Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T23:32:09.854Z Has data issue: false hasContentIssue false

Gene expression in peripheral blood in treatment-free major depression

Published online by Cambridge University Press:  10 February 2020

Alfredo B. Cuellar-Barboza*
Affiliation:
Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
Jorge A. Sánchez-Ruiz
Affiliation:
Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
Iram P. Rodriguez-Sanchez
Affiliation:
Molecular and Structural Physiology Laboratory, School of Biological Sciences, Universidad Autónoma de Nuevo León, Monterrey, México
Sarai González
Affiliation:
Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
Geovana Calvo
Affiliation:
Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
José Lugo
Affiliation:
Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
Antonio Costilla-Esquivel
Affiliation:
Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México Centro de Investigación en Matemáticas A.C. (CIMAT), Monterrey, México
Laura E. Martínez
Affiliation:
Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
Marisol Ibarra-Ramirez
Affiliation:
Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
*
Author for correspondence: Alfredo B. Cuellar-Barboza, Email: [email protected]

Abstract

Background:

Peripheral gene expression of several molecular pathways has been studied in major depressive disorder (MDD) with promising results. We sought to investigate some of these genes in a treatment-free Latino sample of Mexican descent.

Material and Methods:

The sample consisted of 50 MDD treatment-free cases and 50 sex and age-matched controls. Gene expression of candidate genes of neuroplasticity (BDNF, p11, and VGF), inflammation (IL1A, IL1B, IL4, IL6, IL7, IL8, IL10, MIF, and TNFA), the canonical Wnt signaling pathway (TCF7L2, APC, and GSK3B), and mTOR, was compared in cases and controls. RNA was obtained from blood samples. We used bivariate analyses to compare subjects versus control mean mRNA quantification of target genes and lineal regression modelling to test for effects of age and body mass index on gene expression.

Results:

Most subjects were female (66%) with a mean age of 26.7 (SD 7.9) years. Only GSK3B was differentially expressed between cases and controls at a statistically significant level (p = 0.048). TCF7L-2 showed the highest number of correlations with MDD-related traits, yet these were modest in size.

Discussion:

GSK3B encodes a moderator of the canonical Wnt signaling pathway. It has a role in neuroplasticity, neuroprotection, depression, and other psychiatric phenotypes. We found that adding population diversity has the potential to elicit distinct peripheral gene expression markers in MDD and MDD-related traits. However, our results should only be considered as hypothesis-generating research that merits further replication in larger cohorts of similar ancestry.

Type
Original Article
Copyright
© Scandinavian College of Neuropsychopharmacology 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akcan, U, Karabulut, S, İsmail Küçükali, C, Çakır, S and Tüzün, E (2018) Bipolar disorder patients display reduced serum complement levels and elevated peripheral blood complement expression levels Acta Neuropsychiatrica 30(2), 7078. doi: 10.1017/neu.2017.10.CrossRefGoogle ScholarPubMed
Amidfar, M, Kim, Y-K, Colic, L, Arbabi, M, Mobaraki, G, Hassanzadeh, G and Walter, M (2017) Increased levels of 5HT2A receptor mRNA expression in peripheral blood mononuclear cells of patients with major depression: correlations with severity and duration of illness. Nordic Journal of Psychiatry 71(4), 282288. doi: 10.1080/08039488.2016.1276624.CrossRefGoogle ScholarPubMed
Belzeaux, R, Formisano-Tréziny, C, Loundou, A, Boyer, L, Gabert, J, Samuelian, J-C, Féron, F, Naudin, J and Ibrahim, EC (2010) Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. Journal of Psychiatric Research 44(16), 12051213. doi: 10.1016/j.jpsychires.2010.04.011.CrossRefGoogle ScholarPubMed
Bobińska, K, Gałecka, E, Szemraj, J, Gałecki, P and Talarowska, M (2017) Is there a link between TNF gene expression and cognitive deficits in depression? Acta Biochimica Polonica 64(1), 6573. doi: 10.18388/abp.2016_1276.Google Scholar
Bobińska, K, Mossakowska-Wójcik, J, Szemraj, J, Gałecki, P, Zajączkowska, M and Talarowska, M (2017) Human neuropsin gene in depression. Psychiatria Danubina 29(2), 195200. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28636578.CrossRefGoogle ScholarPubMed
Buysse, DJ, Reynolds, CF, Monk, TH, Berman, SR and Kupfer, DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Research 28(2), 193213. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2748771.CrossRefGoogle ScholarPubMed
Cattaneo, A, Bocchio-Chiavetto, L, Zanardini, R, Milanesi, E, Placentino, A and Gennarelli, M (2010) Reduced peripheral brain-derived neurotrophic factor mRNA levels are normalized by antidepressant treatment. The International Journal of Neuropsychopharmacology 13(1), 103108. doi: 10.1017/S1461145709990812.CrossRefGoogle ScholarPubMed
Cattaneo, A, Gennarelli, M, Uher, R, Breen, G, Farmer, A, Aitchison, KJ, Craig, IW, Anacker, C, Zunsztain, PA, McGuffin, Pand Pariante, CM (2013) Candidate genes expression profile associated with antidepressants response in the GENDEP study: Differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 38(3), 377385. doi: 10.1038/npp.2012.191.CrossRefGoogle Scholar
Chau, EJ, Mostaid, MS, Cropley, V, McGorry, P, Pantelis, C, Bousman, CA and Everall, IP (2018) Downregulation of plasma SELENBP1 protein in patients with recent-onset schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry 85, 16. doi: 10.1016/j.pnpbp.2018.03.010.CrossRefGoogle ScholarPubMed
Chen, B, Dowlatshahi, D, MacQueen, GM, Wang, JF and Young, LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry 50(4), 260265. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11522260.CrossRefGoogle ScholarPubMed
Chu, C-S, Sun, I-W, Begum, A, Liu, S-I, Chang, C-J, Chiu, W-C, Chen, C-H, Tang, H-S, Yang, C-L, Lin, Y-C, Chiu, C-C and Stewart, R (2017) The association between subjective memory complaint and objective cognitive function in older people with previous major depression. PloS One 12(3), e0173027. doi: 10.1371/journal.pone.0173027.CrossRefGoogle ScholarPubMed
Ciobanu, LG, Sachdev, PS, Trollor, JN, Reppermund, S, Thalamuthu, A, Mather, KA, Cohen-Woods, S and Baune, BT (2016) Differential gene expression in brain and peripheral tissues in depression across the life span: a review of replicated findings. Neuroscience and Biobehavioral Reviews, 71, 281293. doi: 10.1016/j.neubiorev.2016.08.018.CrossRefGoogle ScholarPubMed
Cuellar-Barboza, AB, Winham, SJ, McElroy, SL, Geske, JR, Jenkins, GD, Colby, CL, Prieto, ML, Ryu, E, Cunningham, JM, Frye, MA and Biernacka, JM (2016) Accumulating evidence for a role of TCF7L2 variants in bipolar disorder with elevated body mass index. Bipolar Disorders 18(2), 124135. doi: 10.1111/bdi.12368.CrossRefGoogle ScholarPubMed
Doolin, K, Farrell, C, Tozzi, L, Harkin, A, Frodl, T and O’Keane, V (2017) Diurnal hypothalamic-pituitary-adrenal axis measures and inflammatory marker correlates in major depressive disorder. International Journal of Molecular Sciences 18(10). doi: 10.3390/ijms18102226.CrossRefGoogle ScholarPubMed
Duman, RS and Aghajanian, GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103), 6872. doi: 10.1126/science.1222939.CrossRefGoogle ScholarPubMed
Duman, RS and Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends in Neurosciences 35(1), 4756. doi: 10.1016/j.tins.2011.11.004.CrossRefGoogle ScholarPubMed
Duncan, LE, Ostacher, M and Ballon, J (2019) How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 44, 15181523. doi: 10.1038/s41386-019-0389-5.CrossRefGoogle ScholarPubMed
Enatescu, VR, Papava, I, Enatescu, I, Antonescu, M, Anghel, A, Seclaman, E, Sirbu, IO and Marian, C (2016) Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a pilot study. Psychiatry Investigation 13(5), 549557. doi: 10.4306/pi.2016.13.5.549.CrossRefGoogle ScholarPubMed
First, MB, Williams, JBW, Spitzer, RL and Gibbon, M (2007) Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Clinical Trials Version (SCID-CT). New York: New York State Psychiatric Institute.Google Scholar
Fries, GR, Colpo, GD, Monroy-Jaramillo, N, Zhao, J, Zhao, Z, Arnold, JG, Bowden, CL and Walss-Bass, C (2017) Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder. European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology 27(11), 11101119. doi: 10.1016/j.euroneuro.2017.09.003.CrossRefGoogle ScholarPubMed
Frodl, T (2017) Recent advances in predicting responses to antidepressant treatment. F1000Research 6, 619. doi: 10.12688/f1000research.10300.1.CrossRefGoogle ScholarPubMed
Gałecka, E, Kumor-Kisielewska, A, Orzechowska, A, Maes, M, Górski, P and Szemraj, J (2017) Assessment of type 1 and type 3 deiodinase expression levels in depressive disorders. Acta Neurobiologiae Experimentalis 77(3), 225235. Available at: http://www.ncbi.nlm.nih.gov/pubmed/29182613.CrossRefGoogle ScholarPubMed
Gałecka, E, Talarowska, M, Maes, M, Su, K-P, Górski, P, Kumor-Kisielewska, A and Szemraj, J (2018) Expression levels of interferon-γ and type 2 deiodinase in patients diagnosed with recurrent depressive disorders. Pharmacological Reports 70(1), 133138. doi: 10.1016/j.pharep.2017.08.009.CrossRefGoogle ScholarPubMed
Ghafelehbashi, H, Pahlevan Kakhki, M, Kular, L, Moghbelinejad, S and Ghafelehbashi, SH (2017) Decreased expression of IFNG-AS1, IFNG and IL-1B inflammatory genes in medicated schizophrenia and bipolar patients. Scandinavian Journal of Immunology 86(6), 479485. doi: 10.1111/sji.12620.CrossRefGoogle ScholarPubMed
Goldberg, D (2011) The heterogeneity of ‘major depression’. World Psychiatry : Official Journal of the World Psychiatric Association (WPA) 10(3), 226228. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21991283.CrossRefGoogle Scholar
Goni, R, García, P and Foissac, S (2009) The qPCR data statistical analysis, Integromics SL. Available at: http://gene-quantification.de/integromics-qpcr-statistics-white-paper.pdf.Google Scholar
Gould, TD, Einat, H, Bhat, R and Manji, HK (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. The International Journal of Neuropsychopharmacology 7(4), 387–90. doi: 10.1017/S1461145704004535.CrossRefGoogle ScholarPubMed
Hindorff, LA, Bonham, VL, Brody, LC, Ginoza, MEC, Hutter, CM, Manolio, TA and Green, ED (2018) Prioritizing diversity in human genomics research. Nature Reviews Genetics 19(3), 175185. doi: 10.1038/nrg.2017.89.CrossRefGoogle ScholarPubMed
Hodgson, K, McGuffin, P and Lewis, CM (2017) Advancing psychiatric genetics through dissecting heterogeneity. Human Molecular Genetics 26(R2), R160R165. doi: 10.1093/hmg/ddx241.CrossRefGoogle ScholarPubMed
Hoseth, EZ, Krull, F, Dieset, I, Mørch, RH, Hope, S, Gardsjord, ES, Steen, NE, Melle, I, Brattbakk, H-R, Steen, VM, Aukrust, P, Djurovic, S, Andreassen, OA and Ueland, T (2018) Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Translational Psychiatry 8(1), 55. doi: 10.1038/s41398-018-0102-1.CrossRefGoogle ScholarPubMed
Hoseth, EZ, Ueland, T, Dieset, I, Birnbaum, R, Shin, JH, Kleinman, JE, Hyde, TM, Mørch, RH, Hope, S, Lekva, T, Abraityte, AJ, Michelsen, AE, Melle, I, Westlye, LT, Ueland, T, Djurovic, S, Aukrust, P, Weinberger, DR and Andreassen, OA (2017) A study of TNF pathway activation in schizophrenia and bipolar disorder in plasma and brain tissue. Schizophrenia Bulletin 43(4), 881890. doi: 10.1093/schbul/sbw183.Google ScholarPubMed
Hung, Y-Y, Lin, C-C, Kang, H-Y and Huang, T-L (2017) TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder. Brain, Behavior, and Immunity 59, 265272. doi: 10.1016/j.bbi.2016.09.014.CrossRefGoogle ScholarPubMed
Hur, E-M and Zhou, F-Q (2010) GSK3 signalling in neural development. Nature Reviews. Neuroscience 11(8), 539551. doi: 10.1038/nrn2870.CrossRefGoogle ScholarPubMed
Inkster, B, Nichols, TE, Saemann, PG, Auer, DP, Holsboer, F, Muglia, P and Matthews, PM (2009) Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder. Archives of General Psychiatry 66(7), 721728. doi: 10.1001/archgenpsychiatry.2009.70.CrossRefGoogle ScholarPubMed
Inkster, B, Zai, G, Lewis, G and Miskowiak, KW (2018) GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Translational psychiatry 8(1), 216. doi: 10.1038/s41398-018-0270-z.CrossRefGoogle ScholarPubMed
Iverson, GL and Lam, RW (2013) Rapid screening for perceived cognitive impairment in major depressive disorder. Annals of Clinical Psychiatry : Official Journal of the American Academy of Clinical Psychiatrists 25(2), 135140. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23638444 (Accessed: 12 October 2015).Google ScholarPubMed
Jani, BD, McLean, G, Nicholl, BI, Barry, SJE, Sattar, N, Mair, FS and Cavanagh, J (2015) Risk assessment and predicting outcomes in patients with depressive symptoms: a review of potential role of peripheral blood based biomarkers. Frontiers in Human Neuroscience 9, 18. doi: 10.3389/fnhum.2015.00018.CrossRefGoogle ScholarPubMed
Jansen, R, Penninx, BWJH, Madar, V, Xia, K, Milaneschi, Y, Hottenga, JJ, Hammerschlag, AR, Beekman, A, van der Wee, N, Smit, JH, Brooks, AI, Tischfield, J, Posthuma, D, Schoevers, R, van Grootheest, G, Willemsen, G, de Geus, EJ, Boomsma, DI, Wright, FA, Zou, F, Sun, W and Sullivan, PF (2016) Gene expression in major depressive disorder. Molecular Psychiatry, England 21(3), 339347. doi: 10.1038/mp.2015.57.CrossRefGoogle ScholarPubMed
Kaidanovich-Beilin, O, Milman, A, Weizman, A, Pick, CG and Eldar-Finkelman, H (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biological Psychiatry 55(8), 781784. doi: 10.1016/j.biopsych.2004.01.008.CrossRefGoogle ScholarPubMed
Karege, F, Perroud, N, Burkhardt, S, Fernandez, R, Ballmann, E, La Harpe, R and Malafosse, A (2012) Protein levels of β-catenin and activation state of glycogen synthase kinase-3β in major depression. A study with postmortem prefrontal cortex. Journal of Affective Disorders 136(1–2), 185188. doi: 10.1016/j.jad.2011.09.024.CrossRefGoogle ScholarPubMed
Kendler, KS, Aggen, SH and Neale, MC (2013) Evidence for multiple genetic factors underlying DSM-IV criteria for major depression. JAMA Psychiatry, 70(6), 599607. doi: 10.1001/jamapsychiatry.2013.751.CrossRefGoogle ScholarPubMed
Kendler, KS, Gatz, M, Gardner, CO and Pedersen, NL (2006) A Swedish national twin study of lifetime major depression. The American Journal of Psychiatry 163(1), 109114. doi: 10.1176/appi.ajp.163.1.109.CrossRefGoogle ScholarPubMed
Kessler, RC, Berglund, P, Demler, O, Jin, R, Koretz, D, Merikangas, KR, Rush, AJ, Walters, EE, Wang, PS and National Comorbidity Survey Replication (2003) The epidemiology of major depressive disorder. JAMA 289(23), 3095. doi: 10.1001/jama.289.23.3095.CrossRefGoogle ScholarPubMed
Kim, W-Y and Snider, WD (2011) Functions of GSK-3 signaling in development of the nervous system. Frontiers in Molecular Neuroscience 4, 44. doi: 10.3389/fnmol.2011.00044.CrossRefGoogle Scholar
Kroenke, K, Spitzer, RL and Williams, JB (2001) The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11556941.CrossRefGoogle ScholarPubMed
Levchenko, A, Davtian, S, Freylichman, O, Zagrivnaya, M, Kostareva, A and Malashichev, Y (2015) Beta-catenin in schizophrenia: possibly deleterious novel mutation. Psychiatry Research 228(3), 843848. doi: 10.1016/j.psychres.2015.05.014.CrossRefGoogle ScholarPubMed
Liu, S, Zhang, F, Shugart, YY, Yang, L, Li, X, Liu, Z, Sun, N, Yang, C, Guo, X, Shi, J, Wang, L, Cheng, L, Zhang, K, Yang, T and Xu, Y (2017) The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Translational Psychiatry 7(1), e998. doi: 10.1038/tp.2016.268.CrossRefGoogle ScholarPubMed
Mac Giollabhui, N, Hamilton, JL, Nielsen, J, Connolly, SL, Stange, JP, Varga, S, Burdette, E, Olino, TM, Abramson, LY and Alloy, LB (2018) Negative cognitive style interacts with negative life events to predict first onset of a major depressive episode in adolescence via hopelessness. Journal of Abnormal Psychology 127(1), 111. doi: 10.1037/abn0000301.CrossRefGoogle Scholar
Madison, JM, Zhou, F, Nigam, A, Hussain, A, Barker, DD, Nehme, R, Van Der Ven, K, Hsu, J, Wolf, P, Fleishman, M, O’Dushlaine, C, Rose, S, Chambert, K, Lau, FH, Ahfeldt, T, Rueckert, EH, Sheridan, SD, Fass, DM, Nemesh, J, Mullen, TE, Daheron, L, McCarroll, S, Sklar, P, Perlis, RH and Haggarty, SJ (2015) Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Molecular Psychiatry 20(6), 703717. doi: 10.1038/mp.2015.7.CrossRefGoogle ScholarPubMed
Manji, HK, Moore, GJ and Chen, G (2000) Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. The Journal of Clinical Psychiatry 61 Suppl 9, 8296. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10826666.Google ScholarPubMed
Manning, AK, Hivert, M-F, Scott, RA, Grimsby, JL, Bouatia-Naji, N, Chen, H, Rybin, D, Liu, C-T, Bielak, LF, Prokopenko, I, Amin, N, Barnes, D, Cadby, G, Hottenga, J-J, Ingelsson, E, Jackson, AU, Johnson, T, Kanoni, S, Ladenvall, C, Lagou, V, Lahti, J, Lecoeur, C, Liu, Y, Martinez-Larrad, MT, Montasser, ME, Navarro, P, Perry, JRB, Rasmussen-Torvik, LJ, Salo, P, Sattar, N, Shungin, D, Strawbridge, RJ, Tanaka, T, van Duijn, CM, An, P, de Andrade, M, Andrews, JS, Aspelund, T, Atalay, M, Aulchenko, Y, Balkau, B, Bandinelli, S, Beckmann, JS, Beilby, JP, Bellis, C, Bergman, RN, Blangero, J, Boban, M, Boehnke, M, Boerwinkle, E, Bonnycastle, LL, Boomsma, DI, Borecki, IB, Böttcher, Y, Bouchard, C, Brunner, E, Budimir, D, Campbell, H, Carlson, O, Chines, PS, Clarke, R, Collins, FS, Corbatón-Anchuelo, A, Couper, D, de Faire, U, Dedoussis, GV, Deloukas, P, Dimitriou, M, Egan, JM, Eiriksdottir, G, Erdos, MR, Eriksson, JG, Eury, E, Ferrucci, L, Ford, I, Forouhi, NG, Fox, CS, Franzosi, MG, Franks, PW, Frayling, TM, Froguel, P, Galan, P, de Geus, E, Gigante, B, Glazer, NL, Goel, A, Groop, L, Gudnason, V, Hallmans, G, Hamsten, A, Hansson, O, Harris, TB, Hayward, C, Heath, S, Hercberg, S, Hicks, AA, Hingorani, A, Hofman, A, Hui, J, Hung, J, Jarvelin, M-R, Jhun, MA, Johnson, PCD, Jukema, JW, Jula, A, Kao, WH, Kaprio, J, Kardia, SLR, Keinanen-Kiukaanniemi, S, Kivimaki, M, Kolcic, I, Kovacs, P, Kumari, M, Kuusisto, J, Kyvik, KO, Laakso, M, Lakka, T, Lannfelt, L, Lathrop, GM, Launer, LJ, Leander, K, Li, G, Lind, L, Lindstrom, J, Lobbens, S, Loos, RJF, Luan, J, Lyssenko, V, Mägi, R, Magnusson, PKE, Marmot, M, Meneton, P, Mohlke, KL, Mooser, V, Morken, MA, Miljkovic, I, Narisu, N, O’Connell, J, Ong, KK, Oostra, BA, Palmer, LJ, Palotie, A, Pankow, JS, Peden, JF, Pedersen, NL, Pehlic, M, Peltonen, L, Penninx, B, Pericic, M, Perola, M, Perusse, L, Peyser, PA, Polasek, O, Pramstaller, PP, Province, MA, Räikkönen, K, Rauramaa, R, Rehnberg, E, Rice, K, Rotter, JI, Rudan, I, Ruokonen, A, Saaristo, T, Sabater-Lleal, M, Salomaa, V, Savage, DB, Saxena, R, Schwarz, P, Seedorf, U, Sennblad, B, Serrano-Rios, M, Shuldiner, AR, Sijbrands, EJG, Siscovick, DS, Smit, JH, Small, KS, Smith, NL, Smith, AV, Stančáková, A, Stirrups, K, Stumvoll, M, Sun, YV, Swift, AJ, Tönjes, A, Tuomilehto, J, Trompet, S, Uitterlinden, AG, Uusitupa, M, Vikström, M, Vitart, V, Vohl, M-C, Voight, BF, Vollenweider, P, Waeber, G, Waterworth, DM, Watkins, H, Wheeler, E, Widen, E, Wild, SH, Willems, SM, Willemsen, G, Wilson, JF, Witteman, JCM, Wright, AF, Yaghootkar, H, Zelenika, D, Zemunik, T, Zgaga, L, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Multiple Tissue Human Expression Resource (MUTHER) Consortium, Wareham, NJ, McCarthy, MI, Barroso, I, Watanabe, RM, Florez, JC, Dupuis, J, Meigs, JB and Langenberg, C (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics 44(6), 659669. doi: 10.1038/ng.2274.CrossRefGoogle ScholarPubMed
Matigian, N, Windus, L, Smith, H, Filippich, C, Pantelis, C, McGrath, J, Mowry, B and Hayward, N (2007) Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Molecular Psychiatry 12(9), 815825. doi: 10.1038/sj.mp.4001998.CrossRefGoogle ScholarPubMed
Meins, E, McCarthy-Jones, S, Fernyhough, C, Lewis, G, Bentall, RP and Alloy, LB (2012) Assessing negative cognitive style: development and validation of a Short-form version of the cognitive style questionnaire. Personality and Individual Differences 52(5), 581585. doi: 10.1016/j.paid.2011.11.026.CrossRefGoogle ScholarPubMed
Miller, AH, Maletic, V and Raison, CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological Psychiatry 65(9), 732741. doi: 10.1016/j.biopsych.2008.11.029.CrossRefGoogle ScholarPubMed
Miyaoka, T, Seno, H and Ishino, H (1999) Increased expression of Wnt-1 in schizophrenic brains. Schizophrenia Research 38(1), 16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10427605.CrossRefGoogle ScholarPubMed
Molendijk, ML, Spinhoven, P, Polak, M, Bus, BAA, Penninx, BWJH and Elzinga, BM (2014) Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Molecular Psychiatry, 19(7), 791800. doi: 10.1038/mp.2013.105.CrossRefGoogle Scholar
Montgomery, SA and Asberg, M (1979) A new depression scale designed to be sensitive to change. The British Journal of Psychiatry: The Journal of Mental Science 134, 382389. doi: 10.1192/bjp.134.4.382.CrossRefGoogle ScholarPubMed
Mora, C, Zonca, V, Riva, MA and Cattaneo, A (2018) Blood biomarkers and treatment response in major depression. Expert Review of Molecular Diagnostics, 18(6), 513529. doi: 10.1080/14737159.2018.1470927.CrossRefGoogle ScholarPubMed
Mulligan, KA and Cheyette, BNR (2017) Neurodevelopmental perspectives on Wnt signaling in psychiatry. Molecular Neuropsychiatry 2(4), 219246. doi: 10.1159/000453266.CrossRefGoogle Scholar
Noda, Y, Zomorrodi, R, Vila-Rodriguez, F, Downar, J, Farzan, F, Cash, RFH, Rajji, TK, Daskalakis, ZJ and Blumberger, DM (2018) Impaired neuroplasticity in the prefrontal cortex in depression indexed through paired associative stimulation. Depression and Anxiety 35(5), 448456. doi: 10.1002/da.22738.CrossRefGoogle ScholarPubMed
Pandey, GN, Rizavi, HS, Tripathi, M and Ren, X (2015) Region-specific dysregulation of glycogen synthase kinase-3β and β-catenin in the postmortem brains of subjects with bipolar disorder and schizophrenia. Bipolar Disorders 17(2), 160171. doi: 10.1111/bdi.12228.CrossRefGoogle Scholar
Peng, H, Wang, H-B, Wang, L, Zhou, B, Li, X-Y and Tan, J (2018) Gsk3β aggravates the depression symptoms in chronic stress mouse model. Journal of Integrative Neuroscience 17(2), 169175. doi: 10.31083/JIN-170050.CrossRefGoogle ScholarPubMed
Perlis, RH (2011) Translating biomarkers to clinical practice. Molecular Psychiatry 16(11), 10761087. doi: 10.1038/mp.2011.63.CrossRefGoogle ScholarPubMed
Perlis, RH (2016) Abandoning personalization to get to precision in the pharmacotherapy of depression. World Psychiatry: Official Journal of the World Psychiatric Association (WPA) 15(3), 228235. doi: 10.1002/wps.20345.CrossRefGoogle ScholarPubMed
Petersen, T, Papakostas, GI, Posternak, MA, Kant, A, Guyker, WM, Iosifescu, DV, Yeung, AS, Nierenberg, AA and Fava, M (2005) Empirical testing of two models for staging antidepressant treatment resistance. Journal of Clinical Psychopharmacology 25(4), 336341. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16012276.CrossRefGoogle ScholarPubMed
Pittenger, C and Duman, RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 33(1), 88109. doi: 10.1038/sj.npp.1301574.CrossRefGoogle Scholar
Player, MJ, Taylor, JL, Weickert, CS, Alonzo, A, Sachdev, P, Martin, D, Mitchell, PB and Loo, CK (2013) Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 38(11), 2101–8. doi: 10.1038/npp.2013.126.CrossRefGoogle ScholarPubMed
Rosenberg, M (1965) Society and the Adolescent Self-Image. Edited by Quinn & Boden Company. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Roy, B, Shelton, RC and Dwivedi, Y (2017) DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. Journal of Psychiatric Research 89, 115124. doi: 10.1016/j.jpsychires.2017.02.005.CrossRefGoogle ScholarPubMed
Saito-Diaz, K, Chen, TW, Wang, X, Thorne, CA, Wallace, HA, Page-McCaw, A and Lee, E (2013) The Way Wnt Works: Components and Mechanism. Growth Factors 31(1), 131. doi: 10.3109/08977194.2012.752737.CrossRefGoogle ScholarPubMed
Sani, G, Napoletano, F, Forte, AM, Kotzalidis, GD, Panaccione, I, Porfiri, GM, Simonetti, A, Caloro, M, Girardi, N, Telesforo, CL, Serra, G, Romano, S, Manfredi, G, Savoja, V, Tamorri, SM, Koukopoulos, AE, Serata, D, Rapinesi, C, Casale, AD, Nicoletti, F, Girardi, P, Del Casale, A, Nicoletti, F and Girardi, P (2012) The wnt pathway in mood disorders. Current Neuropharmacology 10(3), 239253. doi: 10.2174/157015912803217279.CrossRefGoogle ScholarPubMed
Sao, T, Yoshino, Y, Yamazaki, K, Ozaki, Y, Mori, Y, Ochi, S, Yoshida, T, Mori, T, Iga, J-I and Ueno, S-I (2018) MEF2C mRNA expression and cognitive function in Japanese patients with Alzheimer’s disease. Psychiatry and Clinical Neurosciences 72(3), 160167. doi: 10.1111/pcn.12618.CrossRefGoogle ScholarPubMed
Saus, E, Soria, V, Escaramís, G, Crespo, JM, Valero, J, Gutiérrez-Zotes, A, Martorell, L, Vilella, E, Menchón, JM, Estivill, X, Gratacòs, M and Urretavizcaya, M (2010) A haplotype of glycogen synthase kinase 3β is associated with early onset of unipolar major depression. Genes, Brain, and Behavior 9(7), 799807. doi: 10.1111/j.1601-183X.2010.00617.x.CrossRefGoogle ScholarPubMed
Slavich, GM and Irwin, MR (2014) From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological Bulletin 140(3), 774815. doi: 10.1037/a0035302.CrossRefGoogle ScholarPubMed
Snaith, RP, Harrop, FM, Newby, DA and Teale, C (1986) Grade scores of the Montgomery-Asberg depression and the clinical anxiety scales. The British Journal of Psychiatry: The Journal of Mental Science 148, 599601. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3779233.CrossRefGoogle ScholarPubMed
Spitzer, RL, Kroenke, K, Williams, JBW and Löwe, B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Archives of Internal Medicine 166(10), 10921097. doi: 10.1001/archinte.166.10.1092.CrossRefGoogle ScholarPubMed
Strawbridge, R, Young, AH and Cleare, AJ (2017) Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatric Disease and Treatment 13, 12451262. doi: 10.2147/NDT.S114542.CrossRefGoogle ScholarPubMed
Thoenen, H (1995) Neurotrophins and neuronal plasticity. Science 270(5236), 593598. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7570017.CrossRefGoogle ScholarPubMed
Tsao, C-W, Lin, Y-S, Chen, C-C, Bai, C-H and Wu, S-R (2006) Cytokines and serotonin transporter in patients with major depression. Progress In Neuro-Psychopharmacology & Biological Psychiatry 30(5), 899905. doi: 10.1016/j.pnpbp.2006.01.029.CrossRefGoogle ScholarPubMed
Ustün, TB, Ayuso-Mateos, JL, Chatterji, S, Mathers, C and Murray, CJL (2004) Global burden of depressive disorders in the year 2000. The British Journal of Psychiatry: The Journal of Mental Science 184, 386392. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15123501.CrossRefGoogle ScholarPubMed
Valvezan, AJ and Klein, PS (2012) GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Frontiers in Molecular Neuroscience 5, 1. doi: 10.3389/fnmol.2012.00001.CrossRefGoogle ScholarPubMed
Vidal, R, Garro-Martínez, E, Díaz, Á, Castro, E, Florensa-Zanuy, E, Taketo, MM, Pazos, Á and Pilar-Cuéllar, F (2019) Targeting β-catenin in GLAST-expressing cells: impact on anxiety and depression-related behavior and hippocampal proliferation. Molecular Neurobiology 56(1), 553566. doi: 10.1007/s12035-018-1100-2.CrossRefGoogle ScholarPubMed
Whiteford, HA, Degenhardt, L, Rehm, J, Baxter, AJ, Ferrari, AJ, Erskine, HE, Charlson, FJ, Norman, RE, Flaxman, AD, Johns, N, Burstein, R, Murray, CJL and Vos, T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet (London, England) 382(9904), 15751586. doi: 10.1016/S0140-6736(13)61611-6.CrossRefGoogle ScholarPubMed
Winham, SJ and Biernacka, JM (2013) Gene-environment interactions in genome-wide association studies: current approaches and new directions. Journal of Child Psychology and Psychiatry, and Allied Disciplines 54(10), 11201134. doi: 10.1111/jcpp.12114.CrossRefGoogle ScholarPubMed
Winham, SJ, Cuellar-Barboza, AB, Oliveros, A, McElroy, SL, Crow, S, Colby, C, Choi, D-SSD-S, Chauhan, M, Frye, M and Biernacka, JM (2014) Genome-wide association study of bipolar disorder accounting for effect of body mass index identifies a new risk allele in TCF7L2. Molecular Psychiatry 19(9), 10101016. doi: 10.1038/mp.2013.159.CrossRefGoogle ScholarPubMed
World Health Organization (2017) Depression and Other Common Mental Disorders: Global Health Estimates, Geneva: WHO.Google Scholar
Wray, NR, Ripke, S, Mattheisen, M, Trzaskowski, M, Byrne, EM, Abdellaoui, A, Adams, MJ, Agerbo, E, Air, TM, Andlauer, TMF, Bacanu, S-A, Bækvad-Hansen, M, Beekman, AFT, Bigdeli, TB, Binder, EB, Blackwood, DRH, Bryois, J, Buttenschøn, HN, Bybjerg-Grauholm, J, Cai, N, Castelao, E, Christensen, JH, Clarke, T-K, Coleman, JIR, Colodro-Conde, L, Couvy-Duchesne, B, Craddock, N, Crawford, GE, Crowley, CA, Dashti, HS, Davies, G, Deary, IJ, Degenhardt, F, Derks, EM, Direk, N, Dolan, CV, Dunn, EC, Eley, TC, Eriksson, N, Escott-Price, V, Kiadeh, FHF, Finucane, HK, Forstner, AJ, Frank, J, Gaspar, HA, Gill, M, Giusti-Rodríguez, P, Goes, FS, Gordon, SD, Grove, J, Hall, LS, Hannon, E, Hansen, CS, Hansen, TF, Herms, S, Hickie, IB, Hoffmann, P, Homuth, G, Horn, C, Hottenga, J-J, Hougaard, DM, Hu, M, Hyde, CL, Ising, M, Jansen, R, Jin, F, Jorgenson, E, Knowles, JA, Kohane, IS, Kraft, J, Kretzschmar, WW, Krogh, J, Kutalik, Z, Lane, JM, Li, Y, Li, Y, Lind, PA, Liu, X, Lu, L, MacIntyre, DJ, MacKinnon, DF, Maier, RM, Maier, W, Marchini, J, Mbarek, H, McGrath, P, McGuffin, P, Medland, SE, Mehta, D, Middeldorp, CM, Mihailov, E, Milaneschi, Y, Milani, L, Mill, J, Mondimore, FM, Montgomery, GW, Mostafavi, S, Mullins, N, Nauck, M, Ng, B, Nivard, MG, Nyholt, DR, O’Reilly, PF, Oskarsson, H, Owen, MJ, Painter, JN, Pedersen, CB, Pedersen, MG, Peterson, RE, Pettersson, E, Peyrot, WJ, Pistis, G, Posthuma, D, Purcell, SM, Quiroz, JA, Qvist, P, Rice, JP, Riley, BP, Rivera, M, Saeed Mirza, S, Saxena, R, Schoevers, R, Schulte, EC, Shen, L, Shi, J, Shyn, SI, Sigurdsson, E, Sinnamon, GBC, Smit, JH, Smith, DJ, Stefansson, H, Steinberg, S, Stockmeier, CA, Streit, F, Strohmaier, J, Tansey, KE, Teismann, H, Teumer, A, Thompson, W, Thomson, PA, Thorgeirsson, TE, Tian, C, Traylor, M, Treutlein, J, Trubetskoy, V, Uitterlinden, AG, Umbricht, D, Van der Auwera, S, van Hemert, AM, Viktorin, A, Visscher, PM, Wang, Y, Webb, BT, Weinsheimer, SM, Wellmann, J, Willemsen, G, Witt, SH, Wu, Y, Xi, HS, Yang, J, Zhang, F, eQTLGen, 23andMe, Arolt, V, Baune, BT, Berger, K, Boomsma, DI, Cichon, S, Dannlowski, U, de Geus, ECJ, DePaulo, JR, Domenici, E, Domschke, K, Esko, T, Grabe, HJ, Hamilton, SP, Hayward, C, Heath, AC, Hinds, DA, Kendler, KS, Kloiber, S, Lewis, G, Li, QS, Lucae, S, Madden, PFA, Magnusson, PK, Martin, NG, McIntosh, AM, Metspalu, A, Mors, O, Mortensen, PB, Müller-Myhsok, B, Nordentoft, M, Nöthen, MM, O’Donovan, MC, Paciga, SA, Pedersen, NL, Penninx, BWJH, Perlis, RH, Porteous, DJ, Potash, JB, Preisig, M, Rietschel, M, Schaefer, C, Schulze, TG, Smoller, JW, Stefansson, K, Tiemeier, H, Uher, R, Völzke, H, Weissman, MM, Werge, T, Winslow, AR, Lewis, CM, Levinson, DF, Breen, G, Børglum, AD, Sullivan, PF and Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium (2018) Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics 50(5), 668681. doi: 10.1038/s41588-018-0090-3.CrossRefGoogle ScholarPubMed
Wright, FA, Sullivan, PF, Brooks, AI, Zou, F, Sun, W, Xia, K, Madar, V, Jansen, R, Chung, W, Zhou, Y-H, Abdellaoui, A, Batista, S, Butler, C, Chen, G, Chen, T-H, D’Ambrosio, D, Gallins, P, Ha, MJ, Hottenga, JJ, Huang, S, Kattenberg, M, Kochar, J, Middeldorp, CM, Qu, A, Shabalin, A, Tischfield, J, Todd, L, Tzeng, J-Y, van Grootheest, G, Vink, JM, Wang, Q, Wang, W, Wang, W, Willemsen, G, Smit, JH, de Geus, EJ, Yin, Z, Penninx, BWJH and Boomsma, DI (2014) Heritability and genomics of gene expression in peripheral blood. Nature Genetics, 46(5), 430–7. doi: 10.1038/ng.2951.CrossRefGoogle ScholarPubMed
Yang, C, Hu, G, Li, Z, Wang, Q, Wang, X, Yuan, C, Wang, Z, Hong, W, Lu, W, Cao, L, Chen, J, Wang, Y, Yu, S, Zhou, Y, Yi, Z and Fang, Y (2017) Differential gene expression in patients with subsyndromal symptomatic depression and major depressive disorder. PloS One 12(3), e0172692. doi: 10.1371/journal.pone.0172692.CrossRefGoogle ScholarPubMed
Zandi, PP, Belmonte, PL, Willour, VL, Goes, FS, Badner, JA, Simpson, SG, Gershon, ES, McMahon, FJ, DePaulo, JR, Potash, JB and Bipolar Disorder Phenome Group, National Institute of Mental Health Genetics Initiative Bipolar Disorder Consortium (2008) Association study of Wnt signaling pathway genes in bipolar disorder. Archives of General Psychiatry 65(7), 785793. doi: 10.1001/archpsyc.65.7.785.CrossRefGoogle ScholarPubMed
Zhao, Y, Zhang, L, Wang, M, Yu, J, Yang, J, Liu, A, Yao, H, Liu, X, Shen, Y, Guo, B, Wang, Y and Wu, S (2018) Anxiety specific response and contribution of active hippocampal neural stem cells to chronic pain through Wnt/β-Catenin signaling in mice. Frontiers in Molecular Neuroscience 11, 296. doi: 10.3389/fnmol.2018.00296.CrossRefGoogle ScholarPubMed
Supplementary material: File

Cuellar-Barboza et al. supplementary material

Table S1

Download Cuellar-Barboza et al. supplementary material(File)
File 22.2 KB