Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T01:41:44.289Z Has data issue: false hasContentIssue false

Effects of maintenance electroshock on mitochondrial respiratory chain and creatine kinase activities in the rat brain

Published online by Cambridge University Press:  24 June 2014

Gislaine Z. Réus
Affiliation:
Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Roberto B. Stringari
Affiliation:
Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Gislaine T. Rezin
Affiliation:
Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Daiana P. Pezente
Affiliation:
Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Giselli Scaini
Affiliation:
Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Débora D. Maggi
Affiliation:
Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Bruna T. De-Nês
Affiliation:
Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Emilio L. Streck
Affiliation:
Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
João Quevedo*
Affiliation:
Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Gustavo Feier
Affiliation:
Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
*
Professor João Quevedo, Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil. Tel: 55 48 3431-2792; Fax: +55 48 3431-2736; E-mail: [email protected]

Extract

Réus GZ, Stringari RB, Rezin GT, Pezente DP, Scaini G, Maggi DD, De-Nês BT, Streck EL, Quevedo J, Feier G. Effects of maintenance electroshock on mitochondrial respiratory chain and creatine kinase activities in the rat brain.

Objective: Electroconvulsive therapy is used efficacious treatment for a variety of complicated psychiatric disorders and evidences have indicated that energy metabolism impairment may be involved in pathophysiology and treatment of mood disorders. This work was performed to determine creatine kinase and mitochondrial respiratory chain activities at different times after the maintenance electroconvulsive shock (ECS).

Methods: Male Wistar rats received a protocol mimicking therapeutic of maintenance or simulated ECS (sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance ECS. We measured creatine kinase and mitochondrial respiratory chain activities in the prefrontal cortex, hippocampus, cortex, cerebellum and striatum.

Results: Our results showed that maintenance ECS alter respiratory chain complexes and creatine kinase activities in the rat brain, but these effects were related to brain area and time after the ECS, in which the animal were killed.

Conclusion: Finally, these findings further support the hypothesis that alteration on the energy metabolism could be involved in the therapeutic or adverse effects of ECS.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chamberlin, E, Tsai, TE.A glutamatergic model of ECT-induced memory dysfunction. Harv Rev Psychiatry 1998;5: 307317.CrossRefGoogle ScholarPubMed
2.Kato, N.Neurophysiological mechanisms of electroconvulsive therapy for depression. Neurosc Res 2009;64:311.CrossRefGoogle ScholarPubMed
3.Rami-Gonzalez, L, Bernardo, M, Boget, T, Salamero, M, Gil-Verona, JASubtypes of memory dysfunction associated with ECT: characteristics and neurobiological bases. J ECT 2001;17:129135.CrossRefGoogle ScholarPubMed
4.O'Connor, DW.Electroconvulsive therapy. In: Jacoby, R, Oppenheimer, C, Dening, T, eds. Psychiatry in the elderly, 4th edn. Oxford: Oxford University Press, 2008: 201214.Google Scholar
5.Shergill, SS, Katona, CL.Pharmacotherapy of affective disorders. In: Helmchen, H, Henn, F, Lauter, H, Sartorius, N, eds. Contemporary psychiatry, 4th edn. Heidelberg: Springer, 2001: 317336.Google Scholar
6.Palinska, D, Makowska, I, Sobów, T, Hese, RT, Kaoszewska, I.Maintenance electroconvulsive therapy-a review of literature. Psychiatr Pol 2008;42:819824.Google ScholarPubMed
7.American Psychiatric Association Treatment following the completion of the index electroconvulsive therapy course. The practice of electroconvulsive therapy. Arlington: APA, 2001: 205216.Google Scholar
8.Newman, ME, Gur, E, Shapira, B, Lerer, B.Neurochemical mechanism of action of ECS: evidence from in vivo studies. J Electroconvulsive Ther 1998;14:153171.Google ScholarPubMed
9.Jornada, LK, Feier, G, Barichello, T et al. Effects of maintenance electroshock on the oxidative damage parameters in the rat brain. Neurochem Res 2007;32:389394.CrossRefGoogle ScholarPubMed
10.Barichello, T, Bonatto, F, Feier, G et al. No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res 2004;1014:177183.CrossRefGoogle ScholarPubMed
11.Rosa, DVF, Souza, RP, Souza, BR et al. DARPP-32 expression in rat brain after electroconvulsive stimulation. Brain Res 2007;1179:3541.CrossRefGoogle ScholarPubMed
12.Búrigo, M, Roza, CA, Bassani, C et al. Effect of electroconvulsive shock on mitochondrial respiratory chain in rat brain. Neurochem Res 2006;31:13751379.CrossRefGoogle ScholarPubMed
13.Búrigo, M, Roza, CA, Bassani, C et al. Decreased creatine kinase activity caused by electroconvulsive shock. Neurochem Res 2006;31:877881.CrossRefGoogle ScholarPubMed
14.Kato, T, Kato, N.Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000;2:180190.CrossRefGoogle ScholarPubMed
15.Lucca, G, Comim, CM, Valvossori, SS et al. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 2009;43:864869.CrossRefGoogle Scholar
16.Rezin, GT, Cardoso, MR, Gonçalves, CL et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 2008;53:395400.CrossRefGoogle Scholar
17.Andres, RH, Ducray, AD, Schlattner, U, Wallimann, T, Widmer, HR.Functions and effects of creatine in the central nervous system. Brain Res Bull 2008;76:329343.CrossRefGoogle ScholarPubMed
18.Khuchua, ZA, Qin, W, Boero, J et al. Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 1998;273:2299022996.CrossRefGoogle ScholarPubMed
19.Schlattner, U, Wallimann, T.Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem 2000;275:1731417320.CrossRefGoogle ScholarPubMed
20.Chinnery, PF, Schon, EA.Mitochondria. J Neurol Neurosurg Psychiatry 2003;74:11881199.CrossRefGoogle ScholarPubMed
21.Hughes, BP.A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 1962;7:597604.CrossRefGoogle Scholar
22.Lowry, OH, Rosebough, NG, Farr, AL, Randall, JR.Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265275.CrossRefGoogle ScholarPubMed
23.Cassina, A, Radi, R.Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 1996;328:309316.Google ScholarPubMed
24.Fischer, JC, Ruitenbeek, W, Berden, JA et al. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 1985;153:2326.CrossRefGoogle ScholarPubMed
25.Rustin, P, Chretien, D, Bourgeron, T et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 1994;228:3551.Google ScholarPubMed
26.Saks, VA, Kuznetsov, AV, Kupriyanov, VV, Miceli, MV, Jacobus, WE.Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 1985;260:77577764.CrossRefGoogle Scholar
27.Erakovic, V, Zupan, G, Varljen, J, Laginja, J, Simonic, A.Altered activities of rat brain metabolic enzymes in electroconvulsive shock-induced seizures. Epilepsia 2001;42: 181189.CrossRefGoogle ScholarPubMed
28.Aksenova, MV, Aksenov, MY, Payne, RM et al. Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord 1999;10:158165.CrossRefGoogle ScholarPubMed
29.Nobler, MS, Sackeim, HA.Mechanisms of action of electroconvulsive therapy: functional brain imaging studies. Psychiatr Ann 1998;28:2329.CrossRefGoogle Scholar
30.Nobler, MS, Sackeim, HA, Prohovnik, I et al. Regional cerebral blood flow in mood disorders, III: treatment and clinical response. Arch Gen Psychiatr 1994;51:884897.CrossRefGoogle ScholarPubMed
31.Webb, MG, O'Donnell, MP, Draper, RJ, Horner, B, Phillips, JP.Brain type creatine phosphokinase serum levels before and after ECT. Br J Psychiatry 1984;144: 525528.CrossRefGoogle ScholarPubMed
32.Feier, G, Jornada, LK, Barichelo, T et al. Long lasting effects of electroconvulsive seizures on brain oxidative parameters. Neurochem Res 2006;31:665670.CrossRefGoogle ScholarPubMed
33.Busnello, JV, Leke, R, Oses, JV et al. Acute and chronic electroconvulsive shock in rats: effects on peripheral markers of neuronal injury and glial activity. Life Sci 2006;78:30133017.CrossRefGoogle ScholarPubMed
34.Busnello, JV, Oses, JP, Da Silva, RS et al. Peripheral nucleotide hydrolysis in rats submitted to a model of electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:18291833.Google Scholar
35.Lindefors, N, Brodin, E, Metsis, M.Spatiotemporal selective effects on brain-derived neurotrophic factor and trkB messenger RNA in rat hippocampus by electroconvulsive shock. Neuroscience 1995;65:661670.CrossRefGoogle ScholarPubMed
36.Zhang, X, Zhang, Z, Sha, W.Electroconvulsive therapy increases glial cell-line derived neurotrophic factor (GDNF) serum levels in patients with drug-resistant depression. Psych Res 2009;170:273275.CrossRefGoogle ScholarPubMed