Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T23:53:21.329Z Has data issue: false hasContentIssue false

Het raakvlak van anticipatoire attentie en motorische preparatie Deel III

Published online by Cambridge University Press:  16 January 2019

Samenvatting

In een drietal artikelen wordt de overeenkomst besproken tussen processen die ten grondslag liggen aan twee verschillende functies: anticipatoire attentie en motorische preparatie. Beide functies zijn van belong voor een optimale afstemming op onze omgeving. Het achterste gedeelte van de hersenschors houdt zich voornamelijk bezig met binnenkomende informatie uit de buitenwereld en het eigen lichaam, terwijl het voorste deel essentieel is voor onze acties en reacties. Als bekend is wanneer wij met relevante informatie warden geconfronteerd en vermoed kan worden hoe daarop moet worden gereageerd, worden modaliteitsspecifieke sensorische en motorische kanalen geopend om zo een snelle en adequate reactie te garanderen. In deze tekst wordt gepostuleerd dat de achterste en voorste cortexhelften op vergelijkbare wijze vanuit de thalamus worden geactiveerd als onderdeel van motorische preparatie en anticipatoire attentie. Cruciaal is de inhiberende invloed die de nucleus reticularis (NR) uitoefent op de onderliggende thalamuskernen. De NR staat onder een dubbele controle: exciterend vanuit de prefrontale cortex, en inhiberend vanuit het neostriatum. Aangegeven wordt hoe selectie in de informatieverwerking via deze balans kan worden gerealiseerd, zowel in het sensorische als het motorische domein. Na het overzicht van de relevante anatomische structural in deel I, de presentatie van het model in deel II, komt in het ilenle artikel neuropsychologische evidentie aan de orde, waarna het psychofysiologisch onderzoek besproken wordt, dat geleid heeft tot de formulering van het model.

Summary

Summary

This series of papers suggests that processes underlying anticipatory attention and motor preparation share a common control mechanism. Both functions are of utmost importance for an optimal adaptation to our environment. While the posterior part of the cortex is aimed at the analysis of incoming information, both from the outer world and our own body, the anterior part is involved in action and reaction. If we know when in the near future we will be confronted with relevant information, and how this has to be responded upon, modality specific sensoric and motoric information channels have to be open in order to guarantee an adequate response. The anterior and posterior parts of the cortex are activated from the thalamus and the information transmission is influenced via the reticular nucleus (RN) of the thalamus. The RN itself is under a double control: excitatory from the prefrontal cortex and inhibitory from the neostriatum. It is suggested that selection in anticipatory attention and motor preparation is realized in a comparable way via the RN. Following the description of the relevant anatomical structures in Part I, and the presentation of the model in Part II, we wilt discuss now the supporting neuropsychological evidence. Next the psychophysiological experiments will be described that have lead to the formulation of the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

63. Heilman, KM, Valenstein, E. Frontal lobe neglect in man. Neurology 1972; 22: 6604.Google Scholar
64. DeLong, MR. Primate models of movement disorders of basal ganglia. TINS 1990; 13: 2815.Google Scholar
65. Watson, RT, Miller, BD, Heilman, KM. Nonsensory neglect. Ann Neurol 1978; 3, 505-8.Google Scholar
66. Bogosslavsky, J, Miklossy, J, Deruaz, JP, et al. Unilateral left paramedian infarction of thalamus and midbrain: a clinicalpathological study. J Neurol, Neurosurg Psychiat 1986; 49: 686–94. Geciteerd bij Heilman et al. 1993.Google Scholar
67. Mills, RP, Swanson, PD. Vertical oculomotor apraxia and memory loss. Ann Neurol 1978; 4; 149-53. Geciteerd bij Heilman et al. 1993.Google Scholar
68. Schlag, J, Waszak, M. Characteristics of unit responses in nucleus reticularis thalami. Brain Res 1970; 21: 2868.Google Scholar
69. Schlag, J, Waszak, M. Electrophysiological properties of units of he thalamic reticular complex. Exp Neurol 1971; 32: 7997.Google Scholar
70. Berger, H. Über das Elektrenkephalogramm des Menschen. II. Archiv Psychiat Nervenkrankh 1930; 87: 527–70.Google Scholar
71. Pfurtscheller, G, Aranibar, A. Evaluation of event-related desynchronization (ERD) preceding and following self-paced movement. EEG din Neurol 1979; 46: 138–46.Google Scholar
72. Lopes da Silva, FH, Van Rotterdam, A, Bans, P, Van Heusden, E, Burr, W. Models of neuronal populations: the basic mechanisms of rhyhmicity. Progr Brain Res 1976: 45: 281308.Google Scholar
73. Pfurtscheller, G, Klimesch, W. Event-related desynchronisation during motor behavior and visual information processing. In: Brunia, CHM, Mulder, G, Verbaten, MN, red. Event-related brain research (EEG Suppl. 42). Amsterdam: Elsevier. 1991: 5865.Google Scholar
74. Penfield, W, Jasper, HH. Epilepsy and the functional Anatomy of the human Brain. Boston: Little Brown. 1956.Google Scholar
75. Arduini, A, Mancia, M, Mechelse, K. Slow potential changes in the cerebral cortex by sensory and reticular stimulation. Arch Ital Biol 1957; 95: 127–38.Google Scholar
76. Caspers, H. Relations of steady potential shifts in the cortex to the wakefullnesssleep spectrum. In: Brazier, MAB, red. Brain function. Vol. I Cortical excitability and steady Potentials. Berkeley: Univ Cal Press, 1963: 117-23.Google Scholar
77. Kornhuber, HH, Deecke, L. Hirnpotentialändenmgen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiate. Pflüg Arch 1965; 284: 117.Google Scholar
78. Sasaki, K, Gemba, H. Cortical potentials associated with voluntary movements in monkeys. In: Brunia, CHM, Mulder, G, Verbaten, MN. red. Event-related brain research (EEG Suppl. 42). Amsterdam: Elsevier, 1991: 8096.Google Scholar
79. Arezzo, J, Vaughan, HG Jr., Koss, B. Relationship of neuronal activity to gross movement-related potentials in monkey preand postcentral cortex. Brain Res 1977; 132: 362269.Google Scholar
80. Arezzo, J, Vaughan, HG Jr.. Cortical sources and topography of the motor and somatosensory evoked potential in the monkey. In: Kornhuber, HH, Deeeke, L. red. Motivation, motor and sensory processes of the brain. Progress Brain Research. Amsterdam: Elsevier. 1980: 7783.Google Scholar
81. Shibasaki, H, Barrett, G, Neshige, R, et al. Volitional movement is not preceded by cortical slow negativity in cerebellar dentate lesion in man. Brain Res 1986; 368: 3615.Google Scholar
82. Walter, WG, Cooper, R, Aldridge, VJ, et al. Contingent negative variation: An electrical sign of sensorimotor association and expectancy in the human brain. Nature 1964; 203: 3804.Google Scholar
83. Weerts, WG, Lang, PJ. The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV). Biol Psychol 1973: 1: 119.Google Scholar
84. Loveless, NE, Sanford, AJ. Slow potential correlates of preparatory set. Biol Psychol 1974; 1: 303–14.Google Scholar
85. Rohrbaugh, J, Gaillard, AWK. Sensory and motor aspects of the Contingent Negative Variation. In: Gaillard, AWK, Ritter, W., red. Tutorials in event-related Potentials Research: Endogenous components. Amsterdam: North-Holland, 1983: 269310.Google Scholar
86. Böcker, K. Spatio-temporal dipole models of slow cortical potentials. Proefschrift Katholieke Universiteit Brabant, 1994.Google Scholar
87. Passingham, RE. Two cortical systems for directing movement. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium. 132. Chichester: Wiley. 1987: 151-61.Google Scholar
88. Mauritz, KH, Wise, SP. Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp Brain Res 1986; 61, 229-44.Google Scholar
89. Van Boxtel, G. Non-motor components of slow brain potentials. Proefschrift Katholieke Universiteit Brabant, 1994.Google Scholar
90. Damen, EJP, Brunia, CHM. Changes in heart rate and slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiol 1987; 24: 700–13.Google Scholar
91. Bocker, K, Brunia, CHM. The contingent negative variation: potential and scalp current density fields. Brain Topogr 1993; 5: 429–33.Google Scholar
92. De Jong, R, Coles, MGH, Logan, GD & Gratton, G. In search of the point of no return: The control of response processes. J exp Psychol hum Perc Perf 1990; 16: 164–82Google Scholar