Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:00:13.728Z Has data issue: false hasContentIssue false

Hypertension, vascular cognitive disorders and neuroprotection

Published online by Cambridge University Press:  24 June 2014

Dimiter Hadjiev*
Affiliation:
University Hospital of Neurology and Psychiatry ‘St Naum’, Medical University, Sofia, Bulgaria
Petya Mineva
Affiliation:
Medical Faculty, Department of Neurology and Psychiatry, Thracian University, Stara Zagora, Bulgaria
*
Professor Dimiter Hadjiev, Compl. Javorov, bl. 21 A, Apt. 2, 1504 Sofia, Bulgaria. Tel: 00 359 28 464 179; E-mail: [email protected]

Abstract

Objective:

The role of the antihypertensive therapy in preventing vascular cognitive disorders in elderly persons without a history of stroke is a matter of debate. This review focuses on cognitive disorders in elderly hypertensive patients.

Methods:

Relevant papers were identified by searches in PubMed from 1946 until February 2007 using the keywords ‘cerebral blood flow autoregulation’, ‘vascular cognitive disorders’, ‘neuroimaging in hypertension’, ‘antihypertensive treatment’ and ‘neuroprotection in cerebral ischemia’.

Results:

Excessive blood pressure lowering in patients with long-standing hypertension may increase the risk of cerebral hypoperfusion, white matter lesions and consequent cognitive decline. White matter lesions have been found in the majority of patients with long-standing hypertension. They correlate with vascular cognitive disorders, particularly impairments of attention and executive function, while memory is relatively preserved. Cerebral small vessel disease in elderly patients should be taken into account when antihypertensive treatment is considered. Renin–angiotensin blockade, some calcium channel blockers and statins are thought to possess neuroprotective action.

Conclusion:

For prevention of cerebral hypoperfusion in elderly hypertensives blood pressure lowering should be cautiously controlled. The increased risk of white matter lesions is an indication for early neuroprotection. The combination of renin–angiotensin blockade or calcium channel blockers with statins may become a promising preventive strategy against cognitive decline in elderly hypertensives. Cerebral white matter protection is a future challenge.

Type
Review article
Copyright
Copyright © 2007 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cacciatore, F, Abete, P, Ferrara, Net al. The role of blood pressure in cognitive impairment in an elderly population. Osservatorio Geriatrico Campano Group. J Hypertens 1997;15:135142. CrossRefGoogle Scholar
Starr, JM, Deary, IJ, Inch, S, Cross, S, MacLennan, WJ. Blood pressure and cognitive decline in healthy old people. J Hum Hypertens 1997;11:777781. CrossRefGoogle ScholarPubMed
Skoog, I. Status of risk factors for vascular dementia. Neuroepidemiology 1998;17:29. CrossRefGoogle ScholarPubMed
Paglieri, C, Bisbocci, D, Amenta, F, Veglio, F. Arterial hypertension and cognitive deficit. Ann Ital Med Int 2004;19:163170. Google ScholarPubMed
Kuo, HK, Sorond, F, Iloputaife, I, Gagnon, M, Milberg, W, Lipsitz, LA. Effect of blood pressure on cognitive functions in elderly persons. J Gerontol A Biol Sci Med Sci 2004;59:11911194. CrossRefGoogle ScholarPubMed
Roman, GC. Vascular dementia. Advances in nosology, diagnosis, treatment and prevention. Panminerva Med 2004;46:207215. Google Scholar
Posner, HB, Tang, MX, Luchsinger, J, Lantigua, R, Stern, Y, Mayeux, R. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology 2002;58:11751181. CrossRefGoogle ScholarPubMed
Skoog, I, Lernfelt, B, Landahl, Set al. 15-year longitudinal study of blood pressure and dementia. Lancet 1996;347:11411145. CrossRefGoogle ScholarPubMed
Roman, GC. Brain hypoperfusion: a critical factor in vascular dementia. Neurol Res 2004;26:454458. CrossRefGoogle ScholarPubMed
Birns, J, Morris, R, Donaldson, N, Kalra, L. The effects of blood pressure reduction on cognitive function: a review of effects based on pooled data from clinical trials. J Hypertens 2006;24:19071914. CrossRefGoogle ScholarPubMed
Wallace, RB, Lemke, JH, Morris, MC, Goodenberger, M, Kohout, F, Hinrichs, JV. Relationship of free-recall memory to hypertension in the elderly. The Iowa 65+ Rural Health Study. J Chronic Dis 1985;38:475481. CrossRefGoogle ScholarPubMed
Farmer, ME, White, LR, Abbott, RDet al. Blood pressure and cognitive performance. The Framingham Study. Am J Epidemiol 1987;126:11031114. CrossRefGoogle ScholarPubMed
Scherr, PA, Hebert, LE, Smith, LA, Evans, DA. Relation of blood pressure to cognitive function in the elderly. Am J Epidemiol 1991;134:13031315. CrossRefGoogle ScholarPubMed
Seux, ML, Thijs, L, Forette, Fet al. Correlates of cognitive status of old patients with isolated systolic hypertension: the Syst-Eur Vascular Dementia Project. J Hypertens 1998;16:963969. CrossRefGoogle ScholarPubMed
Morris, MC, Scherr, PA, Hebert, LEet al. Association between blood pressure and cognitive function in a biracial community population of older persons. Neuroepidemiology 2002;21:123130. CrossRefGoogle Scholar
Guo, Z, Fratiglioni, L, Winblad, B, Viitanen, M. Blood pressure and performance on the Mini-Mental State Examination in the very old. Cross-sectional and longitudinal data from the Kungsholmen Project. Am J Epidemiol 1997;145:11061113. CrossRefGoogle ScholarPubMed
Nilsson, SE, Read, S, Berg, S, Johansson, B, Melander, A, Lindblad, U. Low systolic blood pressure is associated with impaired cognitive function in the oldest old: longitudinal observations in a population-based sample 80 years and older. Aging Clin Exp Res 2007;19:4147. CrossRefGoogle Scholar
Launer, LJ, Masaki, K, Petrovitch, H, Foley, D, Havlik, RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA 1995;274:18461851. CrossRefGoogle ScholarPubMed
Launer, LJ, Ross, GW, Petrovitch, Het al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 2000;21:4955. CrossRefGoogle ScholarPubMed
Swan, GE, DeCarli, C, Miller, BL. Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology 1998;51:986993. CrossRefGoogle ScholarPubMed
Kilander, L, Nyman, H, Boberg, M, Hansson, L, Lithell, H. Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension 1998;31:780786. CrossRefGoogle ScholarPubMed
Elias, PK, Elias, MF, Robbins, MA, Budge, MM. Blood pressure-related cognitive decline: does age make a difference? Hypertension 2004;44:631636. CrossRefGoogle Scholar
Hebert, LE, Scherr, PA, Bennett, DAet al. Blood pressure and late-life cognitive function change: a biracial longitudinal population study. Neurology 2004;62:20212024. CrossRefGoogle ScholarPubMed
Ruitenberg, A, Den Heijer, T, Bakker, SLet al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 2005;57:789794. CrossRefGoogle ScholarPubMed
Waldstein, SR, Giggey, PP, Thayer, JF, Zonderman, AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. Hypertension 2005;45:374379. CrossRefGoogle ScholarPubMed
Imarhiagbe, F, Ogunrin, O, Ogunniyi, A. Cognitive performance of hypertensive elderly Nigerians: a case control study. Afr J Med Med Sci 2005;34:269273. Google ScholarPubMed
Vera-Cuesta, H, Vera-Acosta, H, Leon-Benito, O, Fernandez-Maderos, I. Prevalence and risk factors of age-related memory disorder in a health district. Rev Neurol 2006;43:137142. Google Scholar
Anson, O, Paran, E. Hypertension and cognitive functioning among the elderly: an overview. Am J Ther 2005;12:359365. CrossRefGoogle ScholarPubMed
Kety, SS, Schmidt, CF. Cerebral blood flow and cerebral oxygen consumption in five patients with hypertension. Am J Med Sci 1946;212:124. Google Scholar
Kety, SS, Hafkenschiel, JH, Jeffers, WA, Leopold, IH, Shenkin, HA. The blood flow, vascular resistance, and oxygen consumption of the brain in essential hypertension. J Clin Invest 1948;27:511514. CrossRefGoogle ScholarPubMed
Barry, DI. Cerebral blood flow in hypertension. J Cardiovasc Pharmacol 1985;7 (Suppl. 2):S94S98. CrossRefGoogle ScholarPubMed
Barry, DI. Cerebrovascular aspects of antihypertensive treatment. Am J Cardiol 1989;63:14C18C. CrossRefGoogle ScholarPubMed
Meyer, JS, Rogers, RL, Mortel, KF. Prospective analysis of long term control of mild hypertension on cerebral blood flow. Stroke 1985;16:985990. CrossRefGoogle ScholarPubMed
Rodriguez, G, Arvigo, F, Marenco, Set al. Regional cerebral blood flow in essential hypertension: data evaluation by a mapping system. Stroke 1987;18:1320. CrossRefGoogle ScholarPubMed
Nobili, F, Rodriguez, G, Marenco, Set al. Regional cerebral blood flow in chronic hypertension. A correlative study. Stroke 1993;24:11481153. CrossRefGoogle ScholarPubMed
Efimova, IIu, Astanina, IA, Kolodina, MV. Cerebral microcirculation and structural changes in the brain in essential hypertension. Klin Med (Mosk) 2004;82:1619. Google ScholarPubMed
Mentis, MJ, Salerno, J, Horwitz, Bet al. Reduction of functional neuronal connectivity in long-term treated hypertension. Stroke 1994;25:601607. CrossRefGoogle ScholarPubMed
Salerno, JA, Grady, C, Mentis, Met al. Brain metabolic function in older men with chronic essential hypertension. J Gerontol A Biol Sci Med Sci 1995;50:M147M154. CrossRefGoogle ScholarPubMed
Sierra, C, De La Sierra, A, Chamorro, A, Larrousse, M, Domenech, M, Coca, A. Cerebral haemodynamics and silent cerebral white matter lesions in middle-aged essential hypertensive patients. Blood Press 2004;13:304309. CrossRefGoogle Scholar
Zhang, P, Huang, Y, Li, Y, Lu, M, Wu, Y. A large-scale study on relationship between cerebral blood flow velocity and blood pressure in a natural population. J Hum Hypertens 2006;20:742748. CrossRefGoogle Scholar
Sierra, C, De La Sierra, A, Salamero, M, Sobrino, J, Gomez-Angelats, E, Coca, A. Silent cerebral white matter lesions and cognitive function in middle-aged essential hypertensive patients. Am J Hypertens 2004;17:529534. CrossRefGoogle ScholarPubMed
Hougaku, H, Matsumoto, M, Kitagawa, Ket al. Silent cerebral infarction as a form of hypertensive target organ damage in the brain. Hypertension 1992;20:816820. CrossRefGoogle Scholar
Salerno, JA, Murphy, DG, Horwitz, Bet al. Brain atrophy in hypertension. A volumetric magnetic resonance imaging study. Hypertension 1992;20:340348. CrossRefGoogle ScholarPubMed
Schmidt, R, Fazekas, F, Koch, Met al. Magnetic resonance imaging cerebral abnormalities and neuropsychologic test performance in elderly hypertensive subjects. A case-control study. Arch Neurol 1995;52:905910. CrossRefGoogle ScholarPubMed
Strassburger, TL, Lee, HC, Daly, EMet al. Interactive effects of age and hypertension on volumes of brain structures. Stroke 1997;28:14101417. CrossRefGoogle ScholarPubMed
Basile, AM, Pantoni, L, Pracucci, Get al.; LADIS Study Group. Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes. The LADIS (Leukoaraiosis and Disability in the Elderly) Study. Cerebrovasc Dis 2006;21:315322. CrossRefGoogle ScholarPubMed
van Boxtel, MP, Henskens, LH, Kroon, AAet al. Ambulatory blood pressure, asymptomatic cerebrovascular damage and cognitive function in essential hypertension. J Hum Hypertens 2006;20:513. CrossRefGoogle ScholarPubMed
Prins, ND, Van Dijk, EJ, Den Heijer, Tet al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005;128:20342041. CrossRefGoogle ScholarPubMed
Pantoni, L, Poggesi, A, Basile, AMet al.; LADIS Study Group. Leukoaraiosis predicts hidden global functioning impairment in nondisabled older people: the LADIS (Leukoaraiosis and Disability in the Elderly) Study. J Am Geriatr Soc 2006;54:10951101. CrossRefGoogle ScholarPubMed
van der Flier, WM, van Straaten, EC, Barkhof, Fet al. Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke 2005;36:21162120. CrossRefGoogle ScholarPubMed
Schmidt, R, Schmidt, H, Fazekas, F. Vascular risk factors in dementia. J Neurol 2000;247:8187. CrossRefGoogle ScholarPubMed
Heijer, T, Skoog, I, Oudkerk, Met al. Association between blood pressure levels over time and brain atrophy in the elderly. Neurobiol Aging 2003;24:307313. CrossRefGoogle ScholarPubMed
Havlik, RJ, Foley, DJ, Sayer, B, Masaki, K, White, L, Launer, LJ. Variability in midlife systolic blood pressure in related to late-life brain white matter lesions: the Honolulu-Asia aging study. Stroke 2002;33:2630. CrossRefGoogle ScholarPubMed
Gomez-Angelats, E, De La Sierra, A, Sierra, C, Parati, G, Mancia, G, Coca, A. Blood pressure variability and silent cerebral damage in essential hypertension. Am J Hypertens 2004;17:696700. CrossRefGoogle ScholarPubMed
Wiseman, RM, Saxby, BK, Burton, EJ, Barber, R, Ford, GA, O’Brien, JT. Hippocampal atrophy, whole brain volume, and white matter lesions in older hypertensive subjects. Neurology 2004;63:18921897. CrossRefGoogle ScholarPubMed
Lazarus, R, Prettyman, R, Cherryman, G. White matter lesions on magnetic resonance imaging and their relationship with vascular risk factors in memory clinic attenders. Int J Geriatr Psychiatry 2005;20:274279. CrossRefGoogle ScholarPubMed
Fisher, M. Advances in stroke 2006. Introduction. Stroke 2007;38:214215. CrossRefGoogle Scholar
Schmidt, R, Fazekas, F, Kleinert, Get al. Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative study between stroke patients and normal volunteers. Arch Neurol 1992;49:825827. CrossRefGoogle ScholarPubMed
Knopman, D, Boland, LL, Mosley, Tet al.; Atherosclerosis Risk in Communities (ARIC) Study Investigators. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology 2001;56:4248. CrossRefGoogle ScholarPubMed
Kannel, WB. Influence of multiple risk factors on the hazard of hypertension. J Cardiovasc Pharmacol 1990;16(Suppl. 5):S53S57. CrossRefGoogle ScholarPubMed
Kannel, WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens 2000;13:3S10S. CrossRefGoogle ScholarPubMed
Stegmayr, B, Asplund, K, Kuulasmaa, K, Rajakangas, AM, Thorvaldsen, P, Tuomilehto, J. Stroke incidence and mortality correlated to stroke risk factors in the WHO MONICA Project. An ecological study of 18 populations. Stroke 1997;28:13671374. Google ScholarPubMed
Hadjiev, D. Epidemiology of stroke. In: Bergen, DS, Chopra, JS, Silberberg, D, Barac, B, eds. Progress in neurology–II. New Delhi: BI Churchill Livingstone Pvt Ltd, 1998: 6671. Google Scholar
Foucan, L, Bangou-Bredent, J, Ekouevi, DK, Deloumeaux, J, Roset, JE, Kangambega, P. Hypertension and combinations of cardiovascular risk factors. An epidemiologic case-control study in an adult population in Guadeloupe (FWI). Eur J Epidemiol 2001;17:10891095. CrossRefGoogle Scholar
Hadjiev, DI, Mineva, PP, Vukov, MI. Multiple modifiable risk factors for first ischemic stroke: a population-based epidemiological study. Eur J Neurol 2003;10:577582. CrossRefGoogle ScholarPubMed
Milionis, HJ, Rizos, E, Goudevenos, J, Seferiadis, K, Mikhailidis, DP, Elisaf, MS. Components of the metabolic syndrome and risk for first-ever acute ischemic nonembolic stroke in elderly subjects. Stroke 2005;36:13721376. CrossRefGoogle ScholarPubMed
Koren-Morag, N, Goldbourt, U, Tanne, D. Relation between the metabolic syndrome and ischemic stroke or transient ischemic attack: a prospective cohort study in patients with atherosclerotic cardiovascular disease. Stroke 2005;36:13661371. CrossRefGoogle ScholarPubMed
Kwon, HM, Kim, BJ, Lee, SH, Choi, SH, Oh, BH, Yoon, BW. Metabolic syndrome as an independent risk factor of silent brain infarction in healthy people. Stroke 2006;37:466470. CrossRefGoogle ScholarPubMed
Bowler, JV, Gorelick, PB. Advances in vascular cognitive impairment 2006. Stroke 2007;38:241244. CrossRefGoogle ScholarPubMed
Takami, S, Imai, Y, Katsuya, Tet al. Gene polymorphism of the renin-angiotensin system associates with risk for lacunar infarction. The Ohasama study. Am J Hypertens 2000;13:121127. CrossRefGoogle ScholarPubMed
Hassan, A, Lansbury, A, Catto, AJet al. Angiotensin converting enzyme insertion/deletion genotype is associated with leukoaraiosis in lacunar syndromes. J Neurol Neurosurg Psychiatry 2002;72:343346. CrossRefGoogle ScholarPubMed
de Leeuw, FE, Richard, F, De Groot, JCet al. Interaction between hypertension, apoE, and cerebral white matter lesions. Stroke 2004;35:10571060. CrossRefGoogle ScholarPubMed
Forette, F, Seux, ML, Staessen, JAet al. Prevention of dementia in randomized double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 1998;352:13471351. CrossRefGoogle ScholarPubMed
Tzourio, C, Anderson, C, Chapman, Net al.; PROGRESS Collaborative Group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 2003;163:10691075. Google ScholarPubMed
Dufouil, C, Chalmers, J, Coskun, Oet al.; PROGRESS MRI Substudy Investigators. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation 2005;112:16441650. CrossRefGoogle ScholarPubMed
Ovbiagele, B, Saver, JL. Cerebral white matter hyperintensities on MRI: current concepts and therapeutic implications. Cerebrovasc Dis 2006;22:8390. CrossRefGoogle ScholarPubMed
Bosch, J, Yusuf, S, Pogue, Jet al. Heart outcomes prevention evaluation. Use of ramipril in preventing stroke: double blind randomised trial. BMJ 2002;324:699702. CrossRefGoogle ScholarPubMed
Liao, D, Cooper, L, Cai, Jet al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control. The ARIC Study. Atherosclerosis Risk in Communities Study. Stroke 1996;27:22622270. CrossRefGoogle ScholarPubMed
Dufouil, C, De Kersaint-Gilly, A, Besancon, Vet al. Longituidal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology 2001;56:921926. CrossRefGoogle ScholarPubMed
de Leeuw, FE, de Groot, JC, Oudkerk, Met al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 2002;125:765772. CrossRefGoogle Scholar
van Dijk, EJ, Breteler, MM, Schmidt, Ret al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension 2004;44:625630. CrossRefGoogle ScholarPubMed
SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA 1991;265:32553264. CrossRefGoogle ScholarPubMed
Prince, MJ, Bird, AS, Blizard, RA, Mann, AH. Is the cognitive function of older patients affected by antihypertensive treatment? Results from 54 months of the medical research council’s trial of hypertension in older adults. BMJ 1996;312:801805. CrossRefGoogle ScholarPubMed
Lithell, H, Hansson, L, Skoog, Iet al.; SCOPE Study Group. The study on cognition and prognosis in the elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 2003;21:875876. CrossRefGoogle ScholarPubMed
Skoog, I, Lithell, H, Hansson, Let al.; SCOPE Study Group. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE). Am J Hypertens 2005;18:10521059. CrossRefGoogle Scholar
Feigin, V, Ratnasabapathy, Y, Anderson, C. Does blood pressure lowering treatment prevents dementia or cognitive decline in patients with cardiovascular and cerebrovascular disease? J Neurol Sci 2005;229230:151155. CrossRefGoogle ScholarPubMed
McGuinness, B, Todd, S, Passmore, P, Bullock, R. The effects of blood pressure lowering on development of cognitive impairment and dementia in patients without apparent prior cerebrovascular disease. Cochrane Database Syst Rev 2006;CD004034. CrossRefGoogle ScholarPubMed
In’t Veld, BA, Ruitenberg, A, Hofman, A, Stricker, BH, Breteler, MM. Antihypertensive drugs and incidence of dementia: the Rotterdam study. Neurobiol Aging 2001;22:407412. CrossRefGoogle ScholarPubMed
Peila, R, White, LR, Masaki, K, Petrovitch, H, Launer, LJ. Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke 2006;37:11651170. CrossRefGoogle ScholarPubMed
Brust, JC. Antihypertensive therapy and cognition: more questions than answers. Stroke 2006;37:1146. CrossRefGoogle ScholarPubMed
Trompet, S, Westendorp, RG, Kamper, AM, De Craen, AJ. Use of calcium antagonists and cognitive decline in old age The Leiden 85-plus study. Neurobiol Aging 2006 (in press).Google ScholarPubMed
Hadjiev, D, Mineva, P. Antihypertensive treatment in reducing the risk of dementia. Stroke 2006;37:2869. CrossRefGoogle Scholar
Meyer, JS, Judd, BW, Tawakina, T, Rogers, RL, Mortel, KF. Improved cognition after control of risk factors for multiinfarct dementia. JAMA 1986;256:22032209. CrossRefGoogle Scholar
Ruitenberg, A, Skoog, I, Ott, Aet al. Blood pressure and risk of dementia: results from the Rotterdam study and the Gothenburg H-70 Study. Dement Geriatr Cogn Disord 2001;12:3339. CrossRefGoogle ScholarPubMed
Pandav, R, Dodge, HH, DeKosky, ST, Ganguli, M. Blood pressure and cognitive impairment in India and the United States: a cross-national epidemiological study. Arch Neurol 2003;60:11231128. CrossRefGoogle ScholarPubMed
Birns, J, Markus, H, Kalra, L. Blood pressure reduction for vascular risk: is there a price to be paid? Stroke 2005;36:13081313. CrossRefGoogle Scholar
O’Brien, JT, Erkinjuntti, T, Reisberg, Bet al. Vascular cognitive impairment. Lancet Neurol 2003;2:8998. CrossRefGoogle ScholarPubMed
O’Brien, JT. Vascular cognitive impairment. Am J Geriatr Psychiatry 2006;14:724733. CrossRefGoogle ScholarPubMed
Roman, GC. Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis 2005;20(Suppl. 2):91100. CrossRefGoogle ScholarPubMed
Robinson, JG, Bakris, G, Torner, J, Stone, NJ, Wallace, R. Is it time for a cardiovascular primary prevention trial in the elderly? Stroke 2007;38:441450. CrossRefGoogle ScholarPubMed
Gorelick, PB. Uncertainty of management of blood pressure and lipids in the elderly: time for a primary prevention trial. Stroke 2007;38:212213. CrossRefGoogle ScholarPubMed
Scheid, R, Voigt, H. Arterial hypertension and dementia. Nervenarzt 2005;76:143153. CrossRefGoogle ScholarPubMed
Troisi, E, Attanasio, A, Matteis, Met al. Cerebral haemodynamics in young hypertensive subjects and effects of atenolol treatment. J Neurol Sci 1998;159:115119. CrossRefGoogle Scholar
Walters, M, Muir, S, Shah, I, Lees, K. Effect of perindopril on cerebral vasomotor reactivity in patients with lacunar infarction. Stroke 2004;35:18991902. CrossRefGoogle ScholarPubMed
Fu, CH, Yang, CC, Kuo, TB. Effects of different classes of antihypertensive drugs on cerebral haemodynamics in elderly hypertensive patients. Am J Hypertens 2005;18:16211625. CrossRefGoogle Scholar
Yam, AT, Lang, EW, Lagopoulos, Jet al. Cerebral autoregulation and ageing. J Clin Neurosci 2005;12:643646. CrossRefGoogle ScholarPubMed
Lagopoulos, J, Malhi, GS, Ivanovski, Bet al. Cerebrovascular autoregulation as a neuroimaging tool. Acta Neuropsychiatrica 2006;18:100. CrossRefGoogle ScholarPubMed
Thybo, NK, Stephens, N, Cooper, A, Aalkjaer, C, Heagerty, AM, Mulvany, MJ. Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension 1995;25:474481. CrossRefGoogle ScholarPubMed
Baumbach, GL, Chillon, JM. Effects of angiotensin-converting enzyme inhibitors on cerebral vascular structure in chronic hypertension. J Hypertens 2000;18(Suppl.):711. Google ScholarPubMed
Chillon, JM, Baumbach, GL. Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arteriolar dilatation in hypertensive rats. Hypertension 2001;37:13881393. CrossRefGoogle Scholar
Fournier, A, Achard, JM, Boutitie, Fet al. Is the angiotensin II Type 2 receptor cerebroprotective? Curr Hypertens Rep 2004;6:182189. CrossRefGoogle ScholarPubMed
Fournier, A, Messerli, FH, Achard, JM, Fernandez, L. Cerebroprotection mediated by angiotensin II: a hypothesis supported by recent randomized clinical trials. J Am Coll Cardiol 2004;43:13431347. CrossRefGoogle ScholarPubMed
Schrader, J, Luders, S, Kulschewski, Aet al. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). Stroke 2005;36:12181226. CrossRefGoogle Scholar
Das, UN. Is angiotensin II an endogenious pro-inflamatory molecule? Med Sci Monit 2005;11:RA155RA162. Google Scholar
Fogari, R, Zoppi, A. Effect of antihypertensive agents on quality of life in the elderly. Drugs Aging 2004;21:377393. CrossRefGoogle ScholarPubMed
Teo, K, Yusuf, S, Sleight, Pet al.; ONTARGET/TRANSCEND Investigators. Rationale, design, and baseline characteristics of 2 large, simple, randomized trials evaluating telmisartan, ramipril, and their combination in high-risk patients: the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease (ONTARGET/TRANSCEND) trials. Am Heart J 2004;148:5261. Google ScholarPubMed
Inzitari, D, Poggesi, A. Calcium channel blockers and stroke. Aging Clin Exp Res 2005;17(Suppl.):1630. Google ScholarPubMed
Verdecchia, P, Reboldi, G, Angeli, Fet al. Angiotensin-converting enzyme inhibitors and calcium channel blockers for coronary heart disease and stroke prevention. Hypertension 2005;46:386392. CrossRefGoogle ScholarPubMed
Hanon, O, Pequignot, R, Seux, MLet al. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens 2006;24:21012107. CrossRefGoogle ScholarPubMed
Vaughan, CJ, Delanty, N. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 1999;30:19691973. CrossRefGoogle ScholarPubMed
Vaughan, GJ. Prevention of stroke with statins: effects beyond lipid lowering. Am J Cardiol 2003;91:23B29B. CrossRefGoogle ScholarPubMed
Zacco, A, Togo, J, Spence, Ket al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 2003;23:1110411111. Google ScholarPubMed
Bosel, J, Gandor, F, Harms, Cet al. Neuroprotective effects atorvastatin against glutamate-induced excitotoxicity in primary cortical neurons. J Neurochem 2005;92:13861398. CrossRefGoogle Scholar
Kumar, S, Savitz, S, Schlaug, G, Caplan, L, Selim, M. Antiplatelets, ACE inhibitors, and statins combination reduces stroke severity and tissue at risk. Neurology 2006;66:11531158. CrossRefGoogle ScholarPubMed
Kiss, B, Cai, NS, Erdo, SL. Vinpocetine preferentially antagonizes quisqualate/AMPA receptor responses: evidence from release and ligand binding studies. Eur J Pharmacol 1991;209:109112. CrossRefGoogle ScholarPubMed
Follett, PL, Rosenberg, PA, Volpe, JJ, Jensen, FE. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 2000;20:92359241. Google ScholarPubMed
Fowler, JH, McCracken, E, Dewar, D, McCulloch, J. Intracerebral injection of AMPA causes axonal damage in vivo. Brain Res 2003;991:104112. CrossRefGoogle ScholarPubMed
Goldberg, MP, Ransom, BR. New light on white matter. Stroke 2003;34:330332. CrossRefGoogle ScholarPubMed
Follett, PL, Deng, W, Dai, Wet al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 2004;24:44124420. CrossRefGoogle ScholarPubMed
Martinez-Vila, E, Murie-Fernandez, M, Gallego Perez-Larraya, J, Irimia, P. Neuroprotection in vascular dementia. Cerebrovasc Dis 2006;21(Suppl. 2):106117. CrossRefGoogle ScholarPubMed