Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T05:51:02.641Z Has data issue: false hasContentIssue false

Weak Multiplex Percolation

Published online by Cambridge University Press:  21 December 2021

Gareth J. Baxter
Affiliation:
Universidade de Aveiro, Portugal
Rui A. da Costa
Affiliation:
Universidade de Aveiro, Portugal
Sergey N. Dorogovtsev
Affiliation:
Universidade de Aveiro, Portugal
José F. F. Mendes
Affiliation:
Universidade de Aveiro, Portugal

Summary

In many systems consisting of interacting subsystems, the complex interactions between elements can be represented using multilayer networks. However percolation, key to understanding connectivity and robustness, is not trivially generalised to multiple layers. This Element describes a generalisation of percolation to multilayer networks: weak multiplex percolation. A node belongs to a connected component if at least one of its neighbours in each layer is in this component. The authors fully describe the critical phenomena of this process. In two layers with finite second moments of the degree distributions the authors observe an unusual continuous transition with quadratic growth above the threshold. When the second moments diverge, the singularity is determined by the asymptotics of the degree distributions, creating a rich set of critical behaviours. In three or more layers the authors find a discontinuous hybrid transition which persists even in highly heterogeneous degree distributions, becoming continuous only when the powerlaw exponent reaches $1+1/(M-1)$ for $M$ layers.
Get access
Type
Element
Information
Online ISBN: 9781108865777
Publisher: Cambridge University Press
Print publication: 27 January 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azimi-Tafreshi, N. , Gómez-Gardenes, J. , & Dorogovtsev, S. N. (2014). k-core percolation on multiplex networks. Phys. Rev. E, 90(3), 032816.Google Scholar
Baxter, G. J. , Bianconi, G. , da Costa, R. A. , Dorogovtsev, S. N. , & Mendes, J. F. F. (2016). Correlated edge overlaps in multiplex networks. Phys. Rev. E, 94(1), 012303.Google Scholar
Baxter, G. J. , Cellai, D. , Dorogovtsev, S. N. , Goltsev, A. V. , & Mendes, J. F. F. (2016). A unified approach to percolation processes on multiplex networks. In A. Garas (ed.), Interconnected networks (pp. 101123). Springer, Berlin.Google Scholar
Baxter, G. J. , da Costa, R. A. , Dorogovtsev, S. N. , & Mendes, J. F. F. (2020, Sept.). Exotic critical behavior of weak multiplex percolation. Phys. Rev. E, 102(3), 032301.CrossRefGoogle ScholarPubMed
Baxter, G. J. , Dorogovtsev, S. N. , Goltsev, A. V. , & Mendes, J. F. F. (2010). Bootstrap percolation on complex networks. Phys. Rev. E, 82(1), 011103.Google Scholar
Baxter, G. J. , Dorogovtsev, S. N. , Goltsev, A. V. , & Mendes, J. F. F. (2011). Heterogeneous k-core versus bootstrap percolation on complex networks. Phys. Rev. E, 83(5), 051134.Google Scholar
Baxter, G. J. , Dorogovtsev, S. N. , Goltsev, A. V. , & Mendes, J. F. F. (2012, Dec.). Avalanche collapse of interdependent networks. Phys. Rev. Lett., 109(24), 248701.CrossRefGoogle ScholarPubMed
Baxter, G. J. , Dorogovtsev, S. N. , Lee, K.-E. , Mendes, J. F. F. , & Goltsev, A. V. (2015). Critical dynamics of the k-core pruning process. Phys. Rev. X, 5(3), 031017.Google Scholar
Baxter, G. J. , Dorogovtsev, S. N. , Mendes, J. F. F. , & Cellai, D. (2014). Weak percolation on multiplex networks. Phys. Rev. E, 89(4), 042801.CrossRefGoogle ScholarPubMed
Bianconi, G. (2018). Multilayer networks: structure and function. Oxford University Press, Oxford.Google Scholar
Boccaletti, S. , Bianconi, G. , Criado, R. et al. (2014). The structure and dynamics of multilayer networks. Phys. Rep., 544(1), 1122.Google Scholar
Buldyrev, S. V. , Parshani, R. , Paul, R. , Stanley, H. E. , & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464, 1025.Google Scholar
Caccioli, F. , Shrestha, M. , Moore, C. , & Farmer, J. D. (2014). Stability analysis of financial contagion due to overlapping portfolios. J. Bank Financ., 46, 233245.Google Scholar
Cellai, D. , Dorogovtsev, S. N. , & Bianconi, G. (2016). Message passing theory for percolation models on multiplex networks with link overlap. Phys. Rev. E, 94(3), 032301.CrossRefGoogle ScholarPubMed
Cohen, R. , Ben-Avraham, D. , & Havlin, S. (2002). Percolation critical exponents in scale-free networks. Phys. Rev. E, 66(3), 036113.Google Scholar
Cozzo, E. , De Arruda, G. F. , Rodrigues, F. A. , & Moreno, Y. (2018). Multiplex networks: basic formalism and structural properties. Springer, Berlin.CrossRefGoogle Scholar
Dong, G. , Gao, J. , Tian, L. , Du, R. , & He, Y. (2012). Percolation of partially interdependent networks under targeted attack. Phys. Rev. E, 85(1), 016112.CrossRefGoogle ScholarPubMed
Dorogovtsev, S. N. , Goltsev, A. V. , & Mendes, J. F. F. (2006, Feb.). k-core organization of complex networks. Phys. Rev. Lett., 96(4), 040601.Google Scholar
Dorogovtsev, S. N. , Goltsev, A. V. , & Mendes, J. F. F. (2008, Oct.). Critical phenomena in complex networks. Rev. Mod. Phys., 80(4), 1275.Google Scholar
Gao, J. , Buldyrev, S. V. , Havlin, S. , & Stanley, H. E. (2011). Robustness of a network of networks. Phys. Rev. Lett., 107(19), 195701.Google Scholar
Hu, Y. , Zhou, D. , Zhang, R. et al. (2013). Percolation of interdependent networks with intersimilarity. Phys. Rev. E, 88(5), 052805.CrossRefGoogle ScholarPubMed
Huang, X. , Vodenska, I. , Havlin, S. , & Stanley, H. E. (2013). Cascading failures in bi-partite graphs: model for systemic risk propagation. Sci. Rep., 3, 1219.Google Scholar
Kivelä, M. , Arenas, A. , Barthelemy, M. et al. (2014). Multilayer networks. J. Complex Netw., 2(3), 203.Google Scholar
Leicht, E. , & D’Souza, R. M. (2009). Percolation on interacting networks. arXiv preprint: arXiv:0907.0894.Google Scholar
Min, B. , & Goh, K.-I. (2014). Multiple resource demands and viability in multiplex networks. Phys. Rev. E, 89(4), 040802.CrossRefGoogle ScholarPubMed
Min, B. , Lee, S. , Lee, K.-M. , & Goh, K.-I. (2015). Link overlap, viability, and mutual percolation in multiplex networks. Chaos Solitons Fractals, 72, 49.Google Scholar
Moreno, Y. , & Pacheco, A. F. (2004). Synchronization of Kuramoto oscillators in scale-free networks. EPL, 68(4), 603.CrossRefGoogle Scholar
Pocock, M. J. , Evans, D. M. , & Memmott, J. (2012). The robustness and restoration of a network of ecological networks. Science, 335(6071), 973977.Google Scholar
Rinaldi, S. M. , Peerenboom, J. P. , & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst., 21(6), 1125.Google Scholar
Shao, J. , Buldyrev, S. V. , Havlin, S., & Stanley, H. E. (2011). Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E, 83(3), 036116.CrossRefGoogle ScholarPubMed
Son, S.-W. , Bizhani, G. , Christensen, C. , Grassberger, P. , & Paczuski, M. (2012). Percolation theory on interdependent networks based on epidemic spreading. EPL, 97(1), 16006.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Weak Multiplex Percolation
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Weak Multiplex Percolation
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Weak Multiplex Percolation
Available formats
×