et al., Reference Dieset, Haukvik, Melle, Røssberg, Ueland, Hope, Dale, Djurovic, Aukrust, Agartz and Andreassen2015) and eotaxin (Teixeira et al., Reference Teixeira, Gama, Rocha and Teixeira2018). Healthy controls (HC) were included as a comparison group. The analyses were adjusted for age, sex (Wolkowitz et al., Reference Wolkowitz, Jeste, Martin, Lin, Daly, Reuter and Kraemer2017) and body mass index (BMI) (Gielen et al., Reference Gielen, Hageman, Antoniou, Nordfjall, Mangino, Balasubramanyam, de Meyer, Hendricks, Giltay, Hunt, Nettleton, Salpea, Diaz, Farzaneh-Far, Atzmon, Harris, Hou, Gilley, Hovatta, Kark, Nassar, Kurz, Mather, Willeit, Zheng, Pavanello, Demerath, Rode, Bunout, Steptoe, Boardman, Marti, Needham, Zheng, Ramsey-Goldman, Pellatt, Kaprio, Hofmann, Gieger, Paolisso, Hjelmborg, Mirabello, Seeman, Wong, van der Harst, Broer, Kronenberg, Kollerits, Strandberg, Eisenberg, Duggan, Verhoeven, Schaakxs, Zannolli, dos Reis, Charchar, Tomaszewski, Mons, Demuth, Molli, Cheng, Krasnienkov, D’Antono, Kasielski, McDonnell, Ebstein, Sundquist, Pare, Chong and Zeegers2018), followed by sensitivity analyses of suggested associations with further adjustments.

Methods

Study setting

The current sample is based on inclusion of patients and HC to the Thematically Organized Psychosis (TOP) study at the Norwegian Center for Mental Disorder Research (NORMENT). Patients meeting the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV (First, Reference First2013) criteria for SCZ or BD are recruited on an ongoing basis from the major hospitals in Oslo, and HC are recruited based on random selection from the same catchment area. The TOP study has invested major efforts to achieve a comprehensive inclusion of patient participants from in- and outpatient clinics in a medium-sized transcultural capital Oslo with a wide range of sociodemographic differences and equal access to public health care services. Individuals between 18 to 65 years of age who have sufficient Scandinavian language skills to complete the study protocol are asked to participate. Exclusion criteria are severe somatic illness potentially interfering with brain functioning, including neurological disorders, history of severe head trauma, and IQ<70. Additionally, HC with current substance abuse or dependency, or with close relatives with SMDs, are excluded.

Sample

Participants from the TOP study with measurements of immune marker levels and TL (N = 890), comprising N = 301 patients with SCZ (schizophrenia, N = 162; schizophreniform disorder, N = 24; schizoaffective disorder, N = 49; psychotic disorder not otherwise specified, N = 66), N = 211 patients with BD (bipolar I disorder, N = 137; bipolar II disorder, N = 58; bipolar disorder not otherwise specified, N = 16) and N = 378 HC were included. Sixteen individuals were excluded from the analyses as the blood sampling did not coincide for immune markers and TL, and 54 participants were excluded due to CRP levels above 10.0 mg/L, to prevent impact from acute infections on immune marker levels (Fathian et al., Reference Fathian, Gjestad, Kroken, Løberg, Reitan, Fleichhacker, Rettenbacher, Larsen, Joa, Stabell, Kjelby, Sinkevicute, Alisauskiene, Steen and Johnsen2022).

Clinical assessments

Trained clinical psychologists and medical doctors performed clinical interviews, obtaining sociodemographic, psychiatric and somatic information. Diagnostic interviews were conducted using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1) (Spitzer et al., Reference Spitzer, Williams, Gibbon and First1992). Inter-rater reliability of the diagnostics has previously been estimated to an overall kappa score between 0.92 and 0.99 (Høegh et al., Reference Høegh, Melle, Aminoff, Olsen, Lunding, Ueland and Lagerberg2022). Present symptom severity was evaluated with the Positive and Negative Syndrome Scale (PANSS) (Kay et al., Reference Kay, Fiszbein and Opler1987). Within two weeks of assessing symptom severity, a somatic examination including height and weight for BMI, and routine blood tests was performed. Information about prescribed medication was collected from interviews and medical records, and defined daily dosages (DDD) (World Health Organization Collaborating Centre for Drug Statistics Methodology, 2024) of antipsychotic agent (AP) use, antidepressant agent (AD) use and mood stabilising agent (MS; antiepileptics and lithium) use were calculated (Table 1). Details of anti-inflammatory, cardiometabolic and other somatic agent use are given in Supplementary Table 1.

Table 1. Sample descriptives

a Chi square test for categorical variables, Kruskal–Wallis and Mann–Whitney U-Test for variables represented by median (IQR).

Missing data, N (%): BMI 42 (4.7), smoking 192 (21.6), education 4 (0.5), duration of illness 10 (1.1), PANSS 9 (1.0), freezer storage time 21 (2.4), ICAM-1 and APRIL 18 (2.0), IL-18 57 (6.8), NSE 17 (2.0), eotaxin 19 (2.1).

Immune markers

Blood samples were drawn on EDTA vials and plasma was isolated within the next working day and stored at -80 degrees Celsius for later analyses. Typical time of blood sampling were 09:15 (median, min 07:30, max 15:15) for patients and 10:50 (median, min 08:00, max 18:10) for HC (Morch et al., Reference Mørch, Dieset, Færden, Hope, Aas, Nerhus, Gardsjord, Joa, Morken, Agartz, Aukrust, Djurovic, Melle, Ueland and Andreassen2016; Hjell et al., Reference Hjell, Rokicki, Szabo, Holst, Tesli, Bell, Fischer-Vieler, Werner, Lunding, Ormerod, Johansen, Djurovic, Ueland, Andreassen, Melle, Lagerberg, Mørch-Johnsen, Steen and Haukvik2023). Samples were analysed in duplicate with enzyme immunoassays at the Research Institute of Internal Medicine, Oslo University Hospital using antibodies from R&D systems (Minneapolis, MN, USA) in a 384 format by combining use of a Selma pipetting robot and a Biotek dispenser/washer. An ELISA plate reader (BIO-RAD, Hercules, CA, USA) was used to read absorbance at 450 nm with wavelength correction at 540 nm. Intra- and inter-assay coefficients of variation were<10 % in all EIAs. All plasma samples went through one freeze/thaw cycle prior to analysis of immune markers. While the chosen markers are in general circulating at measurable levels (e.g. cell adhesion molecules and soluble receptors), some proteins had levels below the limit of detection (LLOD) (Armbruster and Pry, Reference Armbruster and Pry2008); these were set to the LLOD. This includes 2 samples for NSE (set to 100 pg/mL), 11 samples for IL-1RA (set to 25 pg/mL), 5 samples for IL-18 (set to 125 pg/mL) and 3 samples for APRIL (set to 50 pg/mL).

The immune markers were chosen based on documented associations with SMDs (Potvin et al., Reference Potvin, Stip, Sepehry, Gendron, Bah and Kouassi2008; Drexhage et al., Reference Drexhage, Knijff, Padmos, Heul-Nieuwenhuijzen, Beumer, Versnel and Drexhage2010; Goldsmith et al., Reference Goldsmith, Rapaport and Miller2016) and constitute sTNF-R1, IL-1RA, sIL-2R, sgp130, IL-18, ICAM-1, APRIL, YKL-40, MPO, NSE, CRP and eotaxin (George-Chandy et al., Reference George-Chandy, Trysberg and Eriksson2008; Palladino et al., Reference Palladino, Salani, Ciaramella, Rubino, Caltagirone, Fagioli, Spalletta and Bossù2012; Hope et al., Reference Hope, Ueland, Steen, Dieset, Lorentzen, Berg, Agartz, Aukrust and Andreassen2013; Aas et al., Reference Aas, Dieset, Hope, Hoseth, Mørch, Reponen, Steen, Laskemoen, Ueland, Aukrust, Agartz, Andreassen and Melle2017; Dinarello, Reference Dinarello2018; Teixeira et al., Reference Teixeira, Gama, Rocha and Teixeira2018; Muller, Reference Muller2019; Andreou et al., Reference Andreou, Steen, Jørgensen, Smelror, Wedervang-Resell, Nerland, Westlye, Nærland, Myhre, Joa, Reitan, Vaaler, Morken, Bøen, Elvsåshagen, Boye, Malt, Aukrust, Skrede, Kroken, Johnsen, Djurovic, Andreassen, Ueland and Agartz2021; Lestra et al., Reference Lestra, Romeo, Martelli, Benyamina and Hamdani2022). IL-1RA (Palomo et al., Reference Palomo, Dietrich, Martin, Palmer and Gabay2015; Goldsmith et al., Reference Goldsmith, Rapaport and Miller2016), IL-18 (Ihim et al., Reference Ihim, Abubakar, Zian, Sasaki, Saffarioun, Maleknia and Azizi2022), sIL-2R (Goldsmith et al., Reference Goldsmith, Rapaport and Miller2016) and sgp130 (subunit of IL-6 receptor) (Jones and Jenkins, Reference Jones and Jenkins2018) are components of cytokine inflammatory pathways; ICAM-1 is an adhesion molecule mediating inflammation and leucocyte transmigration, reflecting among other things blood-brain barrier (BBB) integrity (Muller, Reference Muller2019); the cytokine APRIL is involved in B- and T-cell regulation (Engh et al., Reference Engh, Ueland, Agartz, Andreou, Aukrust, Boye, Bøen, Drange, Elvsåshagen, Hope, Høegh, Joa, Johnsen, Kroken, Lagerberg, Lekva, Malt, Melle, Morken, Nærland, Steen, Wedervang-Resell, Weibell, Westlye, Djurovic, Steen and Andreassen2021); YKL-40 is an inflammatory marker associated with first-episode psychosis (Orhan et al., Reference Orhan, Schwieler, Fatouros‐Bergman, Malmqvist, Cervenka, Collste, Flyckt, Farde, Sellgren, Piehl and Erhardt2018); the innate immunity enzyme MPO is particularly produced by neutrophils and involved in oxidative stress (Ndrepepa, Reference Ndrepepa2019); NSE is an enzyme suggested to reflect neuronal stress and neural maturation (Haque et al., Reference Haque, Polcyn, Matzelle and Banik2018; Andreou et al., Reference Andreou, Steen, Jørgensen, Smelror, Wedervang-Resell, Nerland, Westlye, Nærland, Myhre, Joa, Reitan, Vaaler, Morken, Bøen, Elvsåshagen, Boye, Malt, Aukrust, Skrede, Kroken, Johnsen, Djurovic, Andreassen, Ueland and Agartz2021); the commonly used acute-phase protein CRP reflects unspecific inflammation and is stimulated by TNF, IL-6 and IL-1β (Sproston and Ashworth, Reference Sproston and Ashworth2018); and lastly the chemokine eotaxin reflects inflammation by eosinophil recruitment and has recently been proposed as an ageing biomarker in SMDs (Teixeira et al., Reference Teixeira, Gama, Rocha and Teixeira2018). sTNF-R1, IL-1RA, sIL-2R, YKL-40, MPO and sgp130 were analysed in a subsample in 2013 (60.1 % of the total sample) (e.g. Morch et al., Reference Mørch, Dieset, Færden, Hope, Aas, Nerhus, Gardsjord, Joa, Morken, Agartz, Aukrust, Djurovic, Melle, Ueland and Andreassen2016), while the other immune markers were analysed in the total sample in 2018 (e.g. Ormerod et al., Reference Ormerod, Ueland, Frogner Werner, Hjell, Rødevand, Sæther, Lunding, Johansen, Ueland, Lagerberg, Melle, Djurovic, Andreassen and Steen2022), see Table 1 legend for further details.

Telomere length (TL)

TL was defined by the ratio telomere template/amount of single-copy gene template (T/S ratio), hence, TL relative to standard reference DNA (Kam et al., Reference Kam, Nguyen and Ngeow2021). Smaller T/S ratio indicates shorter average TL. TL was measured in peripheral leukocytes in blood drawn on Tempus Blood RNA-tubes (Life Technologies Corporation) as per standard practice (Akkouh et al., Reference Akkouh, Ueland, Andreassen, Brattbakk, Steen, Hughes and Djurovic2018). The samples were stored at -80 degrees Celsius before analyses with a modified quantitative real-time polymerase chain reaction (qPCR) at the Newcastle University BioScreening Core Facility-CAV. The analysis procedure is previously described (Aas et al., Reference Aas, Elvsåshagen, Westlye, Kaufmann, Athanasiu, Djurovic, Melle, van der Meer, Martin-Ruiz, Steen, Agartz and Andreassen2019). The qPCR estimated the large quantity of a single-copy gene (36B4) versus telomeric template on 10 ng of DNA with 0.25 µL of ROX reference dye (Sigma-Aldrich, Gillingham, UK) and 5 µL SYBR®Green JumpStart Taq Ready Mix. Primers for the telomeric reaction were 300 nM TelA (5′-CGG TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT-3′) and 900 nM TelB (5′-GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT-3′). Primers for 36B4 were 200 nM 36B4F (5′-CAG CAA GTG GGA AGG TGT AAT CC 3′) and 400 nM 36B4R (5′-CCC ATT CTA TCA ACG GGT ACA A-3′). PCRs were performed on an Applied Biosystems 7900HT Fast Real Time qPCR system with 384-well plate capacity, and the samples were assessed in triplicate. Plate-to-plate variation was corrected for by running three internal control DNA samples of known TL (2 kb, 3.9 kb, 10.4 kb) within each plate. To ensure TL measurement accuracy, TL measurement samples in the bottom or top 5 % were reassessed, in addition to samples with initial invalid data. The inter- and intra-assay coefficient of variation was 6.08 % and 6.07 %, respectively (Aas et al., Reference Aas, Elvsåshagen, Westlye, Kaufmann, Athanasiu, Djurovic, Melle, van der Meer, Martin-Ruiz, Steen, Agartz and Andreassen2019). Analysis of the TL data from the TOP study has previously been published (Aas et al., Reference Aas, Elvsåshagen, Westlye, Kaufmann, Athanasiu, Djurovic, Melle, van der Meer, Martin-Ruiz, Steen, Agartz and Andreassen2019; Birkenaes et al., Reference Birkenæs, Elvsåshagen, Westlye, Høegh, Haram, Werner, Quintana, Lunding, Martin-Ruiz, Agartz, Djurovic, Steen, Andreassen and Aas2021; Mlakar et al., Reference Mlakar, Birkenæs, Elvsaashagen, Ormerod, Quintana, Ueland, Melle, Lagerberg, Djurovic, Martin-Ruiz, Steen, Andreassen and Aas2023). One case qualified as an outlier in terms of TL and was excluded from the statistical analyses.

Statistical analysis

Statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS) for Windows version 29 (SPSS Inc., Chicago, IL, USA). Sample characteristics (Table 1) were analysed with chi-square tests for categorical variables, and Kruskal–Wallis test and Mann–Whitney U-test for continuous variables. Normality of TL and immune marker data was evaluated by use of histograms, Q-Q-plots, and Kolmogorov-Smirnov statistics. Linear regression was used to analyse associations between immune markers (independent variable) and TL (dependent variable). To reduce the total number of analyses performed and the risk of spurious findings, we first screened the total sample for suggested statistical effects (p<0.1) of immune markers on TL; only immune markers identified in this first step were included in the main analyses. In the main analyses, immune markers were, according to the hypotheses, analysed separately with TL in each group, to test whether immune marker levels were associated with TL in SCZ and BD. Findings in the HC group, as being less prone to biasing effects due to recruitment based on random selection, served to validate the findings in patients. We corrected for multiple testing in the main analyses by applying a moderate significance threshold of p<0.017 (0.05/3, cf. analyses in three separate groups) to avoid a too conservative threshold, which could lead to a high risk of rejecting relevant associations in this less investigated field. Statistical adjustments in the total sample and main analyses included the variables age, sex and BMI. To scrutinise associations in patients, we further conducted sensitivity analyses of the associations tested in the main analyses by performing extensive adjustments, additionally including the variables smoking (yes/no), education (years), duration of illness (years), PANSS total score, freezer storage time (years) and DDDs of AP, AD and MS. We also performed explorative analyses of sex-specific immune marker and TL associations.

Ethics

Participation in the TOP study is voluntary and based on written informed consent. The TOP study is approved by the Regional Committee for Medical and Health Research Ethics (2009/2485).

Results

Sample characteristics

Unadjusted analyses of sample characteristics showed that the BD group had significantly fewer male participants than the HC and SCZ groups (both p<0.001), and that SCZ participants on average were younger than HC (p<0.001). HC had lower BMI compared to SCZ and BD (both p<0.001). Plasma levels of the immune markers differed between SCZ and/or BD and healthy controls (p<0.05), except for sTNF-R1. The T/S ratio was significantly lower in SCZ than in HC [p = 0.010, (see Supplementary Figure 1 for the covariate adjusted difference)]. The T/S ratio was not significantly different in BD vs. HC or in BD vs. SCZ, and these characteristics did not change when excluding participants with BD using lithium. Table 1 shows sample characteristics in more detail, including variables used in the sensitivity analyses. Data on differences between cases and controls of immune marker levels and TL from the total TOP-sample is previously published elsewhere (e.g. Aas et al., Reference Aas, Elvsåshagen, Westlye, Kaufmann, Athanasiu, Djurovic, Melle, van der Meer, Martin-Ruiz, Steen, Agartz and Andreassen2019; Ormerod et al., Reference Ormerod, Ueland, Frogner Werner, Hjell, Rødevand, Sæther, Lunding, Johansen, Ueland, Lagerberg, Melle, Djurovic, Andreassen and Steen2022; Werner et al., Reference Werner, Wirgenes, Shadrin, Lunding, Rødevand, Hjell, Ormerod, Haram, Agartz, Djurovic, Melle, Aukrust, Ueland, Andreassen and Steen2022b).

Associations of TL with immune marker levels

Two immune markers were identified for further analysis from the total sample analyses [sTNF-R1 (β = 0.064, p = 0.045) and IL-1RA (β < -0.001, p = 0.075), Table 2]. The associations between these immune markers and TL were non-significant in analyses of the SCZ, BD and HC groups separately [Table 3 (see Supplementary Table 2 for analyses in the combined patient group)]. In the sensitivity analyses performed with extensive adjustments, a significant association between sTNF-R1 and T/S ratio in SCZ (β = 0.191, p = 0.012) was found (Table 4, Fig. 1).

Figure 1. Association between levels of sTNF-R1 (ng/mL) and telomere length in SCZ (raw data). A smaller T/S ratio equals shorter telomere length. Abbreviations: schizophrenia spectrum disorders (SCZ), soluble tumor necrosis factor receptor 1 (sTNF-R1), telomere template/amount of single-copy gene template (T/S ratio).

Table 2. Association analyses of immune markers and telomere length a in total sample

a Telomere length is defined by the ratio telomere template/amount of single-copy gene template (T/S ratio). Body mass index (BMI).

Table 3. Association analyses of immune markers and telomere length a in SCZ vs. BD vs. HC

a Telomere length is defined by the ratio telomere template/amount of single-copy gene template (T/S ratio).

b Results shown for the interaction term.

c Results shown as males/females.

Bipolar disorder (BD), Body mass index (BMI), Healthy controls (HC), Immune marker (IM), Schizophrenia spectrum disorders (SCZ).

Table 4. Association analyses of immune markers and telomere length, sensitivity analyses in SCZ and BD

a Model: adjustment for age, sex, BMI, smoking, education, duration of illness, PANSS total score, freezer storage time, DDD AP, DDD AD, DDD MS.

Antidepressant agents (AD), Antipsychotic agents (AP), Bipolar disorder (BD), Body mass index (BMI), Defined daily dosage (DDD), Mood stabilising agents (MS), Positive and Negative Syndrome Scale (PANSS), Schizophrenia spectrum disorder (SCZ).

There were no interaction effects between immune markers and sex in SCZ or BD. In HC there was a significant interaction effect between sex and levels of sTNF-R1 (p = 0.01); however, sex-stratified analyses revealed no significant associations (Table 3).

Discussion

In the current study we found a positive significant association between sTNF-R1 and TL in SCZ, and no significant associations between TL and the other immune markers. These results provide limited support for the hypothesis that immune abnormalities and inflammation are involved in accelerated ageing in SCZ and BD, as measured with TL and peripheral immune markers.

sTNF-R1 is part of the TNF-signaling system as a circulating soluble subunit of the TNF-receptor, acting anti-inflammatory by binding TNF-α, thus antagonising activation of the TNF-pathway (Paccalet et al., Reference Paccalet, Crola Da Silva, Mechtouff, Amaz, Varillon, de Bourguignon, Cartier, Prieur, Tomasevic, Genot, Leboube, Derimay, Rioufol, Bonnefoy-Cudraz, Mewton, Ovize, Bidaux and Bochaton2021). sTNF-R1 levels increase as a regulatory response to inflammation, and is released from most cells, including microglia, astrocytes and neurones (Kroken et al., Reference Kroken, Sommer, Steen, Dieset and Johnsen2018; Salomon, Reference Salomon2021). The positive association between levels of sTNF-R1 and TL in SCZ in the sensitivity analyses should be interpreted with caution, particularly as sTNF-R1 levels were not significantly dysregulated in SCZ. However, due to the anti-inflammatory action, one might speculate of a compensatory protective effect on TL. In comparison, a positive association was suggested between plasma levels of TNF-α and advanced brain ageing in SCZ by Klaus et al. (Reference Klaus, Nguyen, Thomas, Liou, Soontornniyomkij, Mitchell, Daly, Sutherland, Jeste and Eyler2022). The study also reported the absence of any noteworthy links between CRP, IL-6, ICAM-1, eotaxin and advanced brain ageing (Klaus et al., Reference Klaus, Nguyen, Thomas, Liou, Soontornniyomkij, Mitchell, Daly, Sutherland, Jeste and Eyler2022), in line with the current results. Thus, based on the association of sTNF-R1 and TL, we cannot exclude the possibility of the involvement of disorder-linked immune abnormalities, particularly TNF-α signalling, in mechanisms underlying regulation of the accelerating ageing as indexed by telomere attrition in SCZ.

However, overall, the current findings provide little support for immune dysregulation, as reflected by circulating levels of a range of inflammatory markers, playing a significant role in accelerated ageing as indexed by telomere attrition, in SCZ and BD. Specifically, 1) testing immune markers and inflammatory pathways robustly linked to SMDs, obtaining 2) similar findings across separate patient groups sharing etiopathogenic mechanisms (Tamminga et al., Reference Tamminga, Ivleva, Keshavan, Pearlson, Clementz, Witte, Morris, Bishop, Thaker and Sweeney2013), which are 3) paralleled by similar negative findings in the randomly recruited HC group, indicate valid findings. Moreover, to the best of our knowledge, this is the largest single study examining potential immune involvement in telomere attrition in SMDs including both SCZ and BD, and the results are based on well-adjusted analyses.

In contrast, the previous evidence in SMDs suggests involvement of immune dysregulation and inflammation in accelerated ageing (Solana et al., Reference Solana, Pereira and Tarazona2018; Squassina et al., Reference Squassina, Pisanu and Vanni2019; Fries et al., Reference Fries, Zamzow, Andrews, Pink, Scaini and Quevedo2020). Four studies report links between immune markers and accelerated ageing in BD; however, sample sizes are small and with no specific testing related to lithium use (Rizzo et al., Reference Rizzo, Do Prado, Grassi-Oliveira, Wieck, Correa, Teixeira and Bauer2013; Panizzutti et al., Reference Panizzutti, Gubert, Schuh, Ferrari, Bristot, Fries, Massuda, Walz, Rocha, Berk, Teixeira and Gama2015; Vasconcelos-Moreno et al., Reference Vasconcelos-Moreno, Fries, Gubert, dos Santos, Fijtman, Sartori, Ferrari, Grun, Parisi, Guma, Barbé-Tuana, Kapczinski, Rosa, Yatham and Kauer-Sant’Anna2017; Mohite et al., Reference Mohite, Cordeiro, Tannous, Mwangi, Selvaraj, Soares, Sanches and Teixeira2020). Also, these studies contrast the current study by the sample of Rizzo et al. (Reference Rizzo, Do Prado, Grassi-Oliveira, Wieck, Correa, Teixeira and Bauer2013) being restricted to women, Panizzutti et al. (Reference Panizzutti, Gubert, Schuh, Ferrari, Bristot, Fries, Massuda, Walz, Rocha, Berk, Teixeira and Gama2015) analysing eotaxin but not TL as a potential ageing biomarker, Vasconcelos-Moreno et al. (Reference Vasconcelos-Moreno, Fries, Gubert, dos Santos, Fijtman, Sartori, Ferrari, Grun, Parisi, Guma, Barbé-Tuana, Kapczinski, Rosa, Yatham and Kauer-Sant’Anna2017) indicating an association between TL and levels of pro-inflammatory markers without conducting specific association analyses, and the study by Mohite et al. (Reference Mohite, Cordeiro, Tannous, Mwangi, Selvaraj, Soares, Sanches and Teixeira2020) lacking adjustments for variables such as age, sex and psychotropic agents. In SCZ, a study of about one eighth the sample size of ours suggested eotaxin to be negatively correlated with TL, with additional associations to reduced grey matter volume (Czepielewski et al., Reference Czepielewski, Massuda, Panizzutti, Grun, Barbé-Tuana, Teixeira, Barch and Gama2018). Moreover, a proteomics and metabolomics study in SCZ reported dysregulation of inflammatory components associated with somatic ageing diseases; however, TL was not analysed (Campeau et al., Reference Campeau, Mills, Stevens, Rossitto, Meehan, Dorrestein, Daly, Nguyen, Gonzalez, Jeste and Hook2022). Interestingly, a negative association was reported between TL and high-sensitivity CRP in a study of SCZ, BD, major depressive disorder (MDD) and non-psychiatric controls; however, the study did not report diagnosis-specific associations (Squassina et al., Reference Squassina, Manchia, Pisanu, Ardau, Arzedi, Bocchetta, Caria, Cocco, Congiu, Cossu, Dettori, Frau, Garzilli, Manca, Meloni, Montis, Mura, Nieddu, Noli, Paribello, Pinna, Robledo, Severino, Sogos, Del Zompo, Ferri, Chillotti, Vanni and Carpiniello2020). While increased levels of eotaxin has been associated with SMDs and accelerated ageing (Czepielewski et al., Reference Czepielewski, Massuda, Panizzutti, Grun, Barbé-Tuana, Teixeira, Barch and Gama2018; Teixeira et al., Reference Teixeira, Gama, Rocha and Teixeira2018), we found decreased eotaxin levels in SCZ, but no significant association with TL, thus, questioning the role of eotaxin as a marker of accelerated ageing in SMDs. Importantly, our conclusion for the immune marker and TL associations were unchanged also after combining the SCZ and BD groups in one SMDs group. By comparison, significant negative correlations between IL-6, TNF-α and CRP levels and TL have been reported in a large sample of individuals with MDD (Révész et al., Reference Révész, Verhoeven, Milaneschi, De Geus, Wolkowitz and Penninx2014). These results were in line with another, smaller study in which TL shortening associated with cumulative lifetime exposure to MDD, influenced by chronic inflammation, was suggested (Wolkowitz et al., Reference Wolkowitz, Mellon, Epel, Lin, Dhabhar, Su, Reus, Rosser, Burke, Kupferman, Compagnone, Nelson, Blackburn and Kiechl2011). Similarly, associations between high IL-6 and TNF-α levels but not CRP and cumulative effect of chronic inflammation, and TL shortening, have been reported in HC (O’donovan et al., Reference O’Donovan, Pantell, Puterman, Dhabhar, Blackburn, Yaffe, Cawthon, Opresko, Hsueh, Satterfield, Newman, Ayonayon, Rubin, Harris, Epel and Lichterfeld2011), particularly in individuals exposed to childhood trauma (Kiecolt-Glaser et al., Reference Kiecolt-Glaser, Gouin, Weng, Malarkey, Beversdorf and Glaser2011). The MDD and HC studies included somewhat older individuals than the current study, and we can only speculate that the younger age might have prevented us from detecting additional significant associations.

We have previously reported differences in TL between SMDs and HC in a sample partly overlapping with the current sample (Aas et al., Reference Aas, Elvsåshagen, Westlye, Kaufmann, Athanasiu, Djurovic, Melle, van der Meer, Martin-Ruiz, Steen, Agartz and Andreassen2019). In BD, other studies have reported both shorter (Simon et al., Reference Simon, Smoller, McNamara, Maser, Zalta, Pollack, Nierenberg, Fava and Wong2006; Elvsashagen et al., Reference Elvsåshagen, Vera, Bøen, Bratlie, Andreassen, Josefsen, Malt, Blasco and Boye2011; Rizzo et al., Reference Rizzo, Do Prado, Grassi-Oliveira, Wieck, Correa, Teixeira and Bauer2013; Lima et al., Reference Lima, Barros, Rosa, Albuquerque, Malloy-Diniz, Neves, Romano-Silva and de Miranda2015; Barbe-Tuana et al., Reference Barbé-Tuana, Parisi, Panizzutti, Fries, Grun, Guma, Kapczinski, Berk, Gama and Rosa2016; Darrow et al., Reference Darrow, Verhoeven, Révész, Lindqvist, Penninx, Delucchi, Wolkowitz and Mathews2016; Vasconcelos-Moreno et al., Reference Vasconcelos-Moreno, Fries, Gubert, dos Santos, Fijtman, Sartori, Ferrari, Grun, Parisi, Guma, Barbé-Tuana, Kapczinski, Rosa, Yatham and Kauer-Sant’Anna2017; Huang et al., Reference Huang, Wang, Tseng, Hung and Lin2018), longer (Squassina et al., Reference Squassina, Manchia, Pisanu, Ardau, Arzedi, Bocchetta, Caria, Cocco, Congiu, Cossu, Dettori, Frau, Garzilli, Manca, Meloni, Montis, Mura, Nieddu, Noli, Paribello, Pinna, Robledo, Severino, Sogos, Del Zompo, Ferri, Chillotti, Vanni and Carpiniello2020) and no differences in TL (Mamdani et al., Reference Mamdani, Rollins, Morgan, Myers, Barchas, Schatzberg, Watson, Akil, Potkin, Bunney, Vawter and Sequeira2015; Fries et al., Reference Fries, Bauer, Scaini, Wu, Kazimi, Valvassori, Zunta-Soares, Walss-Bass, Soares and Quevedo2017; Palmos et al., Reference Palmos, Breen, Goodwin, Frissa, Hatch, Hotopf, Thuret, Lewis and Powell2018; Mutz and Lewis, Reference Mutz and Lewis2023). However, lithium use might impact TL (Coutts et al., Reference Coutts, Palmos, Duarte, de Jong, Lewis, Dima and Powell2019; Pisanu et al., Reference Pisanu, Congiu, Manchia, Caria, Cocco, Dettori, Frau, Manca, Meloni, Nieddu, Noli, Pinna, Robledo, Sogos, Ferri, Carpiniello, Vanni, Bocchetta, Severino, Ardau, Chillotti, Zompo and Squassina2020). In the current BD sample, sensitivity analysis by excluding patients using lithium, indicated the robustness of the finding of no TL alteration. Still, based on the numerical intermediate position of TL in BD (Table 1, Supplementary Figure 1), one might speculate about a minor TL shortening that would require larger sample sizes for detection. Although supported by a recent meta-analysis (Ayora et al., Reference Ayora, Fraguas, Abregú-Crespo, Recio, Blasco, Moises, Derevyanko, Arango and Díaz-Caneja2022), the T/S ratio in SCZ was only borderline significant in our study, and the impact on longevity in this population is not evident. However, high variability in TL across tissues has been reported (Dlouha et al., Reference Dlouha, Maluskova, Kralova Lesna, Lanska and Hubacek2014) and even across brain regions (Mamdani et al., Reference Mamdani, Rollins, Morgan, Myers, Barchas, Schatzberg, Watson, Akil, Potkin, Bunney, Vawter and Sequeira2015). Moreover, brain-predicted age based on MRI estimates suggests advanced structural brain age in SCZ (Constantinides et al., Reference Constantinides, Han, Alloza, Antonucci, Arango, Ayesa-Arriola, Banaj, Bertolino, Borgwardt, Bruggemann, Bustillo, Bykhovski, Calhoun, Carr, Catts, Chung, Crespo-Facorro, Díaz-Caneja, Donohoe, Plessis, Edmond, Ehrlich, Emsley, Eyler, Fuentes-Claramonte, Georgiadis, Green, Guerrero-Pedraza, Ha, Hahn, Henskens, Holleran, Homan, Homan, Jahanshad, Janssen, Ji, Kaiser, Kaleda, Kim, Kim, Kirschner, Kochunov, Kwak, Kwon, Lebedeva, Liu, Mitchie, Michielse, Mothersill, Mowry, de la Foz, Pantelis, Pergola, Piras, Pomarol-Clotet, Preda, Quidé, Rasser, Rootes-Murdy, Salvador, Sangiuliano, Sarró, Schall, Schmidt, Scott, Selvaggi, Sim, Skoch, Spalletta, Spaniel, Thomopoulos, Tomecek, Tomyshev, Tordesillas-Gutiérrez, van Amelsvoort, Vázquez-Bourgon, Vecchio, Voineskos, Weickert, Weickert, Thompson, Schmaal, van Erp, Turner, Cole, Du Plessis, Bin Kwak, de la Foz, van Amelsvoort, van Erp, Dima and Walton2023) and BD (Ballester et al., Reference Ballester, Romano, de Azevedo Cardoso, Hassel, Strother, Kennedy and Frey2022). Thus, future studies should evaluate associations between immune abnormalities and inflammation as assessed by circulating markers and accelerated brain-aging based on MRI assessment. In addition, other mechanisms influencing TL including stress, lifestyle and behavioural factors such as physical inactivity and sleep problems (Lin et al., Reference Lin, Epel and Blackburn2012; Qiao et al., Reference Qiao, Jiang and Li2020), should be addressed.

Strengths of the present study is the sizable and well-characterized sample enabling comprehensive statistical adjustments, and the investigation of immune pathways with established associations to SMDs and markers of neuroinflammation, BBB integrity and neurodevelopment (Goldsmith et al., Reference Goldsmith, Rapaport and Miller2016). Some of the current immune markers are less investigated in SMDs, such as sgp130 and sTNF-R1, but reflect much investigated pathways (Solmi et al., Reference Solmi, Suresh Sharma, Osimo, Fornaro, Bortolato, Croatto, Miola, Vieta, Pariante, Smith, Fusar-Poli, Shin, Berk and Carvalho2021; Halstead et al., Reference Halstead, Siskind, Amft, Wagner, Yakimov, Shih-Jung Liu, Walder and Warren2023). We cannot rule out that analysis of other, more commonly investigated markers, such as IL-6 and TNF-α, might have provided different results. Moreover, we cannot exclude that the selection failed to detect immune signalling associated with telomere attrition in SMD, as it is unlikely that we captured the full scope of immune pathways influencing TL. This might explain the discrepancy to findings in a few other studies. Given that immune dysregulation is present in a subset of individuals with SMDs, associations might have been identified in analyses stratified by inflammatory state. Moreover, the complex and dynamic interplay among the factors involved, such as the proposed bidirectional relationship between inflammation and telomere attrition and senescence, complicates the interpretation and might impede our ability to detect actual effects. Both TL and immune markers were measured peripherally, and the findings might not reflect processes in specific tissues of importance in SMDs, including the central nervous system. Furthermore, all plasma samples went through one freeze/thaw-cycle prior to the analysis of immune markers, which may have affected the measured levels. However, all samples went through the same cycle, which reduces the probability of a significant impact on the investigated associations. Although the sample was adjusted for a range of potential confounders of the TL and immune marker associations, we cannot exclude the possibility of residual confounding that might have impacted the results. However, similar findings in the patient and HC groups support the main findings. The cross-sectional design inhibits causal inferences. Lastly, we cannot rule out false negative results, for example caused by the relatively young participants in the sample, which might have reduced the ability to detect actual associations with TL compared to a sample of older participants.

In the present study we found few significant associations between levels of peripheral immune markers and TL in SMDs, despite the large sample size and extensive adjustment for potential confounders. Thus, the results provide limited support for immune dysregulation and inflammation contributing to accelerated ageing as indexed by telomere attrition in SCZ or BD.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/neu.2024.62.

Acknowledgements

We thank the participants for their invaluable contributions, and all colleagues at NORMENT.

Financial support

The Research Council of Norway (grant numbers 223273, 283798, 283799) and the South-Eastern Norway Regional Health Authority (grant numbers 2019-108, 2017-112) funded this study.

Competing interests

MBEGO, TU, MA, GH, LR, LSS, SHL, ITJ, VM, DA, TU, TVL, IM, SD and NES declare that they have no conflicts of interest. OAA has received Speaker’s honorarium from Lundbeck, Sunovion, Janssen and Otsuka, and is a consultant to Cortechs.ai and Precision Health AS.

References

Aas, M, Dieset, I, Hope, S, Hoseth, E, Mørch, R, Reponen, E, Steen, NE, Laskemoen, JFæra, Ueland, T, Aukrust, Pål, Agartz, I, Andreassen, OA and Melle, I (2017) Childhood maltreatment severity is associated with elevated C-reactive protein and body mass index in adults with schizophrenia and bipolar diagnoses. Brain, Behavior, and Immunity 65, 342349. DOI: 10.1016/j.bbi.2017.06.005.CrossRefGoogle ScholarPubMed
Aas, M, Elvsåshagen, Tørn, Westlye, LT, Kaufmann, T, Athanasiu, L, Djurovic, S, Melle, I, van der Meer, D, Martin-Ruiz, C, Steen, NE, Agartz, I and Andreassen, OA (2019) Telomere length is associated with childhood trauma in patients with severe mental disorders. Translational Psychiatry 9, 97. DOI: 10.1038/s41398-019-0432-7.CrossRefGoogle ScholarPubMed
Akkouh, IA, Ueland, T, Andreassen, OA, Brattbakk, H-R, Steen, VM, Hughes, T and Djurovic, S (2018) Expression of TCN1 in blood is negatively associated with verbal declarative memory performance. Scientific Reports 8, 12654. DOI: 10.1038/s41598-018-30898-5.CrossRefGoogle ScholarPubMed
Andreassen, O A, Djurovic, S, Thompson, W K, Schork, A J, Kendler, K S, O’Donovan, M C, Rujescu, D, Werge, T, van de Bunt, M, Morris, A P, McCarthy, M I, Roddey, J Cooper, McEvoy, L K, Desikan, R S and Dale, A M (2013) Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. The American Journal of Human Genetics 92, 197209. DOI: 10.1016/j.ajhg.2013.01.001.CrossRefGoogle ScholarPubMed
Andreassen, O A, Harbo, H F, Wang, Y, Thompson, W K, Schork, A J, Mattingsdal, M, Zuber, V, Bettella, F, Ripke, S, Kelsoe, J R, Kendler, K S, O’Donovan, M C, Sklar, P, McEvoy, L K, Desikan, R S, Lie, B A, Djurovic, S and Dale, A M (2015) Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Molecular Psychiatry 20, 207214. DOI: 10.1038/mp.2013.195.CrossRefGoogle Scholar
Andreou, D, Steen, NE, Jørgensen, KNø, Smelror, RE, Wedervang-Resell, K, Nerland, S, Westlye, LT, Nærland, T, Myhre, AM, Joa, I, Reitan, SMKæbo, Vaaler, A, Morken, G, Bøen, E, Elvsåshagen, Tørn, Boye, B, Malt, UF, Aukrust, Pål, Skrede, S, Kroken, RA, Johnsen, E, Djurovic, S, Andreassen, OA, Ueland, T and Agartz, I (2021) Lower circulating neuron-specific enolase concentrations in adults and adolescents with severe mental illness. Psychological Medicine 53, 110. DOI: 10.1017/S0033291721003056.Google ScholarPubMed
Armbruster, DA and Pry, T (2008) Limit of blank, limit of detection and limit of quantitation. Clinical Biochemist Reviews 29, S4952.Google ScholarPubMed
Ayora, M, Fraguas, D, Abregú-Crespo, R, Recio, S, Blasco, Mía A, Moises, A, Derevyanko, A, Arango, C and Díaz-Caneja, CM (2022) Leukocyte telomere length in patients with schizophrenia and related disorders: a meta-analysis of case-control studies. Molecular Psychiatry 27, 29682975. DOI: 10.1038/s41380-022-01541-7.CrossRefGoogle ScholarPubMed
Ballester, PL, Romano, MT, de Azevedo Cardoso, T, Hassel, S, Strother, SC, Kennedy, SH and Frey, BN (2022) Brain age in mood and psychotic disorders: a systematic review and meta-analysis. Acta Psychiatrica Scandinavica 145, 4255. DOI: 10.1111/acps.13371.CrossRefGoogle ScholarPubMed
Barbé-Tuana, FM, Parisi, MM, Panizzutti, BS, Fries, GR, Grun, LK, Guma, Fátima T, Kapczinski, Fávio, Berk, M, Gama, CS and Rosa, AR (2016) Shortened telomere length in bipolar disorder: a comparison of the early and late stages of disease. Brazilian Journal of Psychiatry 38, 281286. DOI: 10.1590/1516-4446-2016-1910.CrossRefGoogle ScholarPubMed
Barnes, RP, Fouquerel, E and Opresko, PL (2019) The impact of oxidative DNA damage and stress on telomere homeostasis. Mechanisms of Ageing and Development 177, 3745. DOI: 10.1016/j.mad.2018.03.013.CrossRefGoogle ScholarPubMed
Bechter, K, Reiber, H, Herzog, S, Fuchs, D, Tumani, H and Maxeiner, HG (2010) Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. Journal of Psychiatric Research 44, 321330. DOI: 10.1016/j.jpsychires.2009.08.008.CrossRefGoogle ScholarPubMed
Benedetti, F, Aggio, V, Pratesi, ML, Greco, G and Furlan, R (2020) Neuroinflammation in bipolar depression. Frontiers in Psychiatry 11, 71. DOI: 10.3389/fpsyt.2020.00071.CrossRefGoogle ScholarPubMed
Benros, ME, Nielsen, PR, Nordentoft, M, Eaton, WW, Dalton, SO and Mortensen, PB (2011) Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. American Journal of Psychiatry 168, 13031310. DOI: 10.1176/appi.ajp.2011.11030516.CrossRefGoogle ScholarPubMed
Bergink, V, Gibney, SM and Drexhage, HA (2014) Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biological Psychiatry 75, 324331. DOI: 10.1016/j.biopsych.2013.09.037.CrossRefGoogle ScholarPubMed
Biazus, Tís B, Beraldi, GH, Tokeshi, L, Rotenberg, Lísa de S, Dragioti, E, Carvalho, Aé F, Solmi, M and Lafer, B (2023) All-cause and cause-specific mortality among people with bipolar disorder: a large-scale systematic review and meta-analysis. Molecular Psychiatry 28, 25082524. DOI: 10.1038/s41380-023-02109-9.CrossRefGoogle ScholarPubMed
Birkenæs, V, Elvsåshagen, Tørn, Westlye, LT, Høegh, MC, Haram, M, Werner, MCF, Quintana, DS, Lunding, SH, Martin-Ruiz, C, Agartz, I, Djurovic, S, Steen, NE, Andreassen, OA and Aas, M (2021) Telomeres are shorter and associated with number of suicide attempts in affective disorders. Journal of Affective Disorders 295, 10321039. DOI: 10.1016/j.jad.2021.08.135.CrossRefGoogle ScholarPubMed
Campeau, A, Mills, RH, Stevens, T, Rossitto, L-A, Meehan, M, Dorrestein, P, Daly, R, Nguyen, TT, Gonzalez, DJ, Jeste, DV and Hook, V (2022) Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Molecular Psychiatry 27, 12171225. DOI: 10.1038/s41380-021-01339-z.CrossRefGoogle ScholarPubMed
Çevik, B, Mançe-Çalışır, Öykü, Atbaşoğlu, Eşref C, Saka, MC, Alptekin, Köksal, Üçok, A, Sırmatel, B, Gülöksüz, S, Tükün, A, van Os, J and Gümüş-Akay, Güvem (2019) Psychometric liability to psychosis and childhood adversities are associated with shorter telomere length: a study on schizophrenia patients, unaffected siblings, and non-clinical controls. Journal of Psychiatric Research 111, 169185. DOI: 10.1016/j.jpsychires.2019.01.022.CrossRefGoogle Scholar
Chan, JKN, Tong, CHY, Wong, CSM, Chen, EYH and Chang, WC (2022) Life expectancy and years of potential life lost in bipolar disorder: systematic review and meta-analysis. Brazilian Journal of Psychiatry 221, 567576. DOI: 10.1192/bjp.2022.19.CrossRefGoogle ScholarPubMed
Chen, S, Tan, Y and Tian, L (2024) Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Molecular Psychiatry 29, 28342848. DOI: 10.1038/s41380-024-02539-z.CrossRefGoogle ScholarPubMed
Constantinides, C, Han, LKM, Alloza, C, Antonucci, LA, Arango, C, Ayesa-Arriola, R, Banaj, N, Bertolino, A, Borgwardt, S, Bruggemann, J, Bustillo, J, Bykhovski, O, Calhoun, V, Carr, V, Catts, S, Chung, Y-C, Crespo-Facorro, B, Díaz-Caneja, CM, Donohoe, G, Plessis, SD, Edmond, J, Ehrlich, S, Emsley, R, Eyler, LT, Fuentes-Claramonte, P, Georgiadis, F, Green, M, Guerrero-Pedraza, A, Ha, M, Hahn, T, Henskens, FA, Holleran, L, Homan, S, Homan, P, Jahanshad, N, Janssen, J, Ji, E, Kaiser, S, Kaleda, V, Kim, M, Kim, W-S, Kirschner, M, Kochunov, P, Kwak, YB, Kwon, JS, Lebedeva, I, Liu, J, Mitchie, P, Michielse, S, Mothersill, D, Mowry, B, de la Foz, Víctor O-Gía, Pantelis, C, Pergola, G, Piras, F, Pomarol-Clotet, E, Preda, A, Quidé, Y, Rasser, PE, Rootes-Murdy, K, Salvador, R, Sangiuliano, M, Sarró, S, Schall, U, Schmidt, , Scott, RJ, Selvaggi, P, Sim, K, Skoch, A, Spalletta, G, Spaniel, F, Thomopoulos, SI, Tomecek, D, Tomyshev, AS, Tordesillas-Gutiérrez, D, van Amelsvoort, T, Vázquez-Bourgon, J, Vecchio, D, Voineskos, A, Weickert, CS, Weickert, T, Thompson, PM, Schmaal, L, van Erp, TGM, Turner, J, Cole, JH, Du Plessis, S, Bin Kwak, Y, de la Foz, Víctor O-Gía, van Amelsvoort, T, van Erp, TGM, Dima, D and Walton, E (2023) Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA schizophrenia consortium. Molecular Psychiatry 28, 12011209. DOI: 10.1038/s41380-022-01897-w.CrossRefGoogle ScholarPubMed
Correll, CU, Solmi, M, Croatto, G, Schneider, LK, Rohani‐Montez, SC, Fairley, L, Smith, N, Bitter, Ián, Gorwood, P, Taipale, H and Tiihonen, J (2022) Mortality in people with schizophrenia: a systematic review and meta-analysis of relative risk and aggravating or attenuating factors. World Psychiatry 21, 248271. DOI: 10.1002/wps.20994.CrossRefGoogle ScholarPubMed
Coutts, F, Palmos, AB, Duarte, RRR, de Jong, S, Lewis, CM, Dima, D and Powell, TR (2019) The polygenic nature of telomere length and the anti-ageing properties of lithium. Neuropsychopharmacology 44, 757765. DOI: 10.1038/s41386-018-0289-0.CrossRefGoogle ScholarPubMed
Cullen, AE, Holmes, S, Pollak, TA, Blackman, G, Joyce, DW, Kempton, MJ, Murray, RM, McGuire, P and Mondelli, V (2019) Associations between non-neurological autoimmune disorders and psychosis: a meta-analysis. Biological Psychiatry 85, 3548. DOI: 10.1016/j.biopsych.2018.06.016.CrossRefGoogle ScholarPubMed
Czepielewski, LS, Massuda, R, Panizzutti, B, Grun, LK, Barbé-Tuana, FMía, Teixeira, AL, Barch, DM and Gama, CS (2018) Telomere length and CCL11 levels are associated with gray matter volume and episodic memory performance in schizophrenia: evidence of pathological accelerated aging. Schizophrenia Bulletin 44, 158167. DOI: 10.1093/schbul/sbx015.CrossRefGoogle ScholarPubMed
Darrow, SM, Verhoeven, JE, Révész, Dóra, Lindqvist, D, Penninx, BWJH, Delucchi, KL, Wolkowitz, OM and Mathews, CA (2016) The association between psychiatric disorders and telomere length: a meta-analysis Involving 14,827 persons. Psychosomatic Medicine 78, 776787. DOI: 10.1097/PSY.0000000000000356.CrossRefGoogle Scholar
Dieset, I, Andreassen, OA and Haukvik, UK (2016) Somatic comorbidity in schizophrenia: some possible biological mechanisms across the life span. Schizophrenia Bulletin 42, 13161319. DOI: 10.1093/schbul/sbw028.CrossRefGoogle ScholarPubMed
Dieset, I, Haukvik, UK, Melle, I, Røssberg, JI, Ueland, T, Hope, S, Dale, AM, Djurovic, S, Aukrust, Pål, Agartz, I and Andreassen, OA (2015) Association between altered brain morphology and elevated peripheral endothelial markers--implications for psychotic disorders. Schizophrenia Research 161, 222228. DOI: 10.1016/j.schres.2014.11.006.CrossRefGoogle ScholarPubMed
Dieset, I, Mørch, RH, Hope, S, Hoseth, EZ, Reponen, EJ, Gran, JM, Aas, M, Michelsen, AE, Reichborn‐Kjennerud, T, Nesvåg, R, Agartz, I, Melle, I, Aukrust, P, Djurovic, S, Ueland, T and Andreassen, OA (2019) An association between YKL-40 and type 2 diabetes in psychotic disorders. Acta Psychiatrica Scandinavica 139, 3745. DOI: 10.1111/acps.12971.CrossRefGoogle ScholarPubMed
Dinarello, CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews 281, 827. DOI: 10.1111/imr.12621.CrossRefGoogle ScholarPubMed
Dlouha, D, Maluskova, J, Kralova Lesna, I, Lanska, V and Hubacek, JA (2014) Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiological Research 63, S343350. DOI: 10.33549/physiolres.932856.CrossRefGoogle ScholarPubMed
Drexhage, RC, Knijff, EM, Padmos, RC, Heul-Nieuwenhuijzen, Lvan der, Beumer, W, Versnel, MA and Drexhage, HA (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Review of Neurotherapeutics 10, 5976. DOI: 10.1586/ern.09.144.CrossRefGoogle ScholarPubMed
Elvsåshagen, Tørn, Vera, E, Bøen, E, Bratlie, J, Andreassen, OA, Josefsen, D, Malt, UF, Blasco, MA and Boye, B (2011) The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. Journal of Affective Disorders 135, 4350. DOI: 10.1016/j.jad.2011.08.006.CrossRefGoogle ScholarPubMed
Engh, JA, Ueland, T, Agartz, I, Andreou, D, Aukrust, Pål, Boye, B, Bøen, E, Drange, OK, Elvsåshagen, Tørn, Hope, S, Høegh, MC, Joa, I, Johnsen, E, Kroken, RA, Lagerberg, TV, Lekva, T, Malt, UF, Melle, I, Morken, G, Nærland, T, Steen, VM, Wedervang-Resell, K, Weibell, MA, Westlye, LT, Djurovic, S, Steen, NE and Andreassen, OA (2021) Plasma levels of the cytokines B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) in schizophrenia, bipolar, and major depressive disorder: a cross sectional, multisite study. Schizophrenia Bulletin 48, 3746. DOI: 10.1093/schbul/sbab106.CrossRefGoogle Scholar
Ermakov, EA, Mednova, IA, Boiko, AS, Buneva, VN and Ivanova, SA (2023) Chemokine dysregulation and neuroinflammation in schizophrenia: a systematic review. International Journal of Molecular Sciences 24, 2215. DOI: 10.3390/ijms24032215.CrossRefGoogle ScholarPubMed
Fathian, F, Gjestad, R, Kroken, RA, Løberg, E-M, Reitan, SKæbo, Fleichhacker, WW, Rettenbacher, M, Larsen, TK, Joa, I, Stabell, LA, Kjelby, E, Sinkevicute, I, Alisauskiene, R, Steen, VM and Johnsen, E (2022) Association between C-reactive protein levels and antipsychotic treatment during 12 months follow-up period after acute psychosis. Schizophrenia Research 241, 174183. DOI: 10.1016/j.schres.2022.01.049.CrossRefGoogle ScholarPubMed
First, MB (2013) Diagnostic and statistical manual of mental disorders, and clinical utility. Journal of Nervous & Mental Disease 201, 727729. DOI: 10.1097/NMD.0b013e3182a2168a.CrossRefGoogle ScholarPubMed
Fries, GR, Bauer, IE, Scaini, G, Wu, M-J, Kazimi, IF, Valvassori, SS, Zunta-Soares, G, Walss-Bass, C, Soares, JC and Quevedo, J (2017) Accelerated epigenetic aging and mitochondrial DNA copy number in bipolar disorder. Translational Psychiatry 7, 1283. DOI: 10.1038/s41398-017-0048-8.CrossRefGoogle ScholarPubMed
Fries, GR, Zamzow, MJ, Andrews, T, Pink, O, Scaini, G and Quevedo, J (2020) Accelerated aging in bipolar disorder: a comprehensive review of molecular findings and their clinical implications. Neuroscience & Biobehavioral Reviews 112, 107116. DOI: 10.1016/j.neubiorev.2020.01.035.CrossRefGoogle ScholarPubMed
Frydecka, D, Krzystek-Korpacka, Młgorzata, Lubeiro, A, Stramecki, F, Stańczykiewicz, Błomiej, Beszłej, JA, Piotrowski, P, Kotowicz, K, Szewczuk-Bogusławska, M, Pawlak-Adamska, E and Misiak, Błażej (2018) Profiling inflammatory signatures of schizophrenia: a cross-sectional and meta-analysis study. Brain, Behavior, and Immunity 71, 2836. DOI: 10.1016/j.bbi.2018.05.002.CrossRefGoogle ScholarPubMed
George-Chandy, A, Trysberg, E and Eriksson, K (2008) Raised intrathecal levels of APRIL and BAFF in patients with systemic lupus erythematosus: relationship to neuropsychiatric symptoms. Arthritis Research & Therapy 10, R97. DOI: 10.1186/ar2484.CrossRefGoogle ScholarPubMed
Gielen, M, Hageman, GJ, Antoniou, EE, Nordfjall, K, Mangino, M, Balasubramanyam, M, de Meyer, T, Hendricks, AE, Giltay, EJ, Hunt, SC, Nettleton, JA, Salpea, KD, Diaz, VA, Farzaneh-Far, R, Atzmon, G, Harris, SE, Hou, L, Gilley, D, Hovatta, I, Kark, JD, Nassar, H, Kurz, DJ, Mather, KA, Willeit, P, Zheng, Y-L, Pavanello, S, Demerath, EW, Rode, L, Bunout, D, Steptoe, A, Boardman, L, Marti, A, Needham, B, Zheng, W, Ramsey-Goldman, R, Pellatt, AJ, Kaprio, J, Hofmann, JN, Gieger, C, Paolisso, G, Hjelmborg, JB H, Mirabello, L, Seeman, T, Wong, J, van der Harst, P, Broer, L, Kronenberg, F, Kollerits, B, Strandberg, T, Eisenberg, DT A, Duggan, C, Verhoeven, JE, Schaakxs, R, Zannolli, R, dos Reis, RM R, Charchar, FJ, Tomaszewski, M, Mons, U, Demuth, I, Molli, AEI, Cheng, G, Krasnienkov, D, D’Antono, B, Kasielski, M, McDonnell, BJ, Ebstein, RP, Sundquist, K, Pare, G, Chong, M and Zeegers, MP (2018) Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. The American Journal of Clinical Nutrition 108, 453475. DOI: 10.1093/ajcn/nqy107.CrossRefGoogle ScholarPubMed
Giridharan, VV, Sayana, P, Pinjari, OF, Ahmad, N, da Rosa, MI, Quevedo, Jão, Barichello, T (2020) Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Molecular Psychiatry 25, 94113. DOI: 10.1038/s41380-019-0448-7.CrossRefGoogle ScholarPubMed
Goldsmith, DR, Rapaport, MH and Miller, BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry 21, 16961709. DOI: 10.1038/mp.2016.3.CrossRefGoogle ScholarPubMed
Halstead, S, Siskind, D, Amft, M, Wagner, E, Yakimov, V, Shih-Jung Liu, Z, Walder, K and Warren, N (2023) Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis. The Lancet Psychiatry 10, 260271. DOI: 10.1016/S2215-0366(23)00025-1.CrossRefGoogle ScholarPubMed
Haque, A, Polcyn, R, Matzelle, D and Banik, NL (2018) New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sciences 8, 33. DOI: 10.3390/brainsci8020033.CrossRefGoogle ScholarPubMed
Hjell, G, Rokicki, J, Szabo, A, Holst, , Tesli, N, Bell, C, Fischer-Vieler, T, Werner, MCF, Lunding, SH, Ormerod, MBEær G, Johansen, IT, Djurovic, S, Ueland, T, Andreassen, OA, Melle, I, Lagerberg, TV, Mørch-Johnsen, L, Steen, NE and Haukvik, UK (2023) Impulsivity across severe mental disorders: a cross-sectional study of immune markers and psychopharmacotherapy. BMC Psychiatry 23, 659. DOI: 10.1186/s12888-023-05154-4.CrossRefGoogle ScholarPubMed
Hjell, G, Szabo, A, Mørch-Johnsen, L, Holst, , Tesli, N, Bell, C, Fischer-Vieler, T, Werner, MCF, Lunding, SH, Ormerod, MBEær G, Johansen, IT, Dieset, I, Djurovic, S, Melle, I, Ueland, T, Andreassen, OA, Steen, NE and Haukvik, UK (2022) Interleukin-18 signaling system links to agitation in severe mental disorders. Psychoneuroendocrinology 140, 105721. DOI: 10.1016/j.psyneuen.2022.105721.CrossRefGoogle ScholarPubMed
Hjorthoj, C, Sturup, AE, Mcgrath, JJ and Nordentoft, M (2017) Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. The Lancet Psychiatry 4, 295301. DOI: 10.1016/S2215-0366(17)30078-0.CrossRefGoogle ScholarPubMed
Høegh, MC, Melle, I, Aminoff, SR, Olsen, SH, Lunding, SH, Ueland, T and Lagerberg, TV (2022) Affective lability and social functioning in severe mental disorders. European Archives of Psychiatry and Clinical Neuroscience 272, 873885. DOI: 10.1007/s00406-022-01380-1.CrossRefGoogle ScholarPubMed
Hope, S, Hoseth, E, Dieset, I, Mørch, RH, Aas, M, Aukrust, Pål, Djurovic, S, Melle, I, Ueland, T, Agartz, I, Ueland, T, Westlye, LT and Andreassen, OA (2015) Inflammatory markers are associated with general cognitive abilities in schizophrenia and bipolar disorder patients and healthy controls. Schizophrenia Research 165, 188194. DOI: 10.1016/j.schres.2015.04.004.CrossRefGoogle ScholarPubMed
Hope, S, Ueland, T, Steen, NE, Dieset, I, Lorentzen, S, Berg, AO, Agartz, I, Aukrust, Pål and Andreassen, OA (2013) Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. Schizophrenia Research 145, 3642. DOI: 10.1016/j.schres.2012.12.023.CrossRefGoogle ScholarPubMed
Huang, YC, Wang, LJ, Tseng, PT, Hung, CF and Lin, PY (2018) Leukocyte telomere length in patients with bipolar disorder: an updated meta-analysis and subgroup analysis by mood status. Psychiatry Research 270, 4149. DOI: 10.1016/j.psychres.2018.09.035.CrossRefGoogle ScholarPubMed
Ihim, SA, Abubakar, SD, Zian, Z, Sasaki, T, Saffarioun, M, Maleknia, S and Azizi, G (2022) Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: biological role in induction, regulation, and treatment. Frontiers in Immunology 13, 919973. DOI: 10.3389/fimmu.2022.919973.CrossRefGoogle ScholarPubMed
Jones, SA and Jenkins, BJ (2018) Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature Reviews Immunology 18, 773789. DOI: 10.1038/s41577-018-0066-7.CrossRefGoogle ScholarPubMed
Jurk, D, Wilson, C, Passos, Jão F, Oakley, F, Correia-Melo, C, Greaves, L, Saretzki, G, Fox, C, Lawless, C, Anderson, R, Hewitt, G, Pender, SLF, Fullard, N, Nelson, G, Mann, J, van de Sluis, B, Mann, DA and von Zglinicki, T (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications 2, 4172. DOI: 10.1038/ncomms5172.CrossRefGoogle ScholarPubMed
Kam, MLW, Nguyen, TTT and Ngeow, JYY (2021) Telomere biology disorders. npj Genomic Medicine 6, 36. DOI: 10.1038/s41525-021-00198-5.CrossRefGoogle ScholarPubMed
Kay, SR, Fiszbein, A and Opler, LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276. DOI: 10.1093/schbul/13.2.261.CrossRefGoogle ScholarPubMed
Kember, RL, Hou, L, Ji, X, Andersen, LH, Ghorai, A, Estrella, LN, Almasy, L, McMahon, FJ, Brown, C and Bućan, M (2018) Genetic pleiotropy between mood disorders, metabolic, and endocrine traits in a multigenerational pedigree. Translational Psychiatry 8, 218. DOI: 10.1038/s41398-018-0226-3.CrossRefGoogle Scholar
Khoury, R and Nasrallah, HA (2018) Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): state or trait? Schizophrenia Research 199, 3138. DOI: 10.1016/j.schres.2018.04.017.CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, JK, Gouin, JP, Weng, NP, Malarkey, WB, Beversdorf, DQ and Glaser, R (2011) Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosomatic Medicine 73, 1622. DOI: 10.1097/PSY.0b013e31820573b6.CrossRefGoogle ScholarPubMed
Kirkpatrick, B, Messias, E, Harvey, PD, Fernandez-Egea, E and Bowie, CR (2008) Is schizophrenia a syndrome of accelerated aging? Schizophrenia Bulletin 34, 10241032. DOI: 10.1093/schbul/sbm140.CrossRefGoogle ScholarPubMed
Klaus, F, Nguyen, TT, Thomas, ML, Liou, SC, Soontornniyomkij, B, Mitchell, K, Daly, R, Sutherland, AN, Jeste, DV and Eyler, LT (2022) Peripheral inflammation levels associated with degree of advanced brain aging in schizophrenia. Frontiers in Psychiatry 13, 966439. DOI: 10.3389/fpsyt.2022.966439.CrossRefGoogle ScholarPubMed
Köhler-Forsberg, O, Petersen, L, Gasse, C, Mortensen, PB, Dalsgaard, S, Yolken, RH, Mors, O and Benros, ME (2019) A nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA Psychiatry 76, 271279. DOI: 10.1001/jamapsychiatry.2018.3428.CrossRefGoogle ScholarPubMed
Kroken, RA, Sommer, IE, Steen, VM, Dieset, I and Johnsen, E (2018) Constructing the immune signature of schizophrenia for clinical use and research; An Integrative Review Translating Descriptives Into Diagnostics. Frontiers in Psychiatry 9, 753. DOI: 10.3389/fpsyt.2018.00753.CrossRefGoogle ScholarPubMed
Lestra, V, Romeo, B, Martelli, C, Benyamina, A and Hamdani, N (2022) Could CRP be a differential biomarker of illness stages in schizophrenia? A systematic review and meta-analysis. Schizophrenia Research 246, 175186. DOI: 10.1016/j.schres.2022.06.026.CrossRefGoogle ScholarPubMed
Lima, IMMães, Barros, A, Rosa, DVão, Albuquerque, M, Malloy-Diniz, L, Neves, FS, Romano-Silva, MAélio and de Miranda, Débora M (2015) Analysis of telomere attrition in bipolar disorder. Journal of Affective Disorders 172, 4347. DOI: 10.1016/j.jad.2014.09.043.CrossRefGoogle ScholarPubMed
Lin, J, Epel, E and Blackburn, E (2012) Telomeres and lifestyle factors: roles in cellular aging. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 730, 8589. DOI: 10.1016/j.mrfmmm.2011.08.003.CrossRefGoogle ScholarPubMed
Lindqvist, D, Epel, ES, Mellon, SH, Penninx, BW, Révész, Dóra, Verhoeven, JE, Reus, VI, Lin, J, Mahan, L, Hough, CM, Rosser, R, Bersani, FS, Blackburn, EH and Wolkowitz, OM (2015) Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neuroscience & Biobehavioral Reviews 55, 333364. DOI: 10.1016/j.neubiorev.2015.05.007.CrossRefGoogle ScholarPubMed
Lustig, A, Liu, HB, Metter, EJ, An, Y, Swaby, MA, Elango, P, Ferrucci, L, Hodes, RJ and Weng, N-P (2017) Telomere shortening, inflammatory cytokines, and anti-cytomegalovirus antibody follow distinct age-associated trajectories in humans. Frontiers in Immunology 8, 1027. DOI: 10.3389/fimmu.2017.01027.CrossRefGoogle ScholarPubMed
Mamdani, F, Rollins, B, Morgan, L, Myers, R M, Barchas, J D, Schatzberg, A F, Watson, S J, Akil, H, Potkin, S G, Bunney, W E, Vawter, M P and Sequeira, P A (2015) Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder. Translational Psychiatry 5, e636e636. DOI: 10.1038/tp.2015.134.CrossRefGoogle ScholarPubMed
Marques, TR, Ashok, AH, Pillinger, T, Veronese, M, Turkheimer, FE, Dazzan, P, Sommer, IEC and Howes, OD (2019) Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychological Medicine 49, 21862196. DOI: 10.1017/s0033291718003057.CrossRefGoogle ScholarPubMed
Martinsson, L, Wei, Y, Xu, D, Melas, P A, Mathé, A A, Schalling, M, Lavebratt, C and Backlund, L (2013) Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Translational Psychiatry 3, e261. DOI: 10.1038/tp.2013.37.CrossRefGoogle ScholarPubMed
Maurya, P Kumar, Rizzo, L Bortolotto, Xavier, G, Tempaku, PF, Zeni-Graiff, M, Santoro, ML, Mazzotti, DR, Zugman, , Pan, P, Noto, C, Maes, M, Asevedo, E, Mansur, RB, Cunha, GR, Gadelha, A, Bressan, RA, Belangero, S Iole and Brietzke, E (2017) Shorter leukocyte telomere length in patients at ultra high risk for psychosis. European Neuropsychopharmacology 27, 538542. DOI: 10.1016/j.euroneuro.2017.02.008.CrossRefGoogle ScholarPubMed
Maurya, PK, Rizzo, LB, Xavier, G, Tempaku, PF, Ota, VK, Santoro, ML, Spíndola, Lícia M, Moretti, Pícia S, Mazzotti, DR, Gadelha, A, Gouvea, ES, Noto, C, Maes, M, Cordeiro, Q, Bressan, RA, Brietzke, E and Belangero, SI (2018) Leukocyte telomere length variation in different stages of schizophrenia. Journal of Psychiatric Research 96, 218223. DOI: 10.1016/j.jpsychires.2017.10.016.CrossRefGoogle ScholarPubMed
Mccutcheon, RA, Reis Marques, T and Howes, OD (2020) Schizophrenia-an overview. JAMA Psychiatry 77, 201210. DOI: 10.1001/jamapsychiatry.2019.3360.CrossRefGoogle ScholarPubMed
McIntyre, RS, Berk, M, Brietzke, E, Goldstein, BI, López-Jaramillo, C, Kessing, LV, Malhi, GS, Nierenberg, AA, Rosenblat, JD, Majeed, A, Vieta, E, Vinberg, M, Young, AH and Mansur, RB (2020) Bipolar disorders. The Lancet 396, 18411856. DOI: 10.1016/S0140-6736(20)31544-0.CrossRefGoogle ScholarPubMed
Miller, BJ and Goldsmith, DR (2017) Towards an immunophenotype of schizophrenia: progress, potential mechanisms, and future directions. Neuropsychopharmacology 42, 299317. DOI: 10.1038/npp.2016.211.CrossRefGoogle ScholarPubMed
Misiak, Błażej, Bartoli, F, Carrà, G, Małecka, M, Samochowiec, J, Jarosz, K, Banik, A and Stańczykiewicz, Błomiej (2020) Chemokine alterations in bipolar disorder: a systematic review and meta-analysis. Brain, Behavior, and Immunity 88, 870877. DOI: 10.1016/j.bbi.2020.04.013.CrossRefGoogle ScholarPubMed
Mlakar, V, Birkenæs, V, Elvsaashagen, Tørn, Ormerod, MBEG, Quintana, DS, Ueland, T, Melle, I, Lagerberg, TV, Djurovic, S, Martin-Ruiz, C, Steen, NE, Andreassen, OA and Aas, M (2023) Telomere length and verbal learning in bipolar disorders. Journal of Affective Disorders 339, 555560. DOI: 10.1016/j.jad.2023.07.087.CrossRefGoogle ScholarPubMed
Mohite, S, Cordeiro, T, Tannous, J, Mwangi, B, Selvaraj, S, Soares, JC, Sanches, M and Teixeira, AL (2020) Eotaxin-1/CCL11 correlates with left superior temporal gyrus in bipolar disorder: a preliminary report suggesting accelerated brain aging. Journal of Affective Disorders 273, 592596. DOI: 10.1016/j.jad.2020.05.062.CrossRefGoogle ScholarPubMed
Mørch, RH, Dieset, I, Færden, A, Hope, S, Aas, M, Nerhus, M, Gardsjord, ES, Haram, M, Falk, RS, Joa, I, Morken, G, Agartz, I, Aukrust, P, Djurovic, S, Melle, I, Ueland, T and Andreassen, OA (2017) Persistent increase in TNF and IL-1 markers in severe mental disorders suggests trait-related inflammation: a one year follow-up study. Acta Psychiatrica Scandinavica 136, 400408. DOI: 10.1111/acps.12783.CrossRefGoogle ScholarPubMed
Mørch, RH, Dieset, I, Færden, A, Hope, S, Aas, M, Nerhus, M, Gardsjord, ES, Joa, I, Morken, G, Agartz, I, Aukrust, Pål, Djurovic, S, Melle, I, Ueland, T and Andreassen, OA (2016) Inflammatory evidence for the psychosis continuum model. Psychoneuroendocrinology 67, 189197. DOI: 10.1016/j.psyneuen.2016.02.011.CrossRefGoogle ScholarPubMed
Muller, N (2019) The role of intercellular adhesion molecule-1 in the pathogenesis of psychiatric disorders. Frontiers in Pharmacology 10, 1251. DOI: 10.3389/fphar.2019.01251.CrossRefGoogle ScholarPubMed
Mullins, N, Forstner, AJ, O’Connell, KS, Coombes, B, Coleman, JRI, Qiao, Z, Als, TD, Bigdeli, TB, Børte, S, Bryois, J, Charney, AW, Drange, OK, Gandal, MJ, Hagenaars, SP, Ikeda, M, Kamitaki, N, Kim, M, Krebs, K, Panagiotaropoulou, G, Schilder, BM, Sloofman, LG, Steinberg, S, Trubetskoy, V, Winsvold, BS, Won, H-H, Abramova, L, Adorjan, K, Agerbo, E, Al Eissa, M, Albani, D, Alliey-Rodriguez, N, Anjorin, A, Antilla, V, Antoniou, A, Awasthi, S, Baek, JH, Bækvad-Hansen, M, Bass, N, Bauer, M, Beins, EC, Bergen, SE, Birner, A, Bøcker Pedersen, C, Bøen, E, Boks, MP, Bosch, R, Brum, M, Brumpton, BM, Brunkhorst-Kanaan, N, Budde, M, Bybjerg-Grauholm, J, Byerley, W, Cairns, M, Casas, M, Cervantes, P, Clarke, T-K, Cruceanu, C, Cuellar-Barboza, A, Cunningham, J, Curtis, D, Czerski, PM, Dale, AM, Dalkner, N, David, FS, Degenhardt, F, Djurovic, S, Dobbyn, AL, Douzenis, A, Elvsåshagen, Tørn, Escott-Price, V, Ferrier, IN, Fiorentino, A, Foroud, TM, Forty, L, Frank, J, Frei, O, Freimer, NB, Frisén, L, Gade, K, Garnham, J, Gelernter, J, Giørtz Pedersen, M, Gizer, IR, Gordon, SD, Gordon-Smith, K, Greenwood, TA, Grove, J, Guzman-Parra, , Ha, K, Haraldsson, M, Hautzinger, M, Heilbronner, U, Hellgren, D, Herms, S, Hoffmann, P, Holmans, PA, Huckins, L, Jamain, Séphane, Johnson, JS, Kalman, JL, Kamatani, Y, Kennedy, JL, Kittel-Schneider, S, Knowles, JA, Kogevinas, M, Koromina, M, Kranz, TM, Kranzler, HR, Kubo, M, Kupka, R, Kushner, SA, Lavebratt, C, Lawrence, J, Leber, M, Lee, H-J, Lee, PH, Levy, SE, Lewis, C, Liao, C, Lucae, S, Lundberg, M, MacIntyre, DJ, Magnusson, SH, Maier, W, Maihofer, A, Malaspina, D, Maratou, E, Martinsson, L, Mattheisen, M, McCarroll, SA, McGregor, NW, McGuffin, P, McKay, JD, Medeiros, H, Medland, SE, Millischer, V, Montgomery, GW, Moran, JL, Morris, DW, Mühleisen, TW, O’Brien, N, O’Donovan, C, Olde Loohuis, LM, Oruc, L, Papiol, S, Pardiñas, AF, Perry, A, Pfennig, A, Porichi, E, Potash, JB, Quested, D, Raj, T, Rapaport, MH, DePaulo, JR, Regeer, EJ, Rice, JP, Rivas, F, Rivera, M, Roth, J, Roussos, P, Ruderfer, DM, Sánchez-Mora, C, Schulte, EC, Senner, F, Sharp, S, Shilling, PD, Sigurdsson, E, Sirignano, L, Slaney, C, Smeland, OB, Smith, DJ, Sobell, JL, Søholm Hansen, C, Soler Artigas, M, Spijker, AT, Stein, DJ, Strauss, JS, Świątkowska, B, Terao, C, Thorgeirsson, TE, Toma, C, Tooney, P, Tsermpini, E-E, Vawter, MP, Vedder, H, Walters, JTR, Witt, SH, Xi, S, Xu, W, Yang, JMK, Young, AH, Young, H, Zandi, PP, Zhou, H, Zillich, L, Agartz, I, Alda, M, Alfredsson, L, Babadjanova, G, Backlund, L, Baune, BT, Bellivier, F, Bengesser, S, Berrettini, WH, Blackwood, DHR, Boehnke, M, Børglum, AD, Breen, G, Carr, VJ, Catts, S, Corvin, A, Craddock, N, Dannlowski, U, Dikeos, D, Esko, Tõnu, Etain, B, Ferentinos, P, Frye, M, Fullerton, JM, Gawlik, M, Gershon, ES, Goes, FS, Green, MJ, Grigoroiu-Serbanescu, M, Hauser, J, Henskens, F, Hillert, J, Hong, KS, Hougaard, DM, Hultman, CM, Hveem, K, Iwata, N, Jablensky, AV, Jones, I, Jones, LA, Kahn, Ré S, Kelsoe, JR, Kirov, G, Landén, M, Leboyer, M, Lewis, CM, Li, QS, Lissowska, J, Lochner, C, Loughland, C, Martin, NG, Mathews, CA, Mayoral, F, McElroy, SL, McIntosh, AM, McMahon, FJ, Melle, I, Michie, P, Milani, L, Mitchell, PB, Morken, G, Mors, O, Mortensen, PB, Mowry, B, Müller-Myhsok, B, Myers, RM, Neale, BM, Nievergelt, CM, Nordentoft, M, Nöthen, MM, O’Donovan, MC, Oedegaard, KJ, Olsson, T, Owen, MJ, Paciga, SA, Pantelis, C, Pato, C, Pato, MT, Patrinos, GP, Perlis, RH, Posthuma, D, Ramos-Quiroga, JA, Reif, A, Reininghaus, EZ, Ribasés, M, Rietschel, M, Ripke, S, Rouleau, GA, Saito, T, Schall, U, Schalling, M, Schofield, PR, Schulze, TG, Scott, LJ, Scott, RJ, Serretti, A, Shannon Weickert, C, Smoller, JW, Stefansson, H, Stefansson, K, Stordal, E, Streit, F, Sullivan, PF, Turecki, G, Vaaler, AE, Vieta, E, Vincent, JB, Waldman, ID, Weickert, TW, Werge, T, Wray, NR, Zwart, J-A, Biernacka, JM, Nurnberger, JI, Cichon, S, Edenberg, HJ, Stahl, EA, McQuillin, A, Di Florio, A, Ophoff, RA and Andreassen, OA (2021) Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics 53, 817829. DOI: 10.1038/s41588-021-00857-4.CrossRefGoogle ScholarPubMed
Muneer, A (2016) Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investigation 13(1), 1833. DOI: 10.4306/pi.2016.13.1.18.CrossRefGoogle Scholar
Mutz, J and Lewis, CM (2023) Telomere length associations with clinical diagnosis, age, and polygenic risk scores for anxiety disorder, depression, and bipolar disorder. Biological Psychiatry Global Open Science 3, 10121020. DOI: 10.1016/j.bpsgos.2022.08.008.CrossRefGoogle ScholarPubMed
Najjar, S, Steiner, J, Najjar, A and Bechter, K (2018) A clinical approach to new-onset psychosis associated with immune dysregulation: the concept of autoimmune psychosis. Journal of Neuroinflammation 15, 40. DOI: 10.1186/s12974-018-1067-y.CrossRefGoogle ScholarPubMed
Ndrepepa, G (2019) Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease. The International Journal of Clinical Chemistry 493, 3651. DOI: 10.1016/j.cca.2019.02.022.Google ScholarPubMed
Nieratschker, V, Lahtinen, J, Meier, S, Strohmaier, J, Frank, J, Heinrich, A, Breuer, , Witt, SH, Nöthen, MM, Rietschel, M and Hovatta, I (2013) Longer telomere length in patients with schizophrenia. Schizophrenia Research 149, 116120. DOI: 10.1016/j.schres.2013.06.043.CrossRefGoogle ScholarPubMed
O’Donovan, A, Pantell, MS, Puterman, E, Dhabhar, FS, Blackburn, EH, Yaffe, K, Cawthon, RM, Opresko, PL, Hsueh, W-C, Satterfield, S, Newman, AB, Ayonayon, HN, Rubin, SM, Harris, TB, Epel, ES, for the Health Aging and Body Composition Study Lichterfeld, M (2011) Cumulative inflammatory load is associated with short leukocyte telomere length in the health, Aging and Body Composition Study. PLoS One 6, e19687. DOI: 10.1371/journal.pone.0019687.CrossRefGoogle ScholarPubMed
Orhan, F, Schwieler, L, Fatouros‐Bergman, H, Malmqvist, A, Cervenka, S, Collste, K, Flyckt, L, Farde, L, Sellgren, CM, Piehl, F and Erhardt, S (2018) Increased number of monocytes and plasma levels of MCP-1 and YKL-40 in first-episode psychosis. Acta Psychiatrica Scandinavica 138, 432440. DOI: 10.1111/acps.12944.CrossRefGoogle ScholarPubMed
Ormerod, MBEG, Ueland, T, Frogner Werner, MC, Hjell, G, Rødevand, L, Sæther, LS, Lunding, SH, Johansen, IT, Ueland, T, Lagerberg, TV, Melle, I, Djurovic, S, Andreassen, OA and Steen, NE (2022) Composite immune marker scores associated with severe mental disorders and illness course. Brain, Behavior, & Immunity - Health 24, 100483. DOI: 10.1016/j.bbih.2022.100483.Google Scholar
Paccalet, A, Crola Da Silva, C, Mechtouff, L, Amaz, C, Varillon, Y, de Bourguignon, C, Cartier, R, Prieur, C, Tomasevic, D, Genot, N, Leboube, S, Derimay, Fçois, Rioufol, G, Bonnefoy-Cudraz, E, Mewton, N, Ovize, M, Bidaux, G and Bochaton, T (2021) Serum soluble tumor necrosis factor Receptors 1 and 2 Are early prognosis markers after ST-segment elevation myocardial infarction. Frontiers in Pharmacology 12, 656928. DOI: 10.3389/fphar.2021.656928.CrossRefGoogle ScholarPubMed
Palladino, I, Salani, F, Ciaramella, A, Rubino, IA, Caltagirone, C, Fagioli, S, Spalletta, G and Bossù, P (2012) Elevated levels of circulating IL-18BP and perturbed regulation of IL-18 in schizophrenia. Journal of Neuroinflammation 9, 206. DOI: 10.1186/1742-2094-9-206.CrossRefGoogle ScholarPubMed
Palmos, AB, Breen, G, Goodwin, L, Frissa, S, Hatch, SL, Hotopf, M, Thuret, S, Lewis, CM and Powell, TR (2018) Genetic risk for psychiatric disorders and telomere length. Frontiers in Genetics 9, 468. DOI: 10.3389/fgene.2018.00468.CrossRefGoogle ScholarPubMed
Palomo, J, Dietrich, D, Martin, P, Palmer, G and Gabay, C (2015) The interleukin (IL)-1 cytokine family--balance between agonists and antagonists in inflammatory diseases. Cytokine 76, 2537. DOI: 10.1016/j.cyto.2015.06.017.CrossRefGoogle ScholarPubMed
Panizzutti, B, Gubert, C, Schuh, AL, Ferrari, P, Bristot, G, Fries, GR, Massuda, R, Walz, J, Rocha, NP, Berk, M, Teixeira, AL and Gama, CS (2015) Increased serum levels of eotaxin/CCL11 in late-stage patients with bipolar disorder: an accelerated aging biomarker? Journal of Affective Disorders 182, 6469. DOI: 10.1016/j.jad.2014.12.010.CrossRefGoogle ScholarPubMed
Pawelczyk, T, Szymanska, B, Grancow-Grabka, M, Kotlicka-Antczak, M and Pawelczyk, A (2015) Telomere length in blood cells is related to the chronicity, severity, and recurrence rate of schizophrenia. Neuropsychiatric Disease and Treatment 11, 14931503. DOI: 10.2147/NDT.S82468.CrossRefGoogle Scholar
Pisanu, C, Congiu, D, Manchia, M, Caria, P, Cocco, C, Dettori, T, Frau, DV, Manca, E, Meloni, A, Nieddu, M, Noli, B, Pinna, F, Robledo, R, Sogos, V, Ferri, GL, Carpiniello, B, Vanni, R, Bocchetta, A, Severino, G, Ardau, R, Chillotti, C, Zompo, MD and Squassina, A (2020) Differences in telomere length between patients with bipolar disorder and controls are influenced by lithium treatment. Pharmacogenomics 21, 533540. DOI: 10.2217/pgs-2020-0028.CrossRefGoogle ScholarPubMed
Polho, GB, De-Paula, VJ, Cardillo, G, Dos Santos, B and Kerr, DS (2015) Leukocyte telomere length in patients with schizophrenia: a meta-analysis. Schizophrenia Research 165, 195200. DOI: 10.1016/j.schres.2015.04.025.CrossRefGoogle ScholarPubMed
Potvin, S, Stip, E, Sepehry, AA, Gendron, A, Bah, R and Kouassi, E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biological Psychiatry 63, 801808. DOI: 10.1016/j.biopsych.2007.09.024.CrossRefGoogle ScholarPubMed
Pouget, JG (2018) The emerging immunogenetic architecture of schizophrenia. Schizophrenia Bulletin 44, 9931004. DOI: 10.1093/schbul/sby038.CrossRefGoogle ScholarPubMed
Pouget, JG, Han, C, Wu, Y, Mignot, E, Ollila, HM, Barker, J, Spain, S, Dand, N, Trembath, R, Martin, J, Mayes, MD, Bossini-Castillo, L, López-Isac, E, Jin, Y, Santorico, SA, Spritz, RA, Hakonarson, H, Polychronakos, C, Raychaudhuri, S, Knight, J and Schizophrenia Working Group of the Psychiatric Genomics (2019) Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Human Molecular Genetics 28, 34983513. DOI: 10.1093/hmg/ddz145.CrossRefGoogle Scholar
Qiao, S, Jiang, Y and Li, X (2020) The impact of health promotion interventions on telomere length: a systematic review. American Journal of Health Promotion 34, 633647. DOI: 10.1177/0890117120906958.CrossRefGoogle ScholarPubMed
Rao, S, Kota, LN, Li, Z, Yao, Y, Tang, J, Mao, C, Jain, S, Xu, Y and Xu, Q (2016) Accelerated leukocyte telomere erosion in schizophrenia: evidence from the present study and a meta-analysis. Journal of Psychiatric Research 79, 5056. DOI: 10.1016/j.jpsychires.2016.04.010.CrossRefGoogle ScholarPubMed
Reponen, EJ, Dieset, I, Tesli, M, Mørch, RH, Aas, M, Vedal, TSJ, Haug, E, Drange, OK, Steen, NE, Hope, S, Szabo, A, Gohar, SM, Wedervang-Resell, K, Djurovic, S, Melle, I, Aukrust, Pål, Andreassen, OA and Ueland, T (2020) Atherogenic lipid ratios related to myeloperoxidase and C-reactive protein levels in psychotic disorders. Frontiers in Psychiatry 11, 672. DOI: 10.3389/fpsyt.2020.00672.CrossRefGoogle ScholarPubMed
Révész, D, Verhoeven, JE, Milaneschi, Y, De Geus, EJCN, Wolkowitz, OM and Penninx, BWJH (2014) Dysregulated physiological stress systems and accelerated cellular aging. Neurobiology of Aging 35, 14221430. DOI: 10.1016/j.neurobiolaging.2013.12.027.CrossRefGoogle ScholarPubMed
Rizzo, LB, Do Prado, CH, Grassi-Oliveira, R, Wieck, Aéa, Correa, BL, Teixeira, AL and Bauer, Més E (2013) Immunosenescence is associated with human cytomegalovirus and shortened telomeres in type I bipolar disorder. Bipolar Disorders 15, 832838. DOI: 10.1111/bdi.12121.CrossRefGoogle ScholarPubMed
Rode, L, Nordestgaard, BG and Bojesen, SE (2015) Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. JNCI: Journal of the National Cancer Institute 107, djv074. DOI: 10.1093/jnci/djv074.CrossRefGoogle Scholar
Rødevand, L, Bahrami, S, Frei, O, Chu, Y, Shadrin, A, O’Connell, KS, Smeland, OB, Elvsåshagen, Tørn, Hindley, GFL, Djurovic, S, Dale, AM, Lagerberg, TV, Steen, NE and Andreassen, OA (2021) Extensive bidirectional genetic overlap between bipolar disorder and cardiovascular disease phenotypes. Translational Psychiatry 11, 407. DOI: 10.1038/s41398-021-01527-z.CrossRefGoogle ScholarPubMed
Rossiello, F, Jurk, D, Passos, JF, Di Fagagna, D’adda and F (2022) Telomere dysfunction in ageing and age-related diseases. Nature Cell Biology 24, 135147. DOI: 10.1038/s41556-022-00842-x.CrossRefGoogle ScholarPubMed
Russo, P, Prinzi, G, Proietti, S, Lamonaca, P, Frustaci, A, Boccia, S, Amore, R, Lorenzi, M, Onder, G, Marzetti, E, Valdiglesias, V, Guadagni, F, Valente, MG, Cascio, GL, Fraietta, S, Ducci, G and Bonassi, S (2018) Shorter telomere length in schizophrenia: evidence from a real-world population and meta-analysis of most recent literature. Schizophrenia Research 202, 3745. DOI: 10.1016/j.schres.2018.07.015.CrossRefGoogle ScholarPubMed
Salomon, BL (2021) Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nature Reviews Rheumatology 17, 487504. DOI: 10.1038/s41584-021-00639-6.CrossRefGoogle ScholarPubMed
Schürhoff, F, Corfdir, Cécile, Pignon, B, Lajnef, M, Richard, J-R, Marcos, E, Pelissolo, A, Leboyer, M, Adnot, S, Jamain, S and Szöke, A (2021) No alteration of leukocyte telomere length in first episode psychosis. Psychiatry Research 301, 113941. DOI: 10.1016/j.psychres.2021.113941.CrossRefGoogle ScholarPubMed
Simon, NM, Smoller, JW, McNamara, KL, Maser, RS, Zalta, AK, Pollack, MH, Nierenberg, AA, Fava, M and Wong, K-K (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biological Psychiatry 60, 432435. DOI: 10.1016/j.biopsych.2006.02.004.CrossRefGoogle ScholarPubMed
Solana, C, Pereira, D and Tarazona, R (2018) Early senescence and Leukocyte telomere shortening in SCHIZOPHRENIA: a role for cytomegalovirus infection? Brain Sciences 8, 188. DOI: 10.3390/brainsci8100188.CrossRefGoogle ScholarPubMed
Solmi, M, Suresh Sharma, M, Osimo, EF, Fornaro, M, Bortolato, B, Croatto, G, Miola, A, Vieta, E, Pariante, CM, Smith, L, Fusar-Poli, P, Shin, JI, Berk, M and Carvalho, AF (2021) Peripheral levels of C-reactive protein, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta across the mood spectrum in bipolar disorder: a meta-analysis of mean differences and variability. Brain, Behavior, and Immunity 97, 193203. DOI: 10.1016/j.bbi.2021.07.014.CrossRefGoogle ScholarPubMed
Spitzer, RL, Williams, JB, Gibbon, M and First, MB (1992) The structured clinical interview for DSM-III-R (SCID). I: history, rationale, and description. Archives of General Psychiatry 49, 624629.CrossRefGoogle ScholarPubMed
Sproston, NR and Ashworth, JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology 9, 754. DOI: 10.3389/fimmu.2018.00754.CrossRefGoogle ScholarPubMed
Squassina, A, Manchia, M, Pisanu, C, Ardau, R, Arzedi, C, Bocchetta, A, Caria, P, Cocco, C, Congiu, D, Cossu, E, Dettori, T, Frau, DV, Garzilli, M, Manca, E, Meloni, A, Montis, MA, Mura, A, Nieddu, M, Noli, B, Paribello, P, Pinna, F, Robledo, R, Severino, G, Sogos, V, Del Zompo, M, Ferri, GL, Chillotti, C, Vanni, R and Carpiniello, B (2020) Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology 45, 22292238. DOI: 10.1038/s41386-020-00844-z.CrossRefGoogle ScholarPubMed
Squassina, A, Pisanu, C, Congiu, D, Caria, P, Frau, D, Niola, P, Melis, C, Baggiani, G, Lopez, JP, Cruceanu, C, Turecki, G, Severino, G, Bocchetta, A, Vanni, R, Chillotti, C and Del Zompo, M (2016) Leukocyte telomere length positively correlates with duration of lithium treatment in bipolar disorder patients. European Neuropsychopharmacology 26, 12411247. DOI: 10.1016/j.euroneuro.2016.03.020.CrossRefGoogle ScholarPubMed
Squassina, A, Pisanu, C and Vanni, R (2019) Mood Disorders, Accelerated Aging, and Inflammation: Is the Link Hidden in Telomeres? Cells 8, 52. DOI: 10.3390/cells8010052 CrossRefGoogle Scholar
Tamminga, CA, Ivleva, EI, Keshavan, MS, Pearlson, GD, Clementz, BA, Witte, B, Morris, DW, Bishop, J, Thaker, GK and Sweeney, JA (2013) Clinical phenotypes of psychosis in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). American Journal of Psychiatry 170, 12631274. DOI: 10.1176/appi.ajp.2013.12101339.CrossRefGoogle ScholarPubMed
Teeuw, J, Ori, APS, Brouwer, RM, de Zwarte, SMC, Schnack, HG, Hulshoff Pol, HE and Ophoff, RA (2021) Accelerated aging in the brain, epigenetic aging in blood, and polygenic risk for schizophrenia. Schizophrenia Research 231, 189197. DOI: 10.1016/j.schres.2021.04.005.CrossRefGoogle ScholarPubMed
Teixeira, AL, Gama, CS, Rocha, NP and Teixeira, MM (2018) Revisiting the role of eotaxin-1/CCL11 in psychiatric disorders. Frontiers in Psychiatry 9, 241. DOI: 10.3389/fpsyt.2018.00241.CrossRefGoogle ScholarPubMed
Trepanier, MO, Hopperton, KE, Mizrahi, R, Mechawar, N and Bazinet, RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Molecular Psychiatry 21, 10091026. DOI: 10.1038/mp.2016.90.CrossRefGoogle ScholarPubMed
Trubetskoy, V, Pardiñas, AF, Qi, T, Panagiotaropoulou, G, Awasthi, S, Bigdeli, TB, Bryois, J, Chen, C-Y, Dennison, CA, Hall, LS, Lam, M, Watanabe, K, Frei, O, Ge, T, Harwood, JC, Koopmans, F, Magnusson, S, Richards, AL, Sidorenko, J, Wu, Y, Zeng, J, Grove, J, Kim, M, Li, Z, Voloudakis, G, Zhang, W, Adams, M, Agartz, I, Atkinson, EG, Agerbo, E, Al Eissa, M, Albus, M, Alexander, M, Alizadeh, BZ, Alptekin, Köksal, Als, TD, Amin, F, Arolt, V, Arrojo, M, Athanasiu, L, Azevedo, MH, Bacanu, SA, Bass, NJ, Begemann, M, Belliveau, RA, Bene, J, Benyamin, B, Bergen, SE, Blasi, G, Bobes, J, Bonassi, S, Braun, A, Bressan, RA, Bromet, EJ, Bruggeman, R, Buckley, PF, Buckner, RL, Bybjerg-Grauholm, J, Cahn, W, Cairns, MJ, Calkins, ME, Carr, VJ, Castle, D, Catts, SV, Chambert, KD, Chan, RCK, Chaumette, B, Cheng, W, Cheung, EFC, Chong, SA, Cohen, D, Consoli, Aèle, Cordeiro, Q, Costas, J, Curtis, C, Davidson, M, Davis, KL, de Haan, L, Degenhardt, F, DeLisi, LE, Demontis, D, Dickerson, F, Dikeos, D, Dinan, T, Djurovic, S, Duan, J, Ducci, G, Dudbridge, F, Eriksson, JG, Fañanás, L, Faraone, SV, Fiorentino, A, Forstner, A, Frank, J, Freimer, NB, Fromer, M, Frustaci, A, Gadelha, A, Genovese, G, Gershon, ES, Giannitelli, M, Giegling, I, Giusti-Rodríguez, P, Godard, S, Goldstein, JI, González Peñas, J, González-Pinto, A, Gopal, S, Gratten, J, Green, MF, Greenwood, TA, Guillin, O, Gülöksüz, S, Gur, RE, Gur, RC, Gutiérrez, B, Hahn, E, Hakonarson, H, Haroutunian, V, Hartmann, AM, Harvey, C, Hayward, C, Henskens, FA, Herms, S, Hoffmann, P, Howrigan, DP, Ikeda, M, Iyegbe, C, Joa, I, Julià, A, Kähler, AK, Kam-Thong, T, Kamatani, Y, Karachanak-Yankova, S, Kebir, O, Keller, MC, Kelly, BJ, Khrunin, A, Kim, S-W, Klovins, J, Kondratiev, N, Konte, B, Kraft, J, Kubo, M, Kučinskas, V, Kučinskiene, ZA, Kusumawardhani, A, Kuzelova-Ptackova, H, Landi, S, Lazzeroni, LC, Lee, PH, Legge, SE, Lehrer, DS, Lencer, R, Lerer, B, Li, M, Lieberman, J, Light, GA, Limborska, S, Liu, C-M, Lönnqvist, J, Loughland, CM, Lubinski, J, Luykx, JJ, Lynham, A, Macek, M, Mackinnon, A, Magnusson, PKE, Maher, BS, Maier, W, Malaspina, D, Mallet, J, Marder, SR, Marsal, S, Martin, AR, Martorell, L, Mattheisen, M, McCarley, RW, McDonald, C, McGrath, JJ, Medeiros, H, Meier, S, Melegh, B, Melle, I, Mesholam-Gately, RI, Metspalu, A, Michie, PT, Milani, L, Milanova, V, Mitjans, M, Molden, E, Molina, E, Molto, Mía D, Mondelli, V, Moreno, C, Morley, CP, Muntané, G, Murphy, KC, Myin-Germeys, I, Nenadić, I, Nestadt, G, Nikitina-Zake, L, Noto, C, Nuechterlein, KH, O’Brien, NL, O’Neill, FA, Oh, S-Y, Olincy, A, Ota, VK, Pantelis, C, Papadimitriou, GN, Parellada, M, Paunio, T, Pellegrino, R, Periyasamy, S, Perkins, DO, Pfuhlmann, B, Pietiläinen, O, Pimm, J, Porteous, D, Powell, J, Quattrone, D, Quested, D, Radant, AD, Rampino, A, Rapaport, MH, Rautanen, A, Reichenberg, A, Roe, C, Roffman, JL, Roth, J, Rothermundt, M, Rutten, BPF, Saker-Delye, S, Salomaa, V, Sanjuan, J, Santoro, ML, Savitz, A, Schall, U, Scott, RJ, Seidman, LJ, Sharp, SI, Shi, J, Siever, LJ, Sigurdsson, E, Sim, K, Skarabis, N, Slominsky, P, So, H-C, Sobell, JL, Söderman, E, Stain, HJ, Steen, NE, Steixner-Kumar, AA, Stögmann, E, Stone, WS, Straub, RE, Streit, F, Strengman, E, Stroup, TS, Subramaniam, M, Sugar, CA, Suvisaari, J, Svrakic, DM, Swerdlow, NR, Szatkiewicz, JP, Ta, TMT, Takahashi, A, Terao, C, Thibaut, F, Toncheva, D, Tooney, PA, Torretta, S, Tosato, S, Tura, GB, Turetsky, BI, Üçok, A, Vaaler, A, van Amelsvoort, T, van Winkel, R, Veijola, J, Waddington, J, Walter, H, Waterreus, A, Webb, BT, Weiser, M, Williams, NM, Witt, SH, Wormley, BK, Wu, JQ, Xu, Z, Yolken, R, Zai, CC, Zhou, W, Zhu, F, Zimprich, F, Atbaşoğlu, Eşref C, Ayub, M, Benner, C, Bertolino, A, Black, DW, Bray, NJ, Breen, G, Buccola, NG, Byerley, WF, Chen, WJ, Cloninger, CR, Crespo-Facorro, B, Donohoe, G, Freedman, R, Galletly, C, Gandal, MJ, Gennarelli, M, Hougaard, DM, Hwu, H-G, Jablensky, AV, McCarroll, SA, Moran, JL, Mors, O, Mortensen, PB, Müller-Myhsok, B, Neil, AL, Nordentoft, M, Pato, MT, Petryshen, TL, Pirinen, M, Pulver, AE, Schulze, TG, Silverman, JM, Smoller, JW, Stahl, EA, Tsuang, DW, Vilella, E, Wang, S-H, Xu, S, Wenwen, Q, Wildenauer, DB, Agiananda, F, Amir, N, Antoni, R, Arsianti, T, Asmarahadi, A, Diatri, H, Djatmiko, P, Irmansyah, I, Khalimah, S, Kusumadewi, I, Kusumaningrum, P, Lukman, PR, Nasrun, MW, Safyuni, NS, Prasetyawan, P, Semen, G, Siste, K, Tobing, H, Widiasih, N, Wiguna, T, Wulandari, D, Evalina, N, Hananto, AJ, Ismoyo, JH, Marini, TM, Henuhili, S, Reza, M, Yusnadewi, S, Akbarian, S, Ashley-Koch, A, van Bakel, H, Breen, M, Brown, M, Bryois, J, Carlyle, B, Charney, A, Coetzee, G, Crawford, G, Dracheva, S, Emani, P, Farnham, P, Fromer, M, Galeev, T, Gandal, M, Gerstein, M, Giase, G, Girdhar, K, Goes, F, Grennan, K, Gu, M, Guerra, B, Gursoy, G, Hoffman, G, Hyde, T, Jaffe, A, Jiang, S, Jiang, Y, Kefi, A, Kim, Y, Kitchen, R, Knowles, JA, Lay, F, Lee, D, Li, M, Liu, C, Liu, S, Mattei, E, Navarro, F, Pan, X, Peters, MA, Pinto, D, Pochareddy, S, Polioudakis, D, Purcaro, M, Purcell, S, Pratt, H, Reddy, T, Rhie, S, Roussos, P, Rozowsky, J, Sanders, S, Sestan, N, Sethi, A, Shi, X, Shieh, A, Swarup, V, Szekely, A, Wang, D, Warrell, J, Weissman, S, Weng, Z, White, K, Wiseman, J, Witt, H, Won, H, Wood, S, Wu, F, Xu, X, Yao, L, Zandi, P, Bakker, S, Bender, S, Bramon, E, Collier, DA, Crepo-Facorro, B, Hall, J, Iyegbe, C, Kahn, , Lawrie, S, Lewis, C, Lin, K, Linszen, DH, Mata, I, McIntosh, A, Murray, RM, Ophoff, RA, van Os, J, Powell, J, Rujescu, D, Walshe, M, Weisbrod, M, Andres-Alonso, M, Bagni, C, Bayés, Àlex, Biederer, T, Brose, N, Brown, TC, Chua, JJE, Coba, MP, Cornelisse, LN, de Jong, APH, de Juan-Sanz, J, Dieterich, DC, Feng, G, Goldschmidt, HL, Gundelfinger, ED, Hoogenraad, C, Huganir, RL, Hyman, SE, Imig, C, Jahn, R, Jung, H, Kaeser, PS, Kim, E, Koopmans, F, Kreutz, MR, Lipstein, N, MacGillavry, HD, Malenka, R, McPherson, PS, O’Connor, V, Pielot, R, Ryan, TA, Sahasrabudhe, D, Sala, C, Sheng, M, Smalla, K-H, Smit, AB, Südhof, TC, Thomas, PD, Toonen, RF, van Weering, JRT, Verhage, M, Verpelli, C, Adolfsson, R, Arango, C, Baune, BT, Belangero, SI, Børglum, AD, Braff, D, Bramon, E, Buxbaum, JD, Campion, D, Cervilla, JA, Cichon, S, Collier, DA, Corvin, A, Curtis, D, Forti, MD, Domenici, E, Ehrenreich, H, Escott-Price, V, Esko, Tõnu, Fanous, AH, Gareeva, A, Gawlik, M, Gejman, PV, Gill, M, Glatt, SJ, Golimbet, V, Hong, KS, Hultman, CM, Hyman, SE, Iwata, N, Jönsson, EG, Kahn, Ré S, Kennedy, JL, Khusnutdinova, E, Kirov, G, Knowles, JA, Krebs, M-O, Laurent-Levinson, C, Lee, J, Lencz, T, Levinson, DF, Li, QS, Liu, J, Malhotra, AK, Malhotra, D, McIntosh, A, McQuillin, A, Menezes, PR, Morgan, VA, Morris, DW, Mowry, BJ, Murray, RM, Nimgaonkar, V, Nöthen, MM, Ophoff, RA, Paciga, SA, Palotie, A, Pato, CN, Qin, S, Rietschel, M, Riley, BP, Rivera, M, Rujescu, D, Saka, MC, Sanders, AR, Schwab, SG, Serretti, A, Sham, PC, Shi, Y, St Clair, D, Stefánsson, H, Stefansson, K, Tsuang, MT, van Os, J, Vawter, MP, Weinberger, DR, Werge, T, Wildenauer, DB, Yu, X, Yue, W, Holmans, PA, Pocklington, AJ, Roussos, P, Vassos, E, Verhage, M, Visscher, PM, Yang, J, Posthuma, D, Andreassen, OA, Kendler, KS, Owen, MJ, Wray, NR, Daly, MJ, Huang, H, Neale, BM, Sullivan, PF, Ripke, S, Walters, JTR, O’Donovan, MC, van Amelsvoort, T, van Winkel, R, Gareeva, A, Sham, PC, Shi, Y, St Clair, D and van Os, J (2022) Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502508. DOI: 10.1038/s41586-022-04434-5.CrossRefGoogle ScholarPubMed
Vakonaki, E, Tsiminikaki, K, Plaitis, S, Fragkiadaki, P, Tsoukalas, D, Katsikantami, I, Vaki, G, Tzatzarakis, M, Spandidos, D and Tsatsakis, A (2018) Common mental disorders and association with telomere length. Biomedical Reports 8, 111116. DOI: 10.3892/br.2018.1040.Google ScholarPubMed
Vasconcelos-Moreno, MP, Fries, GR, Gubert, C, dos Santos, Bárbara Töhl MQ, Fijtman, A, Sartori, J, Ferrari, P, Grun, LK, Parisi, MM, Guma, Fátima TCR, Barbé-Tuana, FM, Kapczinski, Fávio, Rosa, AR, Yatham, LN and Kauer-Sant’Anna, M (2017) Telomere length, oxidative stress, inflammation and BDNF levels in siblings of patients with bipolar disorder: implications for accelerated cellular aging. International Journal of Neuropsychopharmacology 20, 445454. DOI: 10.1093/ijnp/pyx001.CrossRefGoogle ScholarPubMed
Werner, MCF, Wirgenes, KV, Shadrin, A, Lunding, SH, Rødevand, L, Hjell, G, Ormerod, MBEær G, Haram, M, Agartz, I, Djurovic, S, Melle, I, Aukrust, Pål, Ueland, T, Andreassen, OA and Steen, NE (2022a) Immune marker levels in severe mental disorders: associations with polygenic risk scores of related mental phenotypes and psoriasis. Translational Psychiatry 12, 38. DOI: 10.1038/s41398-022-01811-6.CrossRefGoogle ScholarPubMed
Werner, MCF, Wirgenes, KV, Shadrin, AA, Lunding, SH, Rødevand, L, Hjell, G, Ormerod, MBEG, Haram, M, Agartz, I, Djurovic, S, Melle, I, Aukrust, Pål, Ueland, T, Andreassen, OA and Steen, NE (2022b) Limited association between infections, autoimmune disease and genetic risk and immune activation in severe mental disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry 116, 110511. DOI: 10.1016/j.pnpbp.2022.110511.CrossRefGoogle ScholarPubMed
Wolkowitz, OM, Jeste, DV, Martin, AS, Lin, J, Daly, RE, Reuter, C and Kraemer, H (2017) Leukocyte telomere length: effects of schizophrenia, age, and gender. Journal of Psychiatric Research 85, 4248. DOI: 10.1016/j.jpsychires.2016.10.015.CrossRefGoogle ScholarPubMed
Wolkowitz, OM, Mellon, SH, Epel, ES, Lin, J, Dhabhar, FS, Su, Y, Reus, VI, Rosser, R, Burke, HM, Kupferman, E, Compagnone, M, Nelson, JC, Blackburn, EH and Kiechl, S (2011) Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings. PLoS One 6, e17837. DOI: 10.1371/journal.pone.0017837.CrossRefGoogle ScholarPubMed
World Health Organization Collaborating Centre for Drug Statistics Methodology (2024) ATC classification index with DDDs. Available at: https://atcddd.fhi.no/atc_ddd_index_and_guidelines/atc_ddd_index/ (Accessed 14 March 2024).Google Scholar
Zhang, J, Rane, G, Dai, X, Shanmugam, MK, Arfuso, F, Samy, RP, Lai, MKP, Kappei, D, Kumar, AP and Sethi, G (2016) Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Research Reviews 25, 5569. DOI: 10.1016/j.arr.2015.11.006.CrossRefGoogle ScholarPubMed
Figure 0

Table 1. Sample descriptives

Figure 1

Figure 1. Association between levels of sTNF-R1 (ng/mL) and telomere length in SCZ (raw data). A smaller T/S ratio equals shorter telomere length. Abbreviations: schizophrenia spectrum disorders (SCZ), soluble tumor necrosis factor receptor 1 (sTNF-R1), telomere template/amount of single-copy gene template (T/S ratio).

Figure 2

Table 2. Association analyses of immune markers and telomere lengtha in total sample

Figure 3

Table 3. Association analyses of immune markers and telomere lengtha in SCZ vs. BD vs. HC

Figure 4

Table 4. Association analyses of immune markers and telomere length, sensitivity analyses in SCZ and BD

Supplementary material: File

Ormerod et al. supplementary material

Ormerod et al. supplementary material
Download Ormerod et al. supplementary material(File)
File 234.3 KB