Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-21T11:58:36.597Z Has data issue: false hasContentIssue false

Attention improvement to transcranial alternating current stimulation at gamma frequency over the right frontoparietal network: a preliminary report

Published online by Cambridge University Press:  02 October 2024

Tien-Wen Lee
Affiliation:
The NeuroCognitive Institute (NCI) Clinical Research Foundation, Mount Arlington, NJ, USA
Sergio Almeida
Affiliation:
The NeuroCognitive Institute (NCI) Clinical Research Foundation, Mount Arlington, NJ, USA
Gerald Tramontano*
Affiliation:
The NeuroCognitive Institute (NCI) Clinical Research Foundation, Mount Arlington, NJ, USA
*
Corresponding author: Gerald Tramontano; Email: [email protected]

Abstract

Applying transcranial alternating current stimulation (tACS) at 40 Hz to the frontal and parietal regions, either unilaterally (left or right) or bilaterally, can improve cognitive dysfunctions. This study aimed to explore the influence of tACS at gamma frequency over right fronto-parietal (FP) region on attention. The analysis is based on retrospective data from a clinical intervention. We administered test of variables of attention (TOVA; visual mode) to 44 participants with various neuropsychiatric diagnoses before and after 12 sessions of tACS treatment. Alternating currents at 2.0 mA were delivered to the electrode positions F4 and P4, following the 10–20 EEG convention, for 20 mins in each session. We observed significant improvement across 3 indices of the TOVA, including reduction of variability in reaction time (p = 0.0002), increase in d-Prime (separability of targets and non-targets; p = 0.0157), and decrease in commission error rate (p = 0.0116). The mean RT and omission error rate largely remained unchanged. Artificial injection of tACS at 40 Hz over right FP network may improve attention function, especially in the domains of consistency in performance, target/non-target discrimination, and inhibitory control.

Type
Short Communication
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Tien-Wen Lee and Sergio Almeida contributed equally to this research as co-first authors.

References

Antal, A, Alekseichuk, I, Bikson, M, Brockmoller, J, Brunoni, AR, Chen, R, Cohen, LG, Dowthwaite, G, Ellrich, J, Floel, A, Fregni, F, George, MS, Hamilton, R, Haueisen, J, Herrmann, CS, Hummel, FC, Lefaucheur, JP, Liebetanz, D, Loo, CK, Mccaig, CD, Miniussi, C, Miranda, PC, Moliadze, V, Nitsche, MA, Nowak, R, Padberg, F, Pascual-Leone, A, Poppendieck, W, Priori, A, Rossi, S, Rossini, PM, Rothwell, J, Rueger, MA, Ruffini, G, Schellhorn, K, Siebner, HR, Ugawa, Y, Wexler, A, Ziemann, U, Hallett, M and Paulus, W (2017) Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology 128, 17741809.CrossRefGoogle ScholarPubMed
Brookes, MJ, Wood, JR, Stevenson, CM, Zumer, JM, White, TP, Liddle, PF and Morris, PG (2011) Changes in brain network activity during working memory tasks: a magnetoencephalography study. Neuroimage 55, 18041815.CrossRefGoogle Scholar
Brzezicka, A, Kaminski, J, Reed, CM, Chung, JM, Mamelak, AN and Rutishauser, U (2019) Working memory load-related theta power decreases in dorsolateral prefrontal cortex predict individual differences in performance. Journal of Cognitive Neuroscience 31, 12901307.CrossRefGoogle ScholarPubMed
Dallmer-Zerbe, I, Popp, F, Lam, AP, Philipsen, A and Herrmann, CS (2020) Transcranial alternating current stimulation (tACS) as a tool to modulate P300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topography 33, 191207.CrossRefGoogle ScholarPubMed
Dasilva, AF, Volz, MS, Bikson, M and Fregni, F (2011) Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments 23, 2744.Google Scholar
Diedrich, L, Kolhoff, HI, Chakalov, I, Vékony, T, Németh, D and Antal, A (2024) Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Scientific Reports 14, 4955.CrossRefGoogle ScholarPubMed
Fan, J, Byrne, J, Worden, MS, Guise, KG, Mccandliss, BD, Fossella, J and Posner, MI (2007) The relation of brain oscillations to attentional networks. Journal of Neuroscience 27, 61976206.CrossRefGoogle ScholarPubMed
Fell, J, Klaver, P, Elger, CE and Fernandez, G (2002) Suppression of EEG gamma activity may cause the attentional blink. Consciousness and Cognition 11, 114122.CrossRefGoogle ScholarPubMed
Foster, BL and Parvizi, J (2012) Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage 60, 384391.CrossRefGoogle ScholarPubMed
Goodman, MS, Kumar, S, Zomorrodi, R, Ghazala, Z, Cheam, AS, Barr, MS, Daskalakis, ZJ, Blumberger, DM, Fischer, C and Flint, A (2018) Theta-gamma coupling and working memory in Alzheimer’s dementia and mild cognitive impairment. Frontiers in Aging Neuroscience 10, 101.CrossRefGoogle ScholarPubMed
Guleyupoglu, B, Schestatsky, P, Edwards, D, Fregni, F and Bikson, M (2013) Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. Journal of Neuroscience Methods 219, 297311.CrossRefGoogle ScholarPubMed
Herrmann, CS, Fründ, I, Lenz, D (2010) Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neuroscience & Biobehavioral Reviews 34, 981992.CrossRefGoogle ScholarPubMed
Hester, R, Fassbender, C and Garavan, H (2004) Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cerebral Cortex 14, 986994.CrossRefGoogle ScholarPubMed
Hopfinger, JB, Parsons, J and Frohlich, F (2017) Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention. Cognitive Neuroscience 8, 102111.CrossRefGoogle ScholarPubMed
Hu, P, He, Y, Liu, X, Ren, Z and Liu, S (2021)Modulating emotion processing using transcranial alternating current stimulation (tACS) - a sham-controlled study in healthy human participants. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2021, 66676670.Google ScholarPubMed
Johnson, BP, Pinar, A, Fornito, A, Nandam, LS, Hester, R and Bellgrove, MA (2015) Left anterior cingulate activity predicts intra-individual reaction time variability in healthy adults. Neuropsychologia 72, 2226.CrossRefGoogle ScholarPubMed
Klimesch, W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews 29, 169195.CrossRefGoogle Scholar
Leark, RA, Greenberg, LM, Kindschi, C, Dupuy, T and Hughes, SJ (2008) TOVA professional manual. Los Alamitos, CA: TOVA Company.Google Scholar
Leark, RA, Greenberg, LM, Kindschi, CL, Dupuy, TR and Hughes, SJ (2007) Test of Variables of Attention Continuous Performance Test. Los Alamitos, CA: The TOVA Company.Google Scholar
Lee, TW, Li, CS and Tramontano, G (2024) Tripod transcranial alternating current stimulation at 5-Hz over right hemisphere may relieve anxiety symptoms: a preliminary report. Journal of Affective Disorders 360, 156162.CrossRefGoogle Scholar
Lee, TW and Tramontano, G (2024) Neural consequences of 5-Hz transcranial alternating current stimulation over right hemisphere: an eLORETA EEG study. Neuroscience Letters 835, 137849.CrossRefGoogle ScholarPubMed
Lundqvist, M, Herman, P, Warden, MR, Brincat, SL and Miller, EK (2018) Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communications 9, 394.CrossRefGoogle ScholarPubMed
Manippa, V, Filardi, M, Vilella, D, Logroscino, G and Rivolta, D (2024a) Gamma (60 Hz) auditory stimulation improves intrusions but not recall and working memory in healthy adults. Behavioural Brain Research 456, 114703.CrossRefGoogle Scholar
Manippa, V, Palmisano, A, Nitsche, MA, Filardi, M, Vilella, D, Logroscino, G and Rivolta, D (2024b) Cognitive and neuropathophysiological outcomes of gamma-tACS in dementia: a systematic review. Neuropsychology Review 34, 338361.CrossRefGoogle ScholarPubMed
Matsumoto, H and Ugawa, Y (2017) Adverse events of tDCS and tACS: a review. Clinical Neurophysiology Practice 2, 1925.CrossRefGoogle ScholarPubMed
Park, J, Lee, C, Lee, S and Im, CH (2022) 80 Hz but not 40 Hz, transcranial alternating current stimulation of 80 Hz over right intraparietal sulcus increases visuospatial working memory capacity. Scientific Reports 12, 13762.CrossRefGoogle Scholar
Shipp, S (2004) The brain circuitry of attention. Trends in Cognitive Sciences 8, 223230.CrossRefGoogle ScholarPubMed
Tam, A, Luedke, AC, Walsh, JJ, Fernandez-Ruiz, J and Garcia, A (2015) Effects of reaction time variability and age on brain activity during Stroop task performance. Brain Imaging and Behavior 9, 609618.CrossRefGoogle ScholarPubMed
De Schotten, MThiebaut, Dell’acqua, F, Forkel, SJ, Simmons, A, Vergani, F, Murphy, DG and Catani, M (2011) A lateralized brain network for visuospatial attention. Nature Neuroscience 14, 12451246.CrossRefGoogle Scholar
Varastegan, S, Kazemi, R, Rostami, R, Khomami, S, Zandbagleh, A and Hadipour, AL (2023) Remember NIBS? tACS improves memory performance in elders with subjective memory complaints. GeroScience 45, 851869.CrossRefGoogle ScholarPubMed
Wischnewski, M, Berger, TA, Opitz, A and Alekseichuk, I (2024) Causal functional maps of brain rhythms in working memory. Proceedings of the National Academy of Sciences 121, e2318528121.CrossRefGoogle ScholarPubMed
Wostmann, M, Vosskuhl, J, Obleser, J and Herrmann, CS (2018) Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimulation 11, 752758.CrossRefGoogle ScholarPubMed
Zaghi, S, De Freitas Rezende, L, De Oliveira, LM, El-Nazer, R, Menning, S, Tadini, L and Fregni, F (2010) Inhibition of motor cortex excitability with 15Hz transcranial alternating current stimulation (tACS). Neuroscience Letters 479, 211214.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lee et al. supplementary material 1

Lee et al. supplementary material
Download Lee et al. supplementary material 1(File)
File 293.8 KB
Supplementary material: File

Lee et al. supplementary material 2

Lee et al. supplementary material
Download Lee et al. supplementary material 2(File)
File 358.7 KB