Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T15:23:16.130Z Has data issue: false hasContentIssue false

The Taphonomy of Echinoids

Skeletal Morphologies, Environmental Factors, and Preservation Pathways

Published online by Cambridge University Press:  21 September 2021

James H. Nebelsick
Affiliation:
University of Tübingen
Andrea Mancosu
Affiliation:
University of Cagliari

Summary

The study of echinoid evolution, diversity, and ecology has always suffered from the fact that they are represented by taxa showing widely differing architectural designs of their multi-plated skeletons, inhabiting a large range of marine paleoenvironments, which result in highly varying taphonomic biases dictating their presence and recognition. This Element addresses the taphonomy of echinoids and includes: a general introduction to the morphological features of echinoids that play a role in their preservation; a review of processes which play an important role in the differential preservation of both regular and irregular echinoids including predation and transport; a summary of taphonomic pathways included in actualistic studies for recent sea urchins and then reconstructed for fossil taxa; and finally, a case study of the variation of echinoid taphonomy across a shelf gradient using the rich Miocene echinoid fauna of Sardinia.
Get access
Type
Element
Information
Online ISBN: 9781108893411
Publisher: Cambridge University Press
Print publication: 21 October 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelhamid, M. A. F. (1999). Parasitism, abnormal growth and predation on Cretaceous echinoids from Egypt. Revue de Paléobiologie de Genève, 18, 6983.Google Scholar
Ali, M. S. M. (1982). Predation and repairing phenomena in certain clypeasteroid echinoid from the Miocene and Paleocene epochs of Egypt. Journal of the Paleontological Society of India, 27, 78.Google Scholar
Allison, P. A. (1990). Variation in rates of decay and disarticulation of Echinodermata: implications for the application of actualistic data. Palaios, 5, 432–40.CrossRefGoogle Scholar
Amemiya, S., Mizuno, Y., and Ohta, S. (1994). First fossil record of the family Phormosomatidae (Echinothurioida: Echinoidea) from the Early Miocene Morozaki Group, Central Japan. Zoological Science, 11, 313–17.Google Scholar
Ausich, W. I. (2001). Echinoderm taphonomy. In Jangoux, M. and Lawrence, J. M., eds., Echinoderm Studies 6. Lisse: A.A. Balkema, pp. 171227.Google Scholar
Baier, J. J. (1708). Nürnbergische Fossilkunde. Nürnberg: Wolfgang Michael, reprinted in Erlanger Geologische Abhandlungen, 29, 1133.Google Scholar
Banno, T. (2008). Ecological and taphonomic significance of spatangoid spines: Relationship between mode of occurrence and water temperature. Paleontological Research, 12, 145–57.Google Scholar
Bantz, H.-U. (1969). Echinoidea aus den Plattenkalken der Altmühlalb. Erlanger Geologischer Abhandlungen, 78, 135.Google Scholar
Bather, F. A. 1909. Triassic echinoderms of Bakony. Resultate des Wissenschaflichen Erforschung des Balatonsees, 1, 1286.Google Scholar
Belaústegui, Z., Nebelsick, J. H., de Gibert, J. M., Domènech, R., and Martinell, J. (2012). A taphonomic approach to the genetic interpretation of clypeasteroid accumulations from Tarragona (Miocene, NE Spain). Lethaia, 45, 548–65.Google Scholar
Belaústegui, Z., de Gibert, J. M., Nebelsick, J. H., Domènech, R., and Martinell, J. (2013). Clypeasteroid tests as a benthic island for gastrochaenid bivalve colonization: Evidence from the middle Miocene of Tarragona (NE Spain). Palaeontology, 56, 783–96.Google Scholar
Belaústegui, Z., Muñiz, F., Nebelsick, J. H., Domènech, R., and Martinell, J. (2017). Echinoderm ichnology: Bioturbation, bioerosion and related processes. Journal of Paleontology, 91, 643–61.CrossRefGoogle Scholar
Beu, A. G., Henderson, R. A., and Nelson, C. S. (1971). Notes on the taphonomy and paleoecology of New Zealand Tertiary Spatangoida. New Zealand Journal of Geology and Geophysics, 15, 275–86.Google Scholar
Birkeland, C. and Chia, F.-U. (1971). Recruitment risk, growth, age and predation in two populations of sand dollars, Dendraster excentricus (Eschscholtz). Journal of Experimental Marine Biology and Ecology, 6, 265–78.CrossRefGoogle Scholar
Blake, D. B. (1968). Pedicellariae of two Silurian echinoids from western England. Palaeontology, 11, 576–79.Google Scholar
Borszcz, T. (2012). Echinoids as substrates for encrustation – review and quantitative analysis. Annales Societatis Geologorum Poloniae, 82, 139–49.Google Scholar
Borszcz, T. and Zatoń, M. (2013). The oldest record of predation on echinoids: Evidence from the Middle Jurassic of Poland. Lethaia, 46, 141–45.Google Scholar
Borszcz, T., Kuklinski, P., and Zatoń, M. (2013). Encrustation patterns on late Cretaceous (Turonian) echinoids from Southern Poland. Facies, 59, 299318.Google Scholar
Bourseau, J.-P., Bernier, P., Barale, G., et al.. (1994). Taphonomie des échinides dugisement de Cerin (Kimméridgien Supérieur, Jura Méridional, France). Implications environnementales. Geobios, Mémoire spéciaux, 16, 3747.CrossRefGoogle Scholar
Brett, C. E. and Seilacher, A. (1991). Fossil-Lagerstätten: A taphonomic consequence of event sedimentation. In Einsele, G., Ricken, W., & Seilacher, A., eds., Cycles and Events in Stratigraphy. New York: Springer Verlag, pp. 283–97.Google Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L. (1997). Echinoderm Taphonomy, Taphofacies, and Lagerstätten. In Waters, J. A. & Maples, C. G., eds., Geobiology of Echinoderms. Paleontological Society Papers, 3. Pittsburgh: Carnegie Museum, pp. 147–90.Google Scholar
Carter, B. D. and McKinney, M. L. (1992). Eocene echinoids, the Suwanee Strait, and biogeographic taphonomy. Paleobiology, 18, 299325.CrossRefGoogle Scholar
Ceranka, T. and Złotnik, M. 2003. Traces of cassid snails predation upon echinoids from the Middle Miocene of Poland. Acta Palaeontologica Polonica, 48, 491–96.Google Scholar
Chave, K. E. (1964). Skeletal durability and preservation. In Imbrie, J. and Newell, D., eds., Approaches to Paleoecology. New York: J. Wiley & Sons, pp. 377–87.Google Scholar
Chellouche, P., Fürsich, F. T., and Mäuser, M. (2012). Taphonomy of neopterygian fishes from the Upper Kimmeridgian Wattendorf Plattenkalk of Southern Germany. Palaeobiodiversity and Palaeoenvironments, 92, 99117.CrossRefGoogle Scholar
Coppard, S. E., Kroh, A., and Smith, A. B. (2012). The evolution of pedicellariae in echinoids: An arms race against pests and parasites. Acta Zoologica, 93, 125–48.CrossRefGoogle Scholar
Cross, N. F. and Rose, E. P. F. (1994). Predation of the Upper Cretaceous spatangoid echinoid Micraster. In David, B., Guille, A., Féral, J. P., and Roux, M., eds., Echinoderms through Time. Rotterdam: A. A. Balkema, pp. 607–12.Google Scholar
Cutress, B. M. (1965). Observations on growth in Eucidaris tribuloides (Lamarck), with special reference to the origin of the oral primary spines. Bulletin of Marine Science, 15, 797834.Google Scholar
David, B., Stock, S. R., De Carlo, F., Hétérier, V., and De Ridder, C. (2009). Microstructures of Antarctic cidaroid spines: Diversity of shapes and ectosymbiont attachments. Marine Biology, 156, 159–72.CrossRefGoogle Scholar
Dixon, H. L. and Donovan, S. K. (1998). Oligocene echinoids of Jamaica. Tertiary Research, 18, 95124.Google Scholar
Donovan, S. K. (1991). The taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment. In Donovan, S. K., ed., The Processes of Fossilisation. London: Belhaven Press, pp. 241–69.Google Scholar
Donovan, S. K. (2000). A fore-reef echinoid fauna from the Pleistocene of Barbados. Caribbean Journal of Science, 36, 314–20.Google Scholar
Donovan, S. K. (2001). Evolution of Caribbean echinoderms during the Cenozoic: Moving towards a complete picture using all of the fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 177–92.Google Scholar
Donovan, S. K. (2003). Completeness of a fossil record: The Pleistocene echinoids of the Antilles. Lethaia, 36, 17.CrossRefGoogle Scholar
Donovan, S. K. (2015). A prejudiced review of ancient parasites and their host echinoderms: CSI fossil record or just an excuse for speculation? In K. De Baets and T. J. Littlewood, eds., Fossil Parasites, Advances in Parasitology, 90, 291328.Google Scholar
Donovan, S. K. and Clements, D. (2002). Taphonomy of large echinoids; Meoma ventricosa (Lamarck) from the Pliocene of South Carolina. Southeastern Geology, 41, 169–76.Google Scholar
Donovan, S. K. and Embden, B. J. (1996). Early Pleistocene echinoids of the Manchioneal Formation, Jamaica. Journal of Paleontology, 70, 485–93.CrossRefGoogle Scholar
Donovan, S. K. and Gordon, C, M. (1993). Echinoid taphonomy and the fossil record: Supporting evidence from the Plio-Pleistocene of the Caribbean. Palaios, 8, 304–06.Google Scholar
Donovan, S. K. and Pickerill, R. K. (2004). Traces of cassid snails predation upon the echinoids from the Middle Miocene of Poland: Comments on Ceranka and Złotnik (2003). Acta Palaeontologica Polonica, 49, 483–84.Google Scholar
Donovan, S. K. and Jagt, J. M. W. (2013). Rogerella isp. Infesting the Pore Pairs of Hemipneustes striatoradiatus (Leske) (Echinoidea: Upper Cretaceous, Belgium). Bulletin of the Mizunami Fossil Museum, 34, 7376.Google Scholar
Donovan, S. K. and Jagt, J. M. W. (2018). Big oyster, robust echinoid: An unusual association from the Maastrichtian type area (province of Limburg, southern Netherlands). Swiss Journal of Palaeontology, 137, 357–61.Google Scholar
Donovan, S. K., Jagt, J. M. W., and Goggings, L. (2014). Bored and burrowed: An unusual echinoid steinkern from the type Maastrichtian (Upper Cretaceous, Belgium). Ichnos, 21, 261–65.Google Scholar
Donovan, S. K., Jagt, J. M. W., and Langeveld, M. (2017). A dense infestation of round pits in the irregular echinoid Hemipneustes striatoradiatus (Leske) from the Maastrichtian of the Netherlands. Ichnos, 25, 2529.Google Scholar
Donovan, S. K., Jagt, J. M. W., and Lewis, D. N. (2008). Ichnology of Late Cretaceous echinoids from the Maastrichtian type area (The Netherlands, Belgium) – 1. A healed puncture wound in Hemipneustes striatoradiatus (Leske). Bulletin of the Mizunami Fossil Museum, 34, 7376.Google Scholar
Dubois, P. and Ameye, L. (2001). Regeneration of spines and pedicellariae in echinoderms: A Review. Microscopy Research and Technique, 55, 427–37.CrossRefGoogle ScholarPubMed
Dynowski, J. (2012). Echinoderm remains in shallow-water carbonates at Fernandez Bay, San Salvador Island, Bahamas. Palaios, 27, 181–9.CrossRefGoogle Scholar
Ebert, T. A. (1967). Growth and repair of spines in the sea urchin Strongylocentrotus purpuratus (Stimpson). Biological Bulletin, 133, 141–49.CrossRefGoogle Scholar
Ebert, T. A. (1988). Growth, regeneration, and damage repair of spines of the slate-pencil sea urchin Heterocentrotus mammilatus (L.) (Echinodermata: Echinoidae). Pacific Science, 42, 34.Google Scholar
Ellers, O. and Telford, M. (1996). Advancement mechanics of growing teeth in sand dollars (Echinodermata, Echinoidea): A role for mutable collagenous tissue. Biological Sciences, 263, 3944.Google Scholar
Ellers, O., Johnson, A. S., and Moberg, P. F. (1998). Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biological Bulletin, 195, 136–44.CrossRefGoogle ScholarPubMed
Ernst, G. (1967). Über Fossilnester in Pachydiscus-Gehäusen und das lagenvorkommen von Echiniden in der Oberkreide NW-Deutschlands. Paläontologische Zeitschrift, 41, 221229.CrossRefGoogle Scholar
Ernst, G. (1969). Zur Ökologie und Biostratinomie des Schreibkreide-Biotops und seiner benthonischen Bewohner. Zeitschrift der Deutschen Geologischen Gesellschaft, 119, 577–78.Google Scholar
Ernst, G. (1970). Faziesgebundenheit und Ökomorphologie bei irregulären Echiniden der nordwestdeutschen Oberkreide. Paläontologische Zeitschrift, 44, 4162.CrossRefGoogle Scholar
Ernst, G. and Seibertz, E. (1977). Concepts and methods of echinoid biostratigraphy. In Kauffmanm, E. G. and Hazel, J. E., eds., Concepts and Methods of Biostratigraphy. Stroudsburg, PA : Dowden, Hutchinson, and Ross Inc., pp. 541–66.Google Scholar
Ernst, G., Hähnel, W. and Seibertz, E. (1973).Aktuopaläontologie und Merkmalsvariabilität bei mediterranen Echiniden und Rückschlüsse auf die Ökologie und Artumgrenzung fossiler Formen. Paläontologische Zeitschrift, 47, 188216.CrossRefGoogle Scholar
Estes, J. A., Smith, N. S., and Palmisano, J. F. (1978). Sea otter predation and community organization in the western Aleutian Islands, Alaska. Ecology, 59, 822–33.CrossRefGoogle Scholar
Farrar, L., Graves, E., Petsios, E., Portell, R. W., Grun, T. B. Kowalewski, M., and Tyler, C. L. (2020). Characterization of traces of predation and parasitism on fossil echinoids. PALAIOS, 35, 215–27.Google Scholar
Fedra, K., Olscher, E. M., Scherubel, C., Stachowitsch, M., and Wurzian, R. S. (1976). On the ecology of a North Adriatic benthic community: Distribution, standing crop, and composition of the macrobenthos. Marine Biology, 38, 129–45.CrossRefGoogle Scholar
Findlen, P. (2018). Projecting Nature: Agostino Scilla’s Seventeenth-Century Fossil Drawings. Endeavour, 42, 99132.CrossRefGoogle ScholarPubMed
Freneix, S. and Roman, J. (1979). Gastrochaenidae endobiotes d’échinides cénozoïques (Clypeaster et autres). Nouvelle classification de ces bivalves. Bulletin Muséum National d’Histoire Naturelle, Paris, série 4, 1, sect. C, 4, 287313.Google Scholar
Geis, H. L. (1936). Recent and fossil pedicellariae. Journal of Paleontology, 10, 427–48.Google Scholar
Gibson, M. A. and Watson, J. B. (1989). Predatory and non-predatory borings in echinoids from the upper Ocala Formation (Eocene), north-central Florida, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 71, 309–21.CrossRefGoogle Scholar
Gordon, C. M. and Donovan, S. K. (1992). Disarticulated echinoid ossicles in paleoecology and taphonomy: The last interglacial Falmouth formation of Jamaica. Palaios, 7, 157–66.CrossRefGoogle Scholar
Gorzelak, P. and Salamon, M. A. (2013). Experimental tumbling of echinoderms – Taphonomic patterns and implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 569–74.CrossRefGoogle Scholar
Grawe-Baumeister, J., Schweigert, G., and Dietl, G. (2000). Echinoids from the Nusplinger Lithographic Limestone (Late Kimmeridgian, SE Germany). Stuttgart Beiträge zur Natürkunde B, 286, 139.Google Scholar
Greenstein, B. J. (1989). Mass mortality of the West-Indian echinoid Diadema antillarum (Echinodermata: Echinoidea): A natural experiment in taphonomy. Palaios, 4, 487–92.Google Scholar
Greenstein, B. J. (1990). Taphonomic biasing of subfossil echinoid populations adjacent to St. Croix, USVI. In Larue, D. K. and Draper, G., eds., 12th Caribbean Geological Conference, August 7–11, 1989. St. Croix, US Virgin Islands, pp. 290300.Google Scholar
Greenstein, B. J. (1991). An integrated study of echinoid taphonomy: Predictions for the fossil record of four echinoid Families. Palaios, 6, 519–40.CrossRefGoogle Scholar
Greenstein, B. J. (1992). Taphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata: Echinoidea). Paleobiology, 18, 5079.Google Scholar
Greenstein, B. J. (1993a). The effect of life habit on the preservation potential of echinoids. In White, B. N., ed., Proceedings of the Sixth Symposium on the Geology of the Bahamas. San Salvador, Bahamas: Bahamian Field Station, pp. 5574.Google Scholar
Greenstein, B. J. (1993b). Is the fossil record of regular echinoids so poor? A comparison of living and subfossil assemblages. Palaios, 8, 587601.Google Scholar
Greenstein, B. J. (1995). The effects of life habit and test microstructure on the preservation potential of echinoids in Graham’s Harbour, San Salvador Island, Bahamas. Geological Society of America, Special Paper, 300, 177–88.Google Scholar
Grun, T. B. (2016). Echinoid test damage by a stingray predator. Lethaia, 49, 285–86.Google Scholar
Grun, T. B. (2017). Recognizing traces of snail predation on the Caribbean sand dollar Leodia sexiesperforata. Palaios, 32, 448–61.Google Scholar
Grun, T. B. and Nebelsick, J. H. (2016). Taphonomy of a clypeasteroid echinoid using a new quasimetric approach. Acta Palaeontologica Polonica, 61, 689–99.Google Scholar
Grun, T. B. and Nebelsick, J. H. (2018a). Biomechanics of an echinoid’s trabecular system. PLoS ONE, 13(9): e0204432.Google Scholar
Grun, T. B. and Nebelsick, J. H. (2018b). Technical biology of the clypeasteroid Echinocyamus pusillus: A review with outlook. Contemporary Trends in Geoscience, 7, 247–54.Google Scholar
Grun, T. B. and Nebelsick, J. H. (2018c). Structural design analysis of the minute clypeasteroid echinoid Echinocyamus pusillus. Royal Society Open Science, 5, 171323.Google Scholar
Grun, T. B., Koohi, L., Schwinn, T., et al (2016). The skeleton of the sand dollar as a biological role model for segmented shells in building construction: A research review. In Knippers, J., Nickel, K., and Speck, T., eds., Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures. Basle: Springer, 222–47.Google Scholar
Grun, T. B., Kroh, A., and Nebelsick, J. H. (2017). Comparative drilling predation on time-averaged phosphatized and non-phosphatized specimens of the minute clypeasteroid echinoid Echinocyamus stellatus from Miocene offshore sediments (Globigerina Limestone Fm., Malta. Journal of Paleontology, 91, 633–42.CrossRefGoogle Scholar
Grun, T. B., Mancosu, A., Belaústegui, Z., and Nebelsick, J. H. (2018). Clypeaster taphonomy: A paleontological tool to identify stable structures in natural shell systems. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 288, 189202.CrossRefGoogle Scholar
Grun, T. B., Mihaljević, M., and Webb, G. E. (2020). Comparative taphonomy of deep-sea and shallow-marine echinoids of the genus Echinocyamus. Palaios, 35, 403–20.Google Scholar
Grun, T. B., Sievers, D., and Nebelsick, J. H. (2014). Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy). Historical Biology, 26, 745–57.Google Scholar
Guidetti, P. and Mori, M. (2005). Morpho-functional defenses of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators: Marine Biology, 147, 797802.Google Scholar
Heatfield, B. M. (1971). Growth of the calcareous skeleton during regeneration of the spines of the sea urchin, Strongylocentrotus purpuratus (Stimpson): A light and scanning electron microscopic study. Journal of Morphology, 124, 5790.CrossRefGoogle Scholar
Hendler, G. (1977). The differential effects of seasonal stress and predation on the stability of reef-flat echinoid populations. In Taylor, D. L., ed., Proceedings of the 3rd International Coral Reef Symposium, 1. Miami, Florida: Rosenstiel School of Marine and Atmospheric Science, University of Miami, pp. 217–23.Google Scholar
Hess, H. (1972): Eine Echinodermen-Fauna aus dem mittleren Dogger des Aargauer Juras. Schweizer Paläontologische Abhandlungen, 92, 187.Google Scholar
Hopkins, T. S., Thompson, L. E., Walker, J. M., and Davis, M. (2004). A study of epibiont distribution on the spines of the cidaroid sea urchin, Eucidaris tribuloides (Lamarck, 1816) from the shallow shelf of the eastern Gulf of Mexico. In T. Heinzeller and Nebelsick, J. H., eds., Echinoderms München. Proceedings of the 11th International Echinoderm Meeting. Rotterdam: Taylor & Francis, pp. 207–11.Google Scholar
Jagt, J. W. M., Dortangs, R., Simon, E., and van Knippenberg, P. (2007). First record of the ichnofossil Podichnus centrifugalis from the Maastrichtian of northeast Belgium. Bulletin de l’Institut Royal des Sciences Naturelles de Belqique, Sciences de la Terre, Bulletin van het Koninklijk Belgisch Instituut vorr Natuurwetenschappen, 77, 95105.Google Scholar
Jangoux, M. (1984). Diseases of echinoderms. Helgoländer Meeresuntersuchungen, 37, 207–16.CrossRefGoogle Scholar
Johansson, C. L., Bellwood, D. R., Depczynski, M., and Hoey, A. S. (2013). The distribution of the sea urchin Echinometra mathaei (de Blainville) and its predators on Ningaloo Reef, Western Australia: The implications for top-down control in an intact reef system. Journal of Experimental Marine Biology and Ecology, 442, 3946.Google Scholar
Johnson, A. S., Ellers, O., Lemire, J., Minor, M., and Leddy, H. A. (2002). Sutural loosening and skeletal flexibility during growth: Determination of drop-like shapes in sea urchins. Proceedings of the Royal Society of London B, 269, 215–20.Google Scholar
Kidwell, S. M. and Baumiller, T. (1990). Experimental disintegration of regular echinoids: Roles of temperature, oxygen, and decay thresholds. Paleobiology, 16, 247–71.Google Scholar
Kier, P. M. (1977). The poor fossil record of the regular echinoid. Paleobiology, 3, 168–74.Google Scholar
Kier, P. M. (1981). A bored Cretaceous echinoid. Journal of Paleontology, 55, 656–59.Google Scholar
Kowalewski, M. and Nebelsick, J. H. (2003). Predation on recent and fossil echinoids. In P. H. Kelley, M. Kowalewski, and T. A. Hansen, eds., Predator-prey interactions in the fossil record. Topics in Geobiology, 20. New York: Kluwer Academic/Plenum Publishers, pp. 279302.CrossRefGoogle Scholar
Kowalewski, M., Casebolt, S., Hua, Q., et al. (2018). One fossil record, multiple time resolutions: Disparate time-averaging of echinoids and mollusks on a Holocene carbonate platform. Geology, 46, 5154.Google Scholar
Krainer, K., Mostler, H. and Haditsch, J.G. (1994). Jurassische Beckenentwicklung in den Nördlichen Kalkalpen bei Lofer (Salzburg) unter besonderer Berücksichtigung der Manganerz-Genese. Abhandlungen der geologischen Bundesanstalt, 50, 257–93.Google Scholar
Kroh, A. and Nebelsick, J. H. (2003). Echinoid assemblages as a tool for palaeoenvironmental reconstruction – an example from the early Miocene of Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 201, 157–77.CrossRefGoogle Scholar
Kroh, A. and Nebelsick, J. H. (2010). Echinoderms and Oligo-Miocene carbonate system: Potential application in sedimentology and environmental reconstruction. International Association of Sedimentologists, Special Publications, 42, 201–28.Google Scholar
Kudrewicz, R. (1992). The endemic echinoids Micraster (Micraster) maleckii Mączyńska, 1979, from the Santonian deposits of Korzkiew near Cracow (southern Poland); their ecology, taphonomy and evolutionary position. Acta Geologica Polonica, 42, 124–34.Google Scholar
Kurz, R. C. (1995). Predator-prey interactions between Gray Triggerfish (Balistes capriscus Gmelin) and a guild of sand dollars around artificial reefs in the northeastern Gulf of Mexico. Bulletin of Marine Science, 56, 150–60.Google Scholar
Kutscher, F. (1970). Die Echinodermen des Hunsrückschiefer-Meeres. Abhandlungen des Hessischen Landesamtes für Bodenforschung, 56, 3748.Google Scholar
Lawrence, J. M. ed. (2020). (4th ed.). London: Academic Press, p. 718Google Scholar
Lawrence, J. M. and Vasquez, J. (1996). The effects of sublethal predation on the biology of echinoderms. Oceanologica Acta, 19, 431–40.Google Scholar
Lewis, R. (1980). Taphonomy. In Broadhead, T. W. and Waters, J. A., eds., Echinoderms: Notes for a Short Course. Studies in Geology, 3, Knoxville: University of Tennessee Press, pp. 2739.Google Scholar
Linse, K., Walker, L. J. and Barnes, D. K. A. (2008). Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica. Antarctic Science, 20, 227–44.Google Scholar
Luidius, E. (1699). Lithophylacii Britannicii ichnographia. London.Google Scholar
McClanahan, T. R. (1988). Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation. Oecologia, 77, 210–18.CrossRefGoogle Scholar
McClanahan, T. R. (1995). Fish predators and scavengers of the sea urchin Echinometra mathaei in Kenyan coral-reef marine parks. Environmental Biology of Fishes, 43, 187–93.Google Scholar
McClanahan, T. R. (1998). Predation and the distribution and abundance of tropical sea urchin populations. Journal of Experimental Marine Biology and Ecology, 221, 231–55.Google Scholar
McKinney, F. K. and Jackson, J. B. C. (1989). Bryozoan Evolution. Boston: Unwin-Hyman.Google Scholar
Märkel, K. and Röser, U. (1983). Calcite-resorption in the spine of the echinoid Eucidaris tribuloides. Zoomorphology, 103, 4358.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2013). Multiple routes to mass accumulations of clypeasteroid echinoids: A comparative analysis of Miocene echinoid beds of Sardinia. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 173–86.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2015). The origin and paleoecology of clypeasteroid assemblages from different shelf settings of the Miocene of Sardinia, Italy. Palaios, 30, 273–87.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2016). Echinoid assemblages from the early Miocene of Funtanazza (Sardinia): A tool for reconstructing depositional environments along a shelf gradient. Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 139–60.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2017a). Ecomorphological and taphonomic gradient of clypeasteroid-dominated echinoid assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy. Acta Palaeontologica Polonica, 62, 627–46.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2017b). Palaeoecology and taphonomy of spatangoid-dominated echinoid assemblages: A case study from the early middle Miocene of Sardinia, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 334–52.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2019). Reconstructing the palaeoecology of echinoid dominated sublittoral environments: A case study from the Miocene of Sardinia. Journal of Paleontology, 93, 764–84.Google Scholar
Mancosu, A. and Nebelsick, J. H. (2020). Tracking the preservation potential of regular sea urchins in recent and fossil shallow water, high energy environments. Palaeontologia Electronica. 23(2), a42.Google Scholar
Mancosu, A., Nebelsick, J. H., Kroh, A. and Pillola, G. L. (2015). The origin of echinoid shell beds in siliciclastic shelf environments: Three examples from the Miocene of Sardinia, Italy. Lethaia, 48, 8399.Google Scholar
Martinelli Filho, J. E., dos Santos, R. B., Ribeiro, C. C., (2014). Host selection, host-use pattern and competition in Dissodactylus crinitichelis and Clypeasterophilus stebbingi (Brachyura: Pinnotheridae). Symbiosis, 63, 99110.Google Scholar
Marcopoulos-Diacantoni, A. (1970). Some observations on the anomalies and irregularities of the test of echinoids, especially those from the Neogene of Greece (in Greek with a French summary). Annales Géologiques des Pays Helléniques, 22, 256–62.Google Scholar
Marcopoulos-Diacantoni, A. (1984). Le genre Clypeaster dans le domaine Héllenique Durant le Néogène au point de vue Biostratigraphique – Paléoécologique – Taphonomique. Annales Géologiques des Pays Helléniques, 32, 245–56.Google Scholar
Meadows, C. A., Fordyce, R. E. W., and Baumiller, T. K. (2015). Drill holes in the irregular echinoid, Fibularia, from the Oligocene of New Zealand. Palaios, 30, 810–17.Google Scholar
Merrill, R. J. and Hobson, E. S. (1970). Field Observations of Dendraster excentricus, a sand dollar of western North America. American Midland Naturalist, 83, 595624.Google Scholar
Mitrović-Petrović, J. (1972). Les apparitions des irrégularités еt des anomalies sur le squelette des echinides du Miocene Moyen, соmmе la consequense du parasitisme еt des lesions biotiques. (In Serbian with a French summary). Geoloski anali balkanskoga poluostrva, 31, 135–45.Google Scholar
Mitrović-Petrović, J. (1982). Etudes taphonomiques du gisement contenant la faune des échinides (L´Èocene d´Istrie). In F. W. E. Rowe, ed., Papers from the Echinoderm Conference, The Australian Museum Sydney 1978. Australian Museum Memoir, 16, 916.Google Scholar
Mitrović-Petrović, J. and Urošević-Dačić, D. (1962). Incrustings of bryozoan colonies on the shells of Middle Miocene echinoids. Vesnik Zavoda za Geloška i Geofizička Istraživanja Series A, 20, 259–87.Google Scholar
Mizuno, Y. (1993). Echinoidea. In Ohe, F., Nonogaki, I., Tanaka, T., Hachiya, K., Mizuno, Y., Momoyama, T. and Yamaoka, T., eds., Fossils from the Miocene Morozaki Group. Nagoya, Japan: Tokai Fossil Society,pp. 141–55.Google Scholar
Moffat, H. A. and Bottjer, D. J. (1999). Echinoid concentration beds: Two examples from the stratigraphic spectrum. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 329–48.Google Scholar
Mortensen, T. (1934). Note on some fossil echinoids. Geological Magazine, 71, 393407.Google Scholar
Mortensen, T. (1937). Some echinoderm remains from the Jurassic of Württemberg. Kongelige Danske Videnskabernes Selskab, Biologiske Meddelelser, 13, 128.Google Scholar
Mostler, H. (2009). Pedicellarien spät-norischer Echiniden aus der hallstätter Tiefschwellen-fazies, Nördliche Kalkalpen. Geo.Alp, 6, 1952.Google Scholar
Müller, A. H. (1957). Lehrbuch der Paläozoologie. Band 1: Allgemeine Grundlagen. Jena: VEB Gustav Fischer Verlag.Google Scholar
Nebelsick, J. H. (1992a). Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea, Egypt. Palaios, 7, 316–28.Google Scholar
Nebelsick, J. H. (1992b). The Northern Bay of Safaga (Red Sea, Egypt): An actuopalaeontological approach. III, Distribution of echinoids: Beiträge zur Paläontologie von Österreich, 17, 579.Google Scholar
Nebelsick, J. H. (1995a). The uses and limitations of actuopalaeontological investigations on echinoids. Geobios, Mémoire spéciaux, 18, 329336.Google Scholar
Nebelsick, J. H. (1995b). Comparative taphonomy of Clypeasteroids. Eclogae Geologicae Helvetiae, 88, 685–93.Google Scholar
Nebelsick, J. H. (1995c). Actuopalaeontological investigations on echinoids: The potential for taphonomic interpretation. In Emson, R. H., Smith, A. B., and Campbell, A. C., eds., Echinoderm Research. Rotterdam: A. A. Balkema, pp. 209–14.Google Scholar
Nebelsick, J. H. (1996). Biodiversity of shallow-water Red Sea echinoids: implications for the fossil record. Journal of the Marine Biological Association UK, 76, 185–94.Google Scholar
Nebelsick, J. H. (1999a). Taphonomic comparison between recent and fossil sand dollars. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 349–58.Google Scholar
Nebelsick, J. H. (1999b). Taphonomic legacy of predation on echinoids. In Candia Carnevali, M.D. and Bonasoro, F., eds., Echinoderm Research 1998. Rotterdam: A. A. Balkema, pp. 347–52.Google Scholar
Nebelsick, J. H. (1999c). Taphonomy of Clypeaster fragments: preservation and taphofacies. Lethaia, 32, 241–52.CrossRefGoogle Scholar
Nebelsick, J. H. (2004). Taphonomy of echinoderms: introduction and outlook. In T. Heinzeller and Nebelsick, J. H., eds., Echinoderms München. Proceedings of the 11th International Echinoderm Meeting. Rotterdam: Taylor & Francis, pp.471–78.Google Scholar
Nebelsick, J. H. (2008). Taphonomy of the irregular echinoid Clypeaster humilis from the Red Sea: Implications for taxonomic resolution along taphonomic grades. In Ausich, W. I. and Webster, G. D., eds., Echinoderm Paleobiology. Bloomington, IN: Indiana University Press, pp. 115–28.Google Scholar
Nebelsick, J. H. (2020). Clypeasteroids. In Lawrence, J. M., ed., Biology and Ecology of Sea Urchins, 4th ed. London: Academic Press, pp. 315–31.Google Scholar
Nebelsick, J. H. and Kampfer, S. (1994). Taphonomy of Clypeaster humilis and Echinodiscus auritus from the Red Sea. In David, B., Guille, A., Féral, J. P., and Roux, M., eds., Echinoderms through Time. Rotterdam: A. A. Balkema, pp. 803–08.Google Scholar
Nebelsick, J. H. and Kowalewski, M. (1999). Drilling predation on recent clypeasteroid echinoids from the Red Sea. Palaios, 14, 127–44.Google Scholar
Nebelsick, J. H. and Kroh, A. (2002). The stormy path from life to death assemblages: The formation and preservation of mass accumulation of fossil sand dollars. Palaios, 17, 378–93.Google Scholar
Nebelsick, J. H., Schmid, B., and Stachowitsch, M. (1997). The encrustation of fossil and recent sea-urchin tests: Ecological and taphonomical significance. Lethaia, 30, 271–84.Google Scholar
Nebelsick, J. H., Dynowski, J. F., Grossmann, J. N., and Tötzke, C. (2015). Echinoderms: Hierarchically organized light weight skeletons. In Hamm, C., ed., Evolution of Lightweight Structures: Analyses and Technical Applications, Biologically-Inspired Systems, 6. Basle: Springer Verlag, pp. 141–56.Google Scholar
Neumann, C. and Wisshak, M. (2006). A foraminiferal parasite on the sea urchin Echinocorys: Ichnological evidence from the Late Cretaceous (Lower Maastrichtian, northern Germany). Ichnos, 13, 185–90.Google Scholar
Neumann, C. and Wisshak, M. (2009). Gastropod parasitism on Late Cretaceous to Early Paleocene holasteroid echinoids – evidence from Oichnus halo isp. n. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 115–19.Google Scholar
Neumann, C., Wisshak, M., and Bromley, R. G. (2008). Boring a mobile domicile: An alternative to the conchicolous life habit. In Wisshak, M. and Tapanila, L., eds., Current Developments in Bioerosion. Berlin-Heidelberg: Springer, pp. 307–28.Google Scholar
Perricone, V., Grun, T. B., Marmo, F., Langella, C., and Candia Carnevali, M. D. (2021). Constructional design of echinoid endoskeleton: Main structural components and their potential for biomimetic applications. Bioinspiriration & Biomimetics, 16, 011001.Google Scholar
Petsios, E., Portell, R. W., Farrar, L., et al. (2021). An asynchronous Mesozoic marine revolution: The Cenozoic intensification of predation on echinoids. Proceedings of the Royal Society B, 288, 20210400.Google Scholar
Peyer, K., Charbonnier, S., Allain, R., Läng, É., and Vacanta, R. (2014). A new look at the Late Jurassic Canjuers conservation Lagerstätte (Tithonian, Var, France). Nouveau regard sur le Lagerstätte de Canjuers, un site à conservation exceptionnelle du Jurassique supérieur (Tithonien, Var, France). Comptes Rendus Palevol, 13, 403–20.Google Scholar
Philippe, M. (1983). Déformation d´une scutella (Echinoidea, Clypeasteroida) Miocène due à fixation d´une balane. Hypothèse paléoécologique. Geobios, 16, 371–74.Google Scholar
Philippi, U. and Nachtigall, W. (1996). Functional morphology of regular echinoid tests (Echinodermata, Echinoida): A finite element study. Zoomorphology, 116, 3550.Google Scholar
Prouho, H. (1887). Recherches sur le Dorocidaris papillata et quelques autres échinides de la Mediterranée. Archives de zoologie expérimentale et générale, 15, 213380.Google Scholar
Radwański, A. and Wysocka, A. (2001). Mass aggregation of Middle Miocene spine-coated echinoids Echinocardium and their integrated eco-taphonomy. Acta Geologica Polonica, 51, 299316.Google Scholar
Radwański, A. and Wysocka, A. (2004). A farewell to Świniary sequence of mass-aggregated, spine-coated echinoids Psammechinus and their associates (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica, 54, 381–99.Google Scholar
Rahman, I. A., Belaústegui, Z., Zamora, S., et al. (2015). Miocene Clypeaster from Valencia (E Spain): Insights into the taphonomy and ichnology of bioeroded echinoids using X-ray micro-tomography. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 168–79.Google Scholar
Roman, J. (1952). Quelques anomalies chez Clypeaster melitensis Michelin. Bulletin de la Société Géologique de France, 6, 311.Google Scholar
Roman, J. (1953). Galles de myzostomides chez des clypéastres de Turquie. Bulletin Muséum National d’Histoire Naturelle, Paris, 2, 25, 287313.Google Scholar
Roman, J. (1993). Taphonomie des échinodermes des calcaires lithographiques de Canjuers (Tithonien inférieur, Var, France). Geobios, Mémoire spéciaux, 16, 147–55.Google Scholar
Roman, J. and Fabre, J, (1986). Un rivage à échinoïdes reguliers de la base, du Crétacé à Canjuers (Aiguines, Var). Actes 111eme Congrès national des Sociétés savants, Poitiers, Paris, Section sciences, 1 (Science de Terre). 147–58.Google Scholar
Roman, J., Vadet, A., and Boullier, A. (1991) Echinoïdes et brachiopodes de la limite Jurassique-Crétacé à Canjuers (Var, France). Revue Paléobiologie, 10, 21–7.Google Scholar
Roman, J., Atrops, F., Arnaud, M., et al. (1994). Le gisement tithonien inférieur descalcaires lithographiques de Canjuers (Var, France): État actuel des connaissances. The Early Tithonian lithographic limestones from Canjuers (Var, France): Present state of knowledge. Geobios, 27, 127–35.Google Scholar
Romano, M. (2013). “The vain speculation disillusioned by the sense”: The Italian painter Agostino Scilla (1629–1700) called “The Discoloured”, and the correct interpretation of fossils as “lithified organisms” that once lived in the sea. Historical Biology, 26, 631–51.Google Scholar
Rose, E. P. F. (1976). Some observations on the recent holectypoid echinoid Echinoneus cyclostomus and their palaeoecological significance. Thalassia Jugoslavica, 12, 299306.Google Scholar
Rose, E. P. F. and Cross, N. F. (1993). The chalk sea urchin Micraster: Microevolution, adaptation and predation. Geology Today, 5, 179–86.Google Scholar
Rosenkranz, D. (1971). Zur Sedimentologie und Ökologie von Echinodermen-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 138: 221–58.Google Scholar
Sala, E. and Zabala, M. (1996). Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Marine Ecology Progress Series, 140, 7181,Google Scholar
Santos, A. G. and Mayoral, E. J. (2008). Colonization by barnacles on fossil Clypeaster: An exceptional example of larval settlement. Lethaia, 41, 317–32.Google Scholar
Santos, A. G., Mayoral, E., Muñiz, F., Bajo, I., and Adriaensens, O. (2003). Bioerosión en erizos irregulares (Clypeasteroidea) del Mioceno superior en el sector suroccidental de la Cuenca del Guadalquivir (Provincia de Sevilla). Revista Española de Paleontología, 18, 131–41.Google Scholar
Schäfer, W. (1962). Aktuo-Paläontologie nach Studien in der Nordsee. Frankfurt am Main: Verlag Waldemar Kramer.Google Scholar
Schäfer, W. (1972). Ecology and Palaeoecology of Marine Environments. Chicago: University of Chicago Press.Google Scholar
Scilla, A. (1670). La vana speculatzione disingannata dal senso. Naples: Andrea Colicchia.Google Scholar
Schneider, C. L. (2003). Hitchhiking on Pennsylvanian echinoids: Epibionts on Archaeocidaris. Palaios, 18, 435–44.Google Scholar
Schneider, C. L. (2010). Epibionts on Late Carboniferous through Early Permian echinoid spines from Texas, USA. In Harris, L. G., Boetger, S. A., Walker, C. W., and Lesser, M. P., eds., Echinoderms 2006. Proceedings of the 12th International Echinoderm Conference, Durham, 7–11 August 2006. New Hampshire, USA. Boca Raton: CRC Press, pp.7176.Google Scholar
Schneider, C. L., Sprinkle, J., and Ryder, D. (2005). Pennsylvanian (Late Carboniferous) echinoids from the Winchell Formation, north-central Texas, USA. Journal of Paleontology, 79, 745–62.Google Scholar
Schwarz, A. (1930). Ein Seeigelstachel-Gestein. Natur und Museum, 12, 502–06.Google Scholar
Seilacher, A. (1970). Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1970, 3439Google Scholar
Seilacher, A. (1979). Constructional morphology of sand dollars. Palaeobiology, 5, 191221.Google Scholar
Seilacher, A., Reif, W. E., and Westphal, F. (1985). Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical transactions of the Royal Society of London, series B: Biological sciences, 311, 524.Google Scholar
Sievers, D. and Nebelsick, J. H. (2018). Fish predation on a Mediterranean echinoid: Identification and preservation potential. Palaios, 33, 4754.Google Scholar
Sievers, D., Friedrich, J.-P., and Nebelsick, J. H. (2014). A feast for crows: Bird predation on irregular echinoids from Brittany, France. Palaios, 29, 8794.Google Scholar
Simon, A., Poulicek, M., Machiroux, R., and Thorez, J. (1990). Biodegradation anaérobique des structures squelettiques en milieu marin: 1 – Approche morphologique. Cahiers de Biologie Marine, 31, 95105.Google Scholar
Smith, A. B. (1984). Echinoid Palaeobiology. London: ∷George Allen and Unwin Limited, p. 199.Google Scholar
Smith, A. B. (1990). Echinoid evolution from the Triassic to Lower Liassic. Cahiers Université Catholique de Lyon, Série Scientifique, 3, 79117.Google Scholar
Smith, A. B. (2005). Growth and form in echinoids: The evolutionary interplay of plate accretion and plate addition. In Briggs, D. E. G., ed., Evolving Form and Function: Fossils and Development: Proceedings of a Symposium Honoring Adolf Seilacher for His Contributions to Paleontology in Celebration of His 80th Birthday. New Haven: Peabody Museum of Natural History, Yale University, pp. 181–93.Google Scholar
Smith, A. B. and Rader, W. L. (2009). Echinoid diversity, preservation potential and sequence stratigraphical cycles in the Glen Rose Formation (early Albian, Early Cretaceous), Texas, USA. Palaeobiodiversity and Palaeoenvironments, 89, 752.Google Scholar
Smith, A. B., Morris, N. J., Gale, A. S., and Rosen, B. R. (1995). Late Cretaceous (Maastrichtian) echinoid-mollusc-coral assemblages and palaeoenvironments from a Tethyan carbonate platform succession, northern Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 119, 155–68.Google Scholar
Smith, D. S., del Castillo, J., Morales, M. and Luke, B. (1990). The attachment of collagenous ligament to stereom in primary spines of the sea-urchin Eucidaris tribuloides. Tissue Cell, 22, 157–76.Google Scholar
Tasnádi-Kubaska, A. (1962). Paläopathologie, Pathologie der vorzeitliche Tiere. Jena: VEB Gustav Fischer Verlag.Google Scholar
Tavani, G. (1935). Sulle anomalie negli ambulacri di alcuni. Echini del Miocene della Cirenaica. Atti Processi Verbali della Società Toscana di Scienze Naturali in Pisa, 44, 119–23.Google Scholar
Taylor, P. D. and Wilson, M. A. (2002). A New Terminology for Marine Organisms Inhabiting Hard Substrates. Palaios, 17, 522–25.Google Scholar
Telford, M. (1985a). Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata). Zoomorphology, 105, 114–24.Google Scholar
Telford, M. (1985b). Structural analysis of the test of Echinocyamus pusillus (O. F. Müller). In Keegan, B. F. and O’Conner, B. D. S., eds., Proceedings of the 5th International Echinoderm Conference, Ireland 1984. Rotterdam: A. A. Balkema, pp. 353–60.Google Scholar
Thompson, J. R. and Ausich, W. I. (2016). Facies distribution and taphonomy of echinoids from the Fort Payne Formation (late Osagean, early Viséan, Mississippian) of Kentucky. Journal of Paleontology, 90, 239–49.Google Scholar
Thompson, J. R. and Denayer, J. (2017). Revision of echinoids from the Tournaisian (Mississippian) of Belgium and the importance of disarticulated material in assessing palaeodiversity. Geological Journal, 52: 529538.Google Scholar
Thompson, J. R., Crittenden, J., Schneider, C. L., and Bottjer, D. J. (2015). Lower Pennsylvanian (Bashkirian) echinoids from the Marble Falls Formation, San Saba, Texas, USA. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 276, 7989.Google Scholar
Thuy, B., Gale, A.S., and Reich, M. (2011). A new echinoderm Lagerstätte from the Pliensbachian (Early Jurassic) of the French Ardenne. Swiss Journal of Palaeontology, 130, 173–85.Google Scholar
Tyler, C. I., Dexter, T. A., Portell, R. W., and Kowalewski, M. (2018). Predation-facilitated preservation of echinoids in a tropical marine environment. Palaios, 33, 478–86.Google Scholar
Wilson, M. A., Borszcz, T., and Zapoń, M. (2015). Bitten spines reveal unique evidence for fish predation on Middle Jurassic echinoids. Lethaia, 48, 49.Google Scholar
Wysocka, A., Radwański, A., and Górka, M. (2001). Mykolaiv Sands in Opole Minor and beyond: Sedimentary features and biotic content of Middle Miocene (Badenian) sand shoals of Western Ukraine. Geological Quarterly, 56, 475–92.Google Scholar
Young, M. A. L. and Bellwood, D. R. (2011). Diel patterns in sea urchin activity and predation on sea urchins on the Great Barrier Reef. Coral Reefs, 30, 729–36.Google Scholar
Zachos, L. G. (2008). Preservation of echinoid fossils, Paleocene and Eocene of Texas. Transactions of the Gulf Coast Association of Geological Societies, 58, 919–32.Google Scholar
Zachos, L. G. (2009). A new computational growth model for sea urchin skeletons. Journal of Theoretical Biology, 259, 646–57.Google Scholar
Zamora, A., Mayoral, E., Vintaned, J. A. G., Bajo, S., and Espílez, E. (2008). The infaunal echinoid Micraster: Taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain. Geobios, 41, 1529.Google Scholar
Zatoń, M. ł., Villier, L., and Salamon, M. A. (2007). Signs of predation in the Middle Jurassic of south-central Poland: Evidence from echinoderm taphonomy. Lethaia, 40, 139–51.Google Scholar
Zinsmeister, W. J. (1980). Observations in the predation of the clypeasteroid echinoid, Monophoraster darwini from the Upper Miocene Enterrios Formation, Patagonia, Argentina. Journal of Paleontology, 54, 910–12.Google Scholar
Złotnik, M. and Ceranka, T. (2005). Patterns of drilling predation of cassid gastropods preying on echinoids from the middle Miocene of Poland. Acta Palaeontologica Polonica, 50, 409–28.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Taphonomy of Echinoids
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Taphonomy of Echinoids
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Taphonomy of Echinoids
Available formats
×