Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T16:52:32.650Z Has data issue: false hasContentIssue false

Stretchable Systems

Materials, Technologies and Applications

Published online by Cambridge University Press:  14 December 2021

Yogeenth Kumaresan
Affiliation:
University of Glasgow
Nivasan Yogeswaran
Affiliation:
University of Glasgow
Luigi G. Occhipinti
Affiliation:
University of Cambridge
Ravinder Dahiya
Affiliation:
University of Glasgow

Summary

Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.
Get access
Type
Element
Information
Online ISBN: 9781108882330
Publisher: Cambridge University Press
Print publication: 27 January 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zamarayeva, A. M., Ostfeld, A. E., Wang, M. et al., ‘Flexible and Stretchable Power Sources for Wearable Electronics’, Sci. Adv., vol. 3, no. 6, p. e1602051, 2017.CrossRefGoogle ScholarPubMed
Manjakkal, L., Yin, L., Nathan, A., Wang, J. and Dahiya, R., ‘Energy Autonomous Sweat Based Wearable Systems’, Adv. Mater., 2021 (DOI: 10.1002/adma.202100899).Google Scholar
Kim, J., Shim, H. J., Yang, J. et al., ‘Ultrathin Quantum Dot Display Integrated with Wearable Electronics’, Adv. Mater., vol. 29, no. 38, p. 1700217, 2017.CrossRefGoogle ScholarPubMed
Rogers, J. A., ‘Nanomesh On-Skin Electronics’, Nat. Nanotechnol., vol. 12, no. 9, pp. 839–40, 2017.Google Scholar
Escobedo, P., Ntagios, M., Shakthivel, D., Navaraj, W. T. and Dahiya, R., ‘Energy Generating Electronic Skin with Intrinsic Touch Sensing’, IEEE Trans. Robot., vol. 37, no. 2, pp. 683–90, 2021.Google Scholar
Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F. and Dahiya, R., ‘Smart Bandage with Wireless Strain and Temperature Sensors and Battery-less NFC Tag’, IEEE Internet Things J., vol. 8, no.6, pp. 5093–100, 2021.CrossRefGoogle Scholar
Zhou, W., Yao, S., Wang, H. et al., ‘Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes’, ACS Nano, vol. 14, no. 5, pp. 5798–805, 2020.Google Scholar
Kim, J.-H., Kim, S.-R., Kil, H.-J., Kim, Y.-C. and Park, J.-W., ‘Highly Conformable, Transparent Electrodes for Epidermal Electronics’, Nano Lett., vol. 18, no. 7, pp. 4531–40, 2018.Google Scholar
Kumaresan, Y., Ozioko, O. and Dahiya, R., ‘Multifunctional Sensorized Electronic Skin to Detect and Distinguish Pressure and Temperature Stimuli’, IEEE Sens. J., 2021 (DOI: 10.1109/JSEN.2021.3055458).CrossRefGoogle Scholar
Manjakkal, L., Dang, W., Yogeswaran, N. and Dahiya, R., ‘Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications’, Biosensors, vol. 9, no. 1, pp. 012, 2019.CrossRefGoogle ScholarPubMed
Dahiya, R., Akinwande, D. and Chang, J. S., ‘Flexible Electronic Skin: From Humanoids to Humans’, Proc. IEEE, vol. 107, no. 10, pp. 2011–15, 2019.Google Scholar
Dang, W., Vinciguerra, V., Lorenzelli, L. and Dahiya, R., ‘Printable Stretchable Interconnects’, Flex. Print. Electron., vol. 2, no. 1, p. 013003, 2017.Google Scholar
Mukherjee, R., Ganguli, P. and Dahiya, R., ‘Bioinspired Distributed Energy in Robotics and Enabling Technologies’, Adv. Intell. Syst., 2021 (DOI: 10.1002/aisy.202100036).CrossRefGoogle Scholar
Wu, W., ‘Stretchable Electronics: Functional Materials, Fabrication Strategies and Applications’, Sci. Technol. Adv. Mater., vol. 20, no. 1, pp. 187224, 2019.CrossRefGoogle Scholar
Amjadi, M., Kyung, K.-U., Park, I. and Sitti, M., ‘Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review’, Adv. Funct. Mater., vol. 26, no. 11, pp. 1678–98, 2016.Google Scholar
Hosseini, E. S., Dervin, S., Ganguly, P. and Dahiya, R., ‘Biodegradable Materials for Sustainable Health Monitoring Devices’, ACS Appl. Bio Mater., vol. 4, no. 1, pp. 163–94, 2021.Google Scholar
Kim, D.-H. and Rogers, J. A., ‘Stretchable Electronics: Materials Strategies and Devices’, Adv. Mater., vol. 20, no. 24, pp. 4887–92, 2008.CrossRefGoogle Scholar
Dahiya, R. S., ‘Epidermal Electronics – Flexible Electronics for Biomedical Applications’, in Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems, Iniewski, K. and Carrara, S., eds. Cambridge: Cambridge University Press, 2015, pp. 245–55.Google Scholar
García Núñez, C., Manjakkal, L. and Dahiya, R., ‘Energy Autonomous Electronic Skin’, npj Flex. Electron., vol. 3, no. 1, p. 1, 2019.Google Scholar
Soni, M. and Dahiya, R., ‘Soft eSkin: Distributed Touch Sensing with Harmonized Energy and Computing’, Philos. T. R. Soc. A, vol. 378, no. 2164, p. 20190156, 2020.Google Scholar
Dahiya, R., ‘E-Skin: From Humanoids to Humans [Point of View]’, Proc. IEEE, vol. 107, no. 2, pp. 247–52, 2019.Google Scholar
Dahiya, R., Yogeswaran, N., Liu, F. et al., ‘Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs’, Proc. IEEE, vol. 107, no. 10, pp. 2016–33, 2019.Google Scholar
Manjakkal, L., Pullanchiyodan, A., Yogeswaran, N., Hosseini, E. S. and Dahiya, R., ‘A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte’, Adv. Mater., vol. 32, no. 24, p. 1907254, 2020.Google Scholar
Pullanchiyodan, A., Manjakkal, L., Dervin, S., Shakthivel, D. and Dahiya, R., ‘Metal Coated Conductive Fabrics with Graphite Electrodes and Biocompatible Gel Electrolyte for Wearable Supercapacitors’, Adv. Mater. Technol., vol. 5, no. 5, p. 1901107, 2020.Google Scholar
Manjakkal, L., Navaraj, W. T., Núñez, C. García and Dahiya, R., ‘Graphene–Graphite Polyurethane Composite Based High-Energy Density Flexible Supercapacitors’, Adv. Sci., vol. 6, no. 7, p. 1802251, 2019.Google Scholar
Manjakkal, L., Franco, F. F., Pullanchiyodan, A., Jimenez, M. G. and Dahiya, R., ‘Natural Jute Fibre based Supercapacitors and Sensors for Eco-friendly Energy Autonomous Systems’, Adv. Sustain. Syst., vol. 5, no. 3, p. 2000286, 2021.Google Scholar
Savov, A., Joshi, S., Shafqat, S. et al., ‘A Platform for Mechano(-electrical) Characterization of Free-standing Micron- Sized Structures and Interconnects’, Micromachines, vol. 9, no. 1, p. 39, 2018.Google Scholar
Kim, D.-H., Song, J., Choi, W. M. et al., ‘Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations’, Proc. Natl. Acad. Sci., vol. 105, no. 48, p. 18675, 2008.Google Scholar
Darabi, M. A., Khosrozadeh, A., Wang, Q. and Xing, M., ‘Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane’, ACS Appl. Mater. Interfaces, vol. 7, no. 47, pp. 26195–205, 2015.Google Scholar
Zhou, Y., Zhao, C., Wang, J. et al., ‘Stretchable High-Permittivity Nanocomposites for Epidermal Alternating-Current Electroluminescent Displays’, ACS Mater. Lett., vol. 1, no. 5, pp. 511–18, 2019.Google Scholar
Trung, T. Q., Dang, V. Q., Lee, H.-B. et al., ‘An Omnidirectionally Stretchable Photodetector Based on Organic–Inorganic Heterojunctions’, ACS Appl. Mater. Interfaces, vol. 9, no. 41, pp. 35958–67, 2017.CrossRefGoogle ScholarPubMed
Jang, H.-W., Kim, S. and Yoon, S.-M., ‘Impact of Polyimide Film Thickness for Improving the Mechanical Robustness of Stretchable InGaZnO Thin-Film Transistors Prepared on Wavy-Dimensional Elastomer Substrates’, ACS Appl. Mater. Interfaces, vol. 11, no. 37, pp. 34076–83, 2019.Google Scholar
Bae, C. W., Toi, P. T., Kim, B. Y. et al., ‘Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring’, ACS Appl. Mater. Interfaces, vol. 11, no. 16, pp. 14567–75, 2019.Google Scholar
Münzenrieder, N., Cantarella, G., Vogt, C. et al., ‘Stretchable and Conformable Oxide Thin-Film Electronics’, Adv. Electron. Mater., vol. 1, no. 3, p. 1400038, 2015.Google Scholar
Hwang, B.-U., Zabeeb, A., Trung, T. Q. et al., ‘A Transparent Stretchable Sensor for Distinguishable Detection of Touch and Pressure by Capacitive and Piezoresistive Signal Transduction’, NPG Asia Mater., vol. 11, no. 1, p. 23, 2019.Google Scholar
Jo, M., Bae, S., Oh, I. et al., ‘3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage’, ACS Nano, vol. 13, no. 11, pp. 12500–10, 2019.Google Scholar
Bandodkar, A. J., You, J.-M., Kim, N.-H. et al., ‘Soft, Stretchable, High Power Density Electronic Skin-Based Biofuel Cells for Scavenging Energy from Human Sweat’, Energy Environ. Sci., vol. 10, no. 7, pp. 1581–9, 2017.Google Scholar
Mohan, A. M. V., Kim, N., Gu, Y. et al., ‘Merging of Thin- and Thick-Film Fabrication Technologies: Toward Soft Stretchable “Island–Bridge” Devices’, Adv. Mater. Technol., vol. 2, no. 4, p. 1600284, 2017.Google Scholar
Yao, S., Ren, P., Song, R. et al., ‘Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications’, Adv. Mater., vol. 32, no. 15, p. 1902343, 2020.CrossRefGoogle ScholarPubMed
Tang, R. and Fu, H., ‘Mechanics of Buckled Kirigami Membranes for Stretchable Interconnects in Island–Bridge Structures’, J. Appl. Mech., vol. 87, no. 5, p. 051002, 2020.CrossRefGoogle Scholar
Dahiya, R., Navaraj, W. T., Khan, S. and Polat, E. O., ‘Developing Electronic Skin with the Sense of Touch’, Information Display, vol. 31, no. 4, pp. 610, 2015.CrossRefGoogle Scholar
Zhou, J., Tian, G., Jin, G. et al., ‘Buckled Conductive Polymer Ribbons in Elastomer Channels as Stretchable Fiber Conductor’, Adv. Funct. Mater., vol. 30, no. 5, p. 1907316, 2020.Google Scholar
Jiang, C., Li, Q., Fan, S. et al., ‘Hyaline and Stretchable Haptic Interfaces Based on Serpentine-Shaped Silver Nanofiber Networks’, Nano Energy, vol. 73, p. 104782, 2020.Google Scholar
Li, P., Zhang, W., Ma, J. et al., ‘Solution-Grown Serpentine Silver Nanofiber Meshes for Stretchable Transparent Conductors’, Adv. Electron. Mater., vol. 4, no. 12, p. 1800346, 2018.CrossRefGoogle Scholar
Zhang, Y., Li, M., Qin, B. et al., ‘Highly Transparent, Underwater Self-Healing, and Ionic Conductive Elastomer Based on Multivalent Ion–Dipole Interactions’, Chem. Mater., vol. 32, no. 15, pp. 6310–17, 2020.Google Scholar
Stoyanov, H., Kollosche, M., Risse, S., Waché, R. and Kofod, G., ‘Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles’, Adv. Mater., vol. 25, no. 4, pp. 578–83, 2013.Google Scholar
Dang, W., Vinciguerra, V., Lorenzelli, L. and Dahiya, R., ‘Metal–Organic Dual Layer Structure for Stretchable Interconnects’, Procedia Eng., vol. 168, pp. 1559–62, 2016.Google Scholar
Sun, H., Han, Z. and Willenbacher, N., ‘Ultrastretchable Conductive Elastomers with a Low Percolation Threshold for Printed Soft Electronics’, ACS Appl. Mater. Interfaces, vol. 11, no. 41, pp. 38092–102, 2019.Google Scholar
Lee, P., Lee, J., Lee, H. et al., ‘Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network’, Adv. Mater., vol. 24, no. 25, pp. 3326–32, 2012.Google Scholar
Dang, W., Vinciguerra, V., Lorenzelli, L. and Dahiya, R., ‘Printable Stretchable Interconnects’, Flexible and Printed Electronics, vol. 2, no. 1, p. 013003, 2017.Google Scholar
Park, C. W., Moon, Y. G., Seong, H. et al., ‘Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits’, ACS Appl. Mater. Interfaces, vol. 8, no. 24, pp. 15459–65, 2016.Google Scholar
Lv, C., Yu, H. and Jiang, H., ‘Archimedean Spiral Design for Extremely Stretchable Interconnects’, Extreme Mech. Lett., vol. 1, pp. 2934, 2014.Google Scholar
Rahimi, R., Ochoa, M., Yu, W. and Ziaie, B., ‘A Sewing-Enabled Stitch-and-Transfer Method for Robust, Ultra-stretchable, Conductive Interconnects’, J. Micromech.Microeng., vol. 24, no. 9, p. 095018, 2014.CrossRefGoogle Scholar
Xu, R., Ochoa, M., Yu, W. and Ziaie, B., ‘Fabric-Based Stretchable Electronics with Mechanically Optimized Designs and Prestrained Composite Substrates’, Extreme Mech. Lett., vol. 1, pp. 120–6, 2014.Google Scholar
Zhao, Y., Yang, W., Tan, Y. J. et al., ‘Highly Conductive 3D Metal-Rubber Composites for Stretchable Electronic Applications’, APL Mater., vol. 7, no. 3, p. 031508, 2019.Google Scholar
Xue, Z., Song, H., Rogers, J. A., Zhang, Y. and Huang, Y., ‘Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics’, Adv. Mater., vol. 32, no. 15, p. 1902254, 2019.CrossRefGoogle ScholarPubMed
Trung, T. Q. and Lee, N.-E., ‘Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components’, Adv. Mater., vol. 29, no. 3, p. 1603167, 2017.Google Scholar
Lee, J.-H., Lee, K. Y., Gupta, M. K. et al., ‘Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator’, Adv. Mater., vol. 26, no. 5, PP. 765–9, 2014.Google Scholar
Wu, H., Kustra, S., Gates, E. M. and Bettinger, C. J., ‘Topographic Substrates as Strain Relief Features in Stretchable Organic Thin Film Transistors’, Org. Electron., vol. 14, no. 6, PP. 1636–42, 2013.Google Scholar
Kim, D.-H., Ahn, J.-H., Choi, W. M. et al., ‘Stretchable and Foldable Silicon Integrated Circuits’, Science, vol. 320, no. 5875, p. 507, 2008.Google Scholar
Sun, Y., Kumar, V., Adesida, I. and Rogers, J. A., ‘Buckled and Wavy Ribbons of GaAs for High- Performance Electronics on Elastomeric Substrates’, Adv. Mater., vol. 18, no. 21, pp. 2857–62, 2006.Google Scholar
Wang, Y., Li, Z. and Xiao, J., ‘Stretchable Thin Film Materials: Fabrication, Application, and Mechanics’, J. Electron. Packag., vol. 138, no. 2, p. 020801, 2016.CrossRefGoogle Scholar
Park, K., Lee, D.-K., Kim, B.-S. et al., ‘Stretchable, Transparent Zinc Oxide Thin Film Transistors’, Adv. Funct. Mater., vol. 20, no. 20, pp. 3577–82, 2010.Google Scholar
Kaltenbrunner, M., White, M. S., Głowacki, E. D. et al., ‘Ultrathin and Lightweight Organic Solar Cells with High Flexibility’, Nat. Commun., vol. 3, no. 1, p. 770, 2012.Google Scholar
Zhou, H., Qin, W., Yu, Q. et al., ‘Controlled Buckling and Postbuckling Behaviors of Thin Film Devices Suspended on an Elastomeric Substrate with Trapezoidal Surface Relief Structures’, Int. J. Solids and Struct., vol. 160, pp. 96102, 2019.Google Scholar
Baca, A. J., Ahn, J.-H., Sun, Y. et al., ‘Semiconductor Wires and Ribbons for High-Performance Flexible Electronics’, Angew. Chem., vol. 47, no. 30, pp. 5524–42, 2008.Google Scholar
Duan, Y., Huang, Y., Yin, Z., Bu, N. and Dong, W., ‘Non-wrinkled, Highly Stretchable Piezoelectric Devices by Electrohydrodynamic Direct-Writing’, Nanoscale, vol. 6, no. 6, pp. 3289–95, 2014.Google Scholar
Zhao, C., Jia, X., Shu et al., K. et al., ‘Stretchability Enhancement of Buckled Polypyrrole Electrode for Stretchable Supercapacitors via Engineering Substrate Surface Roughness’, Electrochimic.Acta, vol. 343, p. 136099, 2020.Google Scholar
Wang, B., Bao, S., Vinnikova, S., Ghanta, P. and Wang, S., ‘Buckling Analysis in Stretchable Electronics’, npj Flex. Electron., vol. 1, no. 1, p. 5, 2017.CrossRefGoogle Scholar
Jiang, H., Khang, D.-Y., Song, J. et al., ‘Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports’, Proc. Natl. Acad. Sci., vol. 104, no. 40, p. 15607, 2007.CrossRefGoogle ScholarPubMed
Zhang, Y., Huang, Y. and Rogers, J. A., ‘Mechanics of Stretchable Batteries and Supercapacitors’, Curr. Opin. Solid State Mater. Sci., vol. 19, no. 3, pp. 190–9, 2015.CrossRefGoogle Scholar
Huang, Z. Y., Hong, W. and Suo, Z., ‘Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate’, J. Mech. Phys. Solids, vol. 53, no. 9, PP. 2101–18, 2005.Google Scholar
Khang, D.-Y., Rogers, J. A. and Lee, H. H., ‘Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics’, Adv. Funct. Mater., vol. 19, no. 10, PP. 1526–36, 2009.Google Scholar
Jiang, H., Khang, D.-Y., Fei, H. et al., ‘Finite Width Effect of Thin-Films Buckling on Compliant Substrate: Experimental and Theoretical Studies’, J. Mech. Phys. Solids, vol. 56, no. 8, PP. 2585–98, 2008.Google Scholar
Wang, S., Xu, J., Wang, W. et al., ‘Skin Electronics from Scalable Fabrication of an Intrinsically Stretchable Transistor Array’, Nature, vol. 555, no. 7694, PP. 83–8, 2018.Google Scholar
Kim, D. C., Shim, H. J., Lee, W., Koo, J. H. and Kim, D.-H., ‘Material-Based Approaches for the Fabrication of Stretchable Electronics’, Adv. Mater., vol. 32, no. 15, p. 1902743, 2020.Google Scholar
Wu, H.-C., Benight, S. J., Chortos, A. et al., ‘A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors’, Chem. Mater., vol. 26, no. 15, PP. 4544–51, 2014.Google Scholar
Wu, H.-C., Hung, C.-C., Hong, C.-W. et al., ‘Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors’, Macromolecules, vol. 49, no. 22, PP. 8540–8, 2016.Google Scholar
Li, C.-H., Wang, C., Keplinger, C. et al., ‘A Highly Stretchable Autonomous Self-healing Elastomer’, Nat. Chem, vol. 8, no. 6, PP. 618–24, 2016.Google Scholar
Ashizawa, M., Zheng, Y., Tran, H. and Bao, Z., ‘Intrinsically Stretchable Conjugated Polymer Semiconductors in Field Effect Transistors’, Prog. Polym. Sci., vol. 100, p. 101181, 2020.CrossRefGoogle Scholar
Sim, K., Rao, Z., Kim et al., H.-J., ‘Fully Rubbery Integrated Electronics from High Effective Mobility Intrinsically Stretchable Semiconductors’, Sci. Adv., vol. 5, no. 2, p. eaav5749, 2019.CrossRefGoogle ScholarPubMed
Ding, S., Jiang, Z., Chen, F. et al., ‘Intrinsically Stretchable, Transient Conductors from a Composite Material of Ag Flakes and Gelatin Hydrogel’, ACS Appl. Mater. Interfaces, vol. 12, no. 24, PP. 27572–7, 2020.Google Scholar
Liang, J., Li, L., Tong, K. et al., ‘Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes’, ACS Nano, vol. 8, no. 2, PP. 1590–600, 2014.Google Scholar
Chortos, A., Zhu, C., Oh, J. Y. et al., ‘Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics’, ACS Nano, vol. 11, no. 8, PP. 7925–37, 2017.Google Scholar
Jang, K.-I., Li, K., Chung, H. U. et al., ‘Self-assembled Three Dimensional Network Designs for Soft Electronics’, Nat. Commun., vol. 8, no. 1, p. 15894, 2017.Google Scholar
Rehman, M. U. and Rojas, J. P., ‘Optimization of Compound Serpentine–Spiral Structure for Ultra-stretchable Electronics’, Extreme Mech. Lett., vol. 15, PP. 4450, 2017.Google Scholar
Woo, J., Lee, H., Yi, C. et al., ‘Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics’, Adv. Funct. Mater., vol. 30, no. 29, p. 1910026, 2020.Google Scholar
Deng, C., Pan, L., Li, C., Fu, X., Cui, R. and Nasir, H., ‘Helical Gold Nanotube Film as Stretchable Micro/Nanoscale Strain Sensor’, J. Mater. Sci., vol. 53, no. 3, PP. 2181–92, 2018.Google Scholar
Xie, Z., Avila, R., Huang, Y. and Rogers, J. A., ‘Flexible and Stretchable Antennas for Biointegrated Electronics’, Adv. Mater., vol. 32, no. 15, p. 1902767, 2019.Google Scholar
Bonderover, E. and Wagner, S., ‘A Woven Inverter Circuit for e-textile Applications’, IEEE Electron. Device Lett., vol. 25, no. 5, PP. 295–7, 2004.Google Scholar
Hamedi, M., Forchheimer, R. and Inganäs, O., ‘Towards Woven Logic from Organic Electronic Fibres’, Nat. Mater., vol. 6, no. 5, PP. 357–62, 2007.Google Scholar
Kang, E., Min, W., Choo, H. and Park, J.-E., ‘Design of a Very High Frequency Stretchable Inverted Conical Helical Antenna for Maritime Search and Rescue Applications’, Microw. Opt. Technol. Lett., vol. 62, no. 1, PP. 284–8, 2020.Google Scholar
Do, T. N. and Visell, Y., ‘Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare’, Sci. Rep., vol. 7, no. 1, p. 1753, 2017.CrossRefGoogle ScholarPubMed
Tai, Y. and Lubineau, G., ‘Double-Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradient-Coated Thread for Multidimensional Flexible Pressure-Sensing Devices’, Adv. Funct. Mater., vol. 26, no. 23, pp. 4078–84, 2016.Google Scholar
Jung, Y. H., Lee, J., Qiu, Y. et al., ‘Stretchable Twisted-Pair Transmission Lines for Microwave Frequency Wearable Electronics’, Adv. Funct. Mater., vol. 26, no. 26, pp. 4635–42, 2016.Google Scholar
Cheng, M. Y., Tsao, C. M., Lai, Y. Z. and Yang, Y. J., ‘The Development of a Highly Twistable Tactile Sensing Array with Stretchable Helical Electrodes’, Sensor. Actuat. A-Phys., vol. 166, no. 2, pp. 226–33, 2011.Google Scholar
Dang, W., Manjakkal, L., Navaraj, W. T., Lorenzelli, L., Vinciguerra, V. and Dahiya, R., ‘Stretchable Wireless System for Sweat pH Monitoring’, Biosens. Bioelectron., vol. 107, pp. 192202, 2018.Google Scholar
Hocheng, H. and Chen, C.-M., ‘Design, Fabrication and Failure Analysis of Stretchable Electrical Routings’, Sensors, vol. 14, no. 7, pp. 11855–77, 2014.Google Scholar
Cheng, M., Tsao, C. and Yang, Y., ‘An Anthropomorphic Robotic Skin Using Highly Twistable Tactile Sensing Array’, in 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 650–5, 2010 (DOI: 10.1109/ICIEA.2010.5517008).Google Scholar
Huyghe, B., Rogier, H., Vanfleteren, J. and Axisa, F., ‘Design and Manufacturing of Stretchable High-Frequency Interconnects’, IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 802–8, 2008.Google Scholar
Brosteaux, D., Axisa, F., Gonzalez, M. and Vanfleteren, J., ‘Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits’, IEEE Electron. Device Lett., vol. 28, no. 7, pp. 552–4, 2007.Google Scholar
Verplancke, R., Bossuyt, F., Cuypers, D. and Vanfleteren, J., ‘Thin-Film Stretchable Electronics Technology Based on Meandering Interconnections: Fabrication and Mechanical Performance’, J. Micromech.Microeng., vol. 22, no. 1, p. 015002, 2011.Google Scholar
Kim, D.-H., Liu, Z., Kim, Y.-S. et al., ‘Optimized Structural Designs for Stretchable Silicon Integrated Circuits’, Small, vol. 5, no. 24, pp. 2841–7, 2009.Google Scholar
Zhang, Y., Fu, H., Su, Y. et al., ‘Mechanics of Ultra-stretchable Self-similar Serpentine Interconnects’, Acta Mater., vol. 61, no. 20, pp. 7816–27, 2013.Google Scholar
Kim, R.-H., Kim, D.-H., Xiao, J. et al., ‘Waterproof AlInGaP Optoelectronics on Stretchable Substrates with Applications in Biomedicine and Robotics’, Nat. Mater., vol. 9, no. 11, pp. 929–37, 2010.Google Scholar
Webb, R. C., Bonifas, A. P., Behnaz, A. et al., ‘Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin’, Nat. Mater., vol. 12, no. 10, pp. 938–44, 2013.Google Scholar
Fan, Z., Zhang, Y., Ma, Q. et al., ‘A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics’, Int. J. Solids and Struct., vol. 91, pp. 4654, 2016.Google Scholar
Dang, W., ‘Stretchable Interconnects for Smart Integration of Sensors in Wearable and Robotic Applications’, doctorate, School of Engineering, University of Glasgow, glathesis:2018-40994, 2018.Google Scholar
Xu, R., Zhang, Y. and Komvopoulos, K., ‘Mechanical Designs Employing Buckling Physics for Reversible and Omnidirectional Stretchability in Microsupercapacitor Arrays’, Mater. Res. Lett., vol. 7, no. 3, pp. 110–16, 2019.Google Scholar
Isobe, M. and Okumura, K., ‘Initial Rigid Response and Softening Transition of Highly Stretchable Kirigami Sheet Materials’, Sci. Rep., vol. 6, no. 1, p. 24758, 2016.Google Scholar
Zhang, C., Khan, A., Cai, J. et al., ‘Stretchable Transparent Electrodes with Solution-Processed Regular Metal Mesh for an Electroluminescent Light-Emitting Film’, ACS Appl. Mater. Interfaces, vol. 10, no. 24, pp. 21009–17, 2018.Google Scholar
Lee, H. C., Hsieh, E. Y., Yong, K. and Nam, S., ‘Multiaxially-Stretchable Kirigami-Patterned Mesh Design for Graphene Sensor Devices’, Nano Res., vol. 13, no. 5, pp. 1406–12, 2020.Google Scholar
Morikawa, Y., Ayub, S., Paul, O., Kawano, T. and Ruther, P., ‘Highly Stretchable Kirigami Structure with Integrated Led Chips and Electrodes for Optogenetic Experiments on Perfused Hearts’, in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 2484–7, 2019 (DOI: 10.1109/TRANSDUCERS.2019.8808221).Google Scholar
Xu, R., Hung, A., Zverev, A. et al., ‘A Kirigami-Inspired, Extremely Stretchable, High Areal-Coverage Micro-supercapacitor Patch’, in 2018 IEEE Micro. Electro. Mechanical Systems (MEMS), pp. 661–4, 2018 (DOI: 10.1109/MEMSYS.2018.8346641).Google Scholar
Wu, C., Wang, X., Lin, L., Guo, H. and Wang, Z. L., ‘Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns’, ACS Nano, vol. 10, no. 4, pp. 4652–9, 2016.Google Scholar
Jang, N.-S., Kim, K.-H., Ha, S.-H., Jung, S.-H., Lee, H. M. and Kim, J.-M., ‘Simple Approach to High- Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications’, ACS Appl. Mater. Interfaces, vol. 9, no. 23, pp. 19612–21, 2017.Google Scholar
Wang, Z., Zhang, L., Duan, S., Jiang, H., Shen, J. and Li, C., ‘Kirigami-Patterned Highly Stretchable Conductors from Flexible Carbon Nanotube-Embedded Polymer Films’, J. Mater. Chem. C, vol. 5, no. 34, pp. 8714–22, 2017.Google Scholar
Xu, R., Zverev, A., Hung, A. et al., ‘Kirigami-Inspired, Highly Stretchable Micro-supercapacitor Patches Fabricated by Laser Conversion and Cutting’, Microsyst. Nanoeng., vol. 4, no. 1, p. 36, 2018.Google Scholar
Zhang, Z., Yu, Y., Tang, Y. et al., ‘Kirigami-Inspired Stretchable Conjugated Electronics’, Adv. Electron. Mater., vol. 6, no. 1, p. 1900929, 2020.Google Scholar
Qi, J., Xiong, H., Hou, C., Zhang, Q., Li, Y. and Wang, H., ‘A Kirigami-Inspired Island-Chain Design for Wearable Moistureproof Perovskite Solar Cells with High Stretchability and Performance Stability’, Nanoscale, vol. 12, no. 6, pp. 3646–56, 2020.Google Scholar
Bao, Y., Hong, G., Chen, Y. et al., ‘Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries’, ACS Appl. Mater. Interfaces, vol. 12, no. 1, pp. 780–8, 2020.Google Scholar
Isobe, M. and Okumura, K., ‘Discontinuity in the In-plane to Out-of-plane Transition of Kirigami’, J. Phys. Soc. Japan, vol. 88, no. 2, p. 025001, 2019.Google Scholar
Kim, B.-Y., Lee, H.-B. and Lee, N.-E., ‘A Durable, Stretchable, and Disposable Electrochemical Biosensor on Three-Dimensional Micro-patterned Stretchable Substrate’, Sensor. Actuat. B- Chem., vol. 283, pp. 312–20, 2019.Google Scholar
Lee, H.-B., Bae, C.-W., Duy, L. T. et al., ‘Mogul-Patterned Elastomeric Substrate for Stretchable Electronics’, Adv. Mater., vol. 28, no. 16, pp. 3069–77, 2016.Google Scholar
Lee, Y.-H. and Kim, Y.-J., ‘Mechanical Characteristics of Stretchable Electronics Based on a Mogul-Patterned Structure’, Funct. Mater. Lett., vol. 9, no. 6, p. 1642012, 2016.Google Scholar
Wu, C., Jiu, J., Araki, T. et al., ‘Biaxially Stretchable Silver Nanowire Conductive Film Embedded in a Taro Leaf- Templated PDMS Surface’, Nanotechnology, vol. 28, no. 1, p. 01LT01, 2016.Google Scholar
Takahashi, T., Takei, K., Gillies, A. G., Fearing, R. S. and Javey, A., ‘Carbon Nanotube Active-Matrix Backplanes for Conformal Electronics and Sensors’, Nano Lett., vol. 11, no. 12, pp. 5408–13, 2011.Google Scholar
Lim, J.-E., Yoon, S., Hwang, B.-U., Lee, N.-E. and Kim, H.-K., ‘Self-connected Ag Nanoporous Sponge Embedded in Sputtered Polytetrafluoroethylene for Highly Stretchable and Semi-transparent Electrodes’, Adv. Mater. Interfaces, vol. 6, no. 8, p. 1801936, 2019.Google Scholar
Gui, X., Cao, A., Wei, J. et al., ‘Soft, Highly Conductive Nanotube Sponges and Composites with Controlled Compressibility’, ACS Nano, vol. 4, no. 4, pp. 2320–6, 2010.Google Scholar
Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S. and Cheng, H.-M., ‘Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition’, Nat. Mater., vol. 10, no. 6, pp. 424–8, 2011.Google Scholar
Yu, Y., Zeng, J., Chen, C. et al., ‘Three-Dimensional Compressible and Stretchable Conductive Composites’, Adv. Mater., vol. 26, no. 5, pp. 810–15, 2014.Google Scholar
Guo, C. F., Sun, T., Liu, Q., Suo, Z. and Ren, Z., ‘Highly Stretchable and Transparent Nanomesh Electrodes Made by Grain Boundary Lithography’, Nat. Commun., vol. 5, no. 1, p. 3121, 2014.Google Scholar
Kim, D.-H., Lu, N., Ma, R. et al., ‘Epidermal Electronics’, Science, vol. 333, no. 6044, p. 838, 2011.Google Scholar
Bhattacharjee, M., Soni, M., Escobedo, P. and Dahiya, R., ‘PEDOT:PSS Microchannel-Based Highly Sensitive Stretchable Strain Sensor’, Adv. Electron. Mater., vol. 6, no. 8, p. 2000445, 2020.Google Scholar
Bade, S. G. R., Shan, X., Hoang, P. T. et al., ‘Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite– Polymer Composite Emitters’, Adv. Mater., vol. 29, no. 23, p. 1607053, 2017.Google Scholar
Sekitani, T., Nakajima, H., Maeda, H. et al., ‘Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors’, Nat. Mater., vol. 8, no. 6, pp. 494–9, 2009.Google Scholar
Lee, M.-S., Lee, K., Kim, S.-Y. et al., ‘High-Performance, Transparent and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures’, Nano Lett., vol. 13, no. 6, pp. 2814–21, 2013.Google Scholar
Jeong, G. S., Baek, D.-H., Jung, H. C. et al., ‘Solderable and Electroplatable Flexible Electronic Circuit on a Porous Stretchable Elastomer’, Nat. Commun., vol. 3, no. 1, p. 977, 2012.Google Scholar
Fouillet, Y., Parent, C., Gropplero, G. et al., ‘Stretchable Material for Microfluidic Applications’, MDPI Proc., vol. 1, no. 4, p. 501, 2017.Google Scholar
Gupta, S., Carrillo, F., Li, C., Pruitt, L. and Puttlitz, C., ‘Adhesive Forces Significantly Affect Elastic Modulus Determination of Soft Polymeric Materials in Nanoindentation’, Mater. Lett., vol. 61, no. 2, pp. 448–51, 2007.Google Scholar
Jeong, S. H., Zhang, S., Hjort, K., Hilborn, J. and Wu, Z., ‘PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics’, Adv. Mater., vol. 28, no. 28, pp. 5830–6, 2016.Google Scholar
Schneider, F., Fellner, T., Wilde, J. and Wallrabe, U., ‘Mechanical Properties of Silicones for MEMS’, J. Micromech. Microeng., vol. 18, no. 6, p. 065008, 2008.CrossRefGoogle Scholar
Ma, K., Rivera, J., Hirasaki, G. J. and Biswal, S. L., ‘Wettability Control and Patterning of PDMS Using UV–Ozone and Water Immersion’, J. Colloid Interface Sci., vol. 363, no. 1, pp. 371–8, 2011.Google Scholar
Oláh, A., Hillborg, H. and Vancso, G. J., ‘Hydrophobic Recovery of UV/Ozone Treated Poly(dimethylsiloxane): Adhesion Studies by Contact Mechanics and Mechanism of Surface Modification’, Appl. Surf. Sci., vol. 239, no. 3, pp. 410–23, 2005.Google Scholar
Wang, D.-P., Lai, J.-C., Lai, H.-Y. et al., ‘Distinct Mechanical and Self-healing Properties in Two Polydimethylsiloxane Coordination Polymers with Fine-Tuned Bond Strength’, Inorg. Chem., vol. 57, no. 6, pp. 3232–42, 2018.Google Scholar
Döhler, D., Kang, J., Cooper, C. B. et al., ‘Tuning the Self-healing Response of Poly(dimethylsiloxane)-Based Elastomers’, ACS Appl. Polym. Mater., vol. 2, no. 9, pp. 4127–39, 2020.Google Scholar
Lee, C. H., Ma, Y., Jang, K.-I. et al., ‘Soft Core/Shell Packages for Stretchable Electronics’, Adv. Funct. Mater., vol. 25, no. 24, pp. 3698–704, 2015.Google Scholar
Jang, K.-I., Han, S. Y., Xu, S. et al., ‘Rugged and Breathable Forms of Stretchable Electronics with Adherent Composite Substrates for Transcutaneous Monitoring’, Nat. Commun., vol. 5, no. 1, p. 4779, 2014.Google Scholar
Yeo, W.-H., Kim, Y.-S., Lee, J. et al., ‘Multifunctional Epidermal Electronics Printed Directly onto the Skin’, Adv. Mater., vol. 25, no. 20, pp. 2773–8, 2013.Google Scholar
Zhang, R., Huang, K., Zhu, M. et al., ‘Corrosion Resistance of Stretchable Electrospun SEBS/PANi Micro-Nano Fiber Membrane’, Eur. Polym. J., vol. 123, p. 109394, 2020.Google Scholar
Choi, S., Park, J., Hyun, W. et al., ‘Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy’, ACS Nano, vol. 9, no. 6, pp. 6626–33, 2015.Google Scholar
Song, S. and Zhang, Y., ‘Carbon Nanotube/Reduced Graphene Oxide Hybrid for Simultaneously Enhancing the Thermal Conductivity and Mechanical Properties of Styrene-butadiene Rubber’, Carbon, vol. 123, pp. 158–67, 2017.Google Scholar
Bossuyt, F., Guenther, J., Löher, T., Seckel, M., Sterken, T. and de Vries, J., ‘Cyclic Endurance Reliability of Stretchable Electronic Substrates’, Microelectron. Reliab., vol. 51, no. 3, pp. 628–35, 2011.Google Scholar
Li, H., Sun, J.-T., Wang, C. et al., ‘High Modulus, Strength and Toughness Polyurethane Elastomer Based on Unmodified Lignin’, ACS Sustain. Chem. Eng., vol. 5, no. 9, pp. 7942–9, 2017.Google Scholar
Uman, S., Dhand, A. and Burdick, J. A., ‘Recent Advances in Shear-Thinning and Self-healing Hydrogels for Biomedical Applications’, J. Appl. Polym. Sci., vol. 137, no. 25, p. 48668, 2020.Google Scholar
Xu, B., Jiang, H., Li, H., Zhang, G. and Zhang, Q., ‘High Strength Nanocomposite Hydrogel Bilayer with Bidirectional Bending and Shape Switching Behaviors for Soft Actuators’, RSC Adv., vol. 5, no. 17, pp. 13167–70, 2015.Google Scholar
Son, D., Kang, J., Vardoulis, O. et al., ‘An Integrated Self-healable Electronic Skin System Fabricated via Dynamic Reconstruction of a Nanostructured Conducting Network’, Nat. Nanotechnol., vol. 13, no. 11, pp. 1057–65, 2018.CrossRefGoogle ScholarPubMed
Cao, L., Fan, J., Huang, J. and Chen, Y., ‘A Robust and Stretchable Cross-linked Rubber Network with Recyclable and Self-healable Capabilities Based on Dynamic Covalent Bonds’, J. Mater. Chem. A, vol. 7, no. 9, pp. 4922–33, 2019.Google Scholar
Wolf, M. P., Salieb-Beugelaar, G. B. and Hunziker, P., ‘PDMS with Designer Functionalities – Properties, Modifications Strategies, and Applications’, Prog. Polym. Sci., vol. 83, pp. 97134, 2018.Google Scholar
Vaicekauskaite, J., Mazurek, P., Vudayagiri, S. and Skov, A. L., ‘Mapping the Mechanical and Electrical Properties of Commercial Silicone Elastomer Formulations for Stretchable Transducers’, J. Mater. Chem. C., vol. 8, no. 4, pp. 1273–9, 2020.Google Scholar
Park, S., Mondal, K., Treadway, R. M. et al., ‘Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184’, ACS Appl. Mater. Interfaces., vol. 10, no. 13, pp. 11261–8, 2018.Google Scholar
Verney, J. C. K. de, Lima, M. F. S. and Lenz, D. M., ‘Properties of SBS and Sisal Fiber Composites: Ecological Material for Shoe Manufacturing’, Mater. Res., vol. 11, pp. 447–51, 2008.Google Scholar
Gupta, P., Bera, M. and Maji, P. K., ‘Nanotailoring of Sepiolite Clay with Poly[styrene-b-(ethylene-co-butylene)-b-styrene]: Structure–Property Correlation’, Polym. Adv. Technol., vol. 28, no. 11, pp. 1428–37, 2017.Google Scholar
Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. and Whitesides, G. M., ‘Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer’, Nature, vol. 393, no. 6681, pp. 146–9, 1998.Google Scholar
Lacour, S. P., Wagner, S., Huang, Z. and Suo, Z., ‘Stretchable Gold Conductors on Elastomeric Substrates’, Appl. Phys. Lett., vol. 82, no. 15, pp. 2404–6, 2003.Google Scholar
Graz, I. M., Cotton, D. P. J. and Lacour, S. P., ‘Extended Cyclic Uniaxial Loading of Stretchable Gold Thin-Films on Elastomeric Substrates’, Appl. Phys. Lett., vol. 94, no. 7, p. 071902, 2009.Google Scholar
Gray, D. S., Tien, J. and Chen, C. S., ‘High-Conductivity Elastomeric Electronics’, Adv. Mater., vol. 16, no. 5, pp. 393–7, 2004.Google Scholar
Khan, S., Lorenzelli, L. and Dahiya, R. S., ‘Technologies for Printing Sensors and Electronics over Large Flexible Substrates: A Review’, IEEE Sens. J., vol. 15, no. 6, pp. 3164–85, 2015.Google Scholar
Chun, K.-Y., Oh, Y., Rho, J. et al., ‘Highly Conductive, Printable and Stretchable Composite Films of Carbon Nanotubes and Silver’, Nat. Nanotechnol., vol. 5, no. 12, pp. 853–7, 2010.Google Scholar
Finn, D. J., Lotya, M. and Coleman, J. N., ‘Inkjet Printing of Silver Nanowire Networks’, ACS Appl. Mater. Interfaces, vol. 7, no. 17, pp. 9254–61, 2015.Google Scholar
Michelis, F., Bodelot, L., Bonnassieux, Y. and Lebental, B., ‘Highly Reproducible, Hysteresis-Free, Flexible Strain Sensors by Inkjet Printing of Carbon Nanotubes’, Carbon, vol. 95, pp. 1020–6, 2015.Google Scholar
Scardaci, V., Coull, R., Lyons, P. E., Rickard, D. and Coleman, J. N., ‘Spray Deposition of Highly Transparent, Low-Resistance Networks of Silver Nanowires over Large Areas’, Small, vol. 7, no. 18, pp. 2621–8, 2011.Google Scholar
Khan, S., Lorenzelli, L. and Dahiya, R., ‘Flexible MISFET Devices from Transfer Printed Si Microwires and Spray Coating’, IEEE J. Electron. Devices Soc., vol. 4, no. 4, pp. 189–96, 2016.Google Scholar
Liang, J., Tong, K. and Pei, Q., ‘A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors’, Adv. Mater., vol. 28, no. 28, pp. 5986–96, 2016.Google Scholar
Khan, S., Dang, W., Lorenzelli, L. and Dahiya, R., ‘Flexible Pressure Sensors Based on Screen- Printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs’, IEEE Trans. Semicond. Manuf., vol. 28, no. 4, pp. 486–93, 2015.Google Scholar
Yang, L., Zhang, T., Zhou, H., Price, S. C., Wiley, B. J. and You, W., ‘Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes’, ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp. 4075–84, 2011.Google Scholar
Akter, T. and Kim, W. S., ‘Reversibly Stretchable Transparent Conductive Coatings of Spray- Deposited Silver Nanowires’, ACS Appl. Mater. Interfaces, vol. 4, no. 4, pp. 1855–9, 2012.Google Scholar
Yu, Z., Zhang, Q., Li, L. et al., ‘Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light- Emitting Diodes’, Adv. Mater., vol. 23, no. 5, pp. 664–8, 2011.Google Scholar
De, S., Higgins, T. M., Lyons, P. E. et al., ‘Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios’, ACS Nano, vol. 3, no. 7, pp. 1767–74, 2009.Google Scholar
Lee, P., Ham, J., Lee, J. et al., ‘Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite’, Adv. Funct. Mater., vol. 24, no. 36, pp. 5671–8, 2014.Google Scholar
Kim, J., Lee, M.-S., Jeon, S. et al., ‘Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene–Nanowire Hybrid Nanostructures’, Adv. Mater., vol. 27, no. 21, pp. 3292–7, 2015.CrossRefGoogle ScholarPubMed
Lee, J.-Y., Connor, S. T., Cui, Y. and Peumans, P., ‘Solution-Processed Metal Nanowire Mesh Transparent Electrodes’, Nano Lett., vol. 8, no. 2, pp. 689–92, 2008.Google Scholar
Madaria, A. R., Kumar, A., Ishikawa, F. N. and Zhou, C., ‘Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique’, Nano Res., vol. 3, no. 8, pp. 564–73, 2010.Google Scholar
Ko, Y., Song, S. K., Kim, N. H. and Chang, S. T., ‘Highly Transparent and Stretchable Conductors Based on a Directional Arrangement of Silver Nanowires by a Microliter-Scale Solution Process’, Langmuir, vol. 32, no. 1, pp. 366–73, 2016.Google Scholar
Rathmell, A. R., Nguyen, M., Chi, M. and Wiley, B. J., ‘Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks’, Nano Lett., vol. 12, no. 6, pp. 3193–9, 2012.Google Scholar
Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. and Park, I., ‘Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite’, ACS Nano, vol. 8, no. 5, pp. 5154–63, 2014.Google Scholar
Kim, S., Amjadi, M., Lee, T.-I. et al., ‘Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices’, ACS Appl. Mater. Interfaces, vol. 11, no. 26, pp. 23639–48, 2019.Google Scholar
Ding, L., Xuan, S., Pei, L. et al., ‘Stress and Magnetic Field Bimode Detection Sensors Based on Flexible CI/CNTs–PDMS Sponges’, ACS Appl. Mater. Interfaces, vol. 10, no. 36, pp. 30774–84, 2018.Google Scholar
Han, S., Hong, S., Ham, J. et al., ‘Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics’, Adv. Mater., vol. 26, no. 33, pp. 5808–14, 2014.Google Scholar
Song, J., Li, J., Xu, J. and Zeng, H., ‘Superstable Transparent Conductive Cu@Cu4Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics’, Nano Lett., vol. 14, no. 11, pp. 6298–305, 2014.Google Scholar
Hu, W., Wang, R., Lu, Y. and Pei, Q., ‘An Elastomeric Transparent Composite Electrode Based on Copper Nanowires and Polyurethane’, J. Mater. Chem. C, vol. 2, no. 7, pp. 1298–305, 2014.Google Scholar
Polat, E. O., Balci, O., Kakenov, N., Uzlu, H. B., Kocabas, C. and Dahiya, R., ‘Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices’, Sci. Rep., vol. 5, no. 1, p. 16744, 2015.Google Scholar
Lipomi, D. J., Vosgueritchian, M., Tee, B. C. K. et al., ‘Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes’, Nat. Nanotechnol., vol. 6, no. 12, pp. 788–92, 2011.Google Scholar
Ma, W., Song, L., Yang, R. et al., ‘Directly Synthesized Strong, Highly Conducting, Transparent Single-Walled Carbon Nanotube Films’, Nano Lett., vol. 7, no. 8, pp. 2307–11, 2007.Google Scholar
Cai, L., Li, J., Luan, P. et al., ‘Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Single-Walled Carbon Nanotube Architecture’, Adv. Funct. Mater., vol. 22, no. 24, pp. 5238–44, 2012.Google Scholar
Xu, F., Wang, X., Zhu, Y. and Zhu, Y., ‘Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors’, Adv. Funct. Mater., vol. 22, no. 6, pp. 1279–83, 2012.Google Scholar
Ann Kim, T., Lee, S.-S., Kim, H. and Park, M., ‘Acid-Treated SWCNT/Polyurethane Nanoweb as a Stretchable and Transparent Conductor’, RSC Adv., vol. 2, no. 28, pp. 10717–24, 2012.Google Scholar
Kim, B. J., Lee, S.-K., Kang, M. S., Ahn, J.-H. and Cho, J. H., ‘Coplanar-Gate Transparent Graphene Transistors and Inverters on Plastic’, ACS Nano, vol. 6, no. 10, pp. 8646–51, 2012.Google Scholar
Yogeswaran, N., Hosseini, E. S. and Dahiya, R., ‘Graphene Based Low Voltage Field Effect Transistor Coupled with Biodegradable Piezoelectric Material Based Dynamic Pressure Sensor’, ACS Appl. Mater. Interfaces, vol. 12, no., no. 48, pp. 54035–40, 2020.Google Scholar
Liu, F., Navaraj, W. T., Yogeswaran, N., Gregory, D. H. and Dahiya, R., ‘Van der Waals Contact Engineering of Graphene Field-Effect Transistors for Large-Area Flexible Electronics’, ACS Nano, vol. 13, no. 3, pp. 3257–68, 2019.Google Scholar
Bae, S., Kim, H., Lee, Y. et al., ‘Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes’, Nat. Nanotechnol., vol. 5, no. 8, pp. 574–78, 2010.Google Scholar
Núñez, C. García, Navaraj, W. T., Polat, E. O. and Dahiya, R., ‘Energy-Autonomous, Flexible, and Transparent Tactile Skin’, Adv. Funct. Mater., vol. 27, no. 18, p. 1606287, 2017.Google Scholar
Ryu, J., Kim, Y., Won, D. et al., ‘Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition’, ACS Nano, vol. 8, no. 1, pp. 950–6, 2014.Google Scholar
Dahiya, R. and Núñez, C. García, ‘Sensor and Devices Incorporating Sensors’, patent, PCT/EP2018/054006, 2018.Google Scholar
Kim, K. S., Zhao, Y., Jang, H. et al., ‘Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes’, Nature, vol. 457, no. 7230, pp. 706–10, 2009.Google Scholar
Lee, S.-K., Kim, B. J., Jang, H. et al., ‘Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes’, Nano Lett., vol. 11, no. 11, pp. 4642–6, 2011.Google Scholar
Kim, R.-H., Bae, M.-H., Kim, D. G. et al., ‘Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates’, Nano Lett., vol. 11, no. 9, pp. 3881–6, 2011.Google Scholar
Wang, Y., Wang, L., Yang, T. et al., ‘Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring’, Adv. Funct. Mater., vol. 24, no. 29, pp. 4666–70, 2014.Google Scholar
Wang, C., Zheng, W., Yue, Z., Too, C. O. and Wallace, G. G., ‘Buckled, Stretchable Polypyrrole Electrodes for Battery Applications’, Adv. Mater., vol. 23, no. 31, pp. 3580–4, 2011.Google Scholar
Lipomi, D. J., Lee, J. A., Vosgueritchian, M., Tee, B. C. K., Bolander, J. A. and Bao, Z., ‘Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates’, Chem. Mater., vol. 24, no. 2, pp. 373–82, 2012.Google Scholar
Vosgueritchian, M., Lipomi, D. J. and Bao, Z., ‘Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes’, Adv. Funct. Mater., vol. 22, no. 2, pp. 421–8, 2012.Google Scholar
Wang, Y., Zhu, C., Pfattner, R. et al., ‘A Highly Stretchable, Transparent, and Conductive Polymer’, Sci. Adv., vol. 3, no. 3, p. e1602076, 2017.Google Scholar
Oh, J. Y., Shin, M., Lee, J. B., Ahn, J.-H., Baik, H. K. and Jeong, U., ‘Effect of PEDOT Nanofibril Networks on the Conductivity, Flexibility, and Coatability of PEDOT:PSS Films’, ACS Appl. Mater. Interfaces, vol. 6, no. 9, pp. 6954–61, 2014.Google Scholar
Soni, M., Bhattacharjee, M., Ntagios, M. and Dahiya, R., ‘Printed Temperature Sensor Based on PEDOT:PSS – Graphene Oxide Composite’, IEEE Sens. J., vol. 20, no. 14, pp. 7525–31, 2020.Google Scholar
Alemu, D., Wei, H.-Y., Ho, K.-C. and Chu, C.-W., ‘Highly Conductive PEDOT:PSS Electrode by Simple Film Treatment with Methanol for ITO-Free Polymer Solar Cells’, Energy Environ. Sci., vol. 5, no. 11, pp. 9662–71, 2012.Google Scholar
Kim, Y. H., Sachse, C., Machala, M. L., May, C., Müller-Meskamp, L. and Leo, K., ‘Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-treatment for ITO-Free Organic Solar Cells’, Adv. Funct. Mater., vol. 21, no. 6, pp. 1076–81, 2011.Google Scholar
Lee, S. H., Sohn, J. S., Kulkarni, S. B., Patil, U. M., Jun, S. C. and Kim, J. H., ‘Modified Physico-chemical Properties and Supercapacitive Performance via DMSO Inducement to PEDOT:PSS Active Layer’, Org. Electron., vol. 15, no. 12, pp. 3423–30, 2014.Google Scholar
Kim, J. Y., Jung, J. H., Lee, D. E. and Joo, J., ‘Enhancement of Electrical Conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a Change of Solvents’, Synth. Met., vol. 126, no. 2, pp. 311–16, 2002.Google Scholar
Ouyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G. and Shinar, J., ‘On the Mechanism of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Film through Solvent Treatment’, Polymer, vol. 45, no. 25, pp. 8443–50, 2004.Google Scholar
Dahiya, R. and Valle, M., Robotic Tactile Sensing: Technologies and System. Dordrecht: Springer Science Business Media, 2013.Google Scholar
Taherian, R., ‘Development of an Equation to Model Electrical Conductivity of Polymer-Based Carbon Nanocomposites’, ECS J. Solid State Sc., vol. 3, no. 6, pp. M2638, 2014.Google Scholar
Mutiso, R. M., Sherrott, M. C., Rathmell, A. R., Wiley, B. J. and Winey, K. I., ‘Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors’, ACS Nano, vol. 7, no. 9, pp. 7654–63, 2013.Google Scholar
Yang, J., Cheng, W. and Kalantar-zadeh, K., ‘Electronic Skins Based on Liquid Metals’, Proc. IEEE, vol. 107, no. 10, pp. 2168–84, 2019.Google Scholar
Morley, N. B., Burris, J., Cadwallader, L. C. and Nornberg, M. D., ‘GaInSn Usage in the Research Laboratory’, Rev. Sci. Instrum., vol. 79, no. 5, p. 056107, 2008.Google Scholar
Pan, C., Kumar, K., Li, J., Markvicka, E. J., Herman, P. R. and Majidi, C., ‘Visually Imperceptible Liquid-Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing’, Adv. Mater., vol. 30, no. 12, p. 1706937, 2018.Google Scholar
Yang, Y., Sun, N., Wen, Z. et al., ‘Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics’, ACS Nano, vol. 12, no. 2, pp. 2027–34, 2018.Google Scholar
Dickey, M. D., Chiechi, R. C., Larsen, R. J., Weiss, E. A., Weitz, D. A. and Whitesides, G. M., ‘Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature’, Adv. Funct. Mater., vol. 18, no. 7, pp. 1097–104, 2008.Google Scholar
Ladd, C., So, J.-H., Muth, J. and Dickey, M. D., ‘3D Printing of Free Standing Liquid Metal Microstructures’, Adv. Mater., vol. 25, no. 36, pp. 5081–5, 2013.Google ScholarPubMed
Jeong, S. H., Hagman, A., Hjort, K., Jobs, M., Sundqvist, J. and Wu, Z., ‘Liquid Alloy Printing of Microfluidic Stretchable Electronics’, Lab Chip, vol. 12, no. 22, pp. 4657–64, 2012.Google Scholar
Cheng, S. and Wu, Z., ‘Microfluidic Stretchable RF Electronics’, Lab Chip, vol. 10, no. 23, pp. 3227–34, 2010.Google Scholar
Jeong, S. H., Hjort, K. and Wu, Z., ‘Tape Transfer Printing of a Liquid Metal Alloy for Stretchable RF Electronics’, Sensors, vol. 14, no. 9, pp. 16311–21, 2014.Google Scholar
Lu, T., Finkenauer, L., Wissman, J. and Majidi, C., ‘Rapid Prototyping for Soft-Matter Electronics’, Adv. Funct. Mater., vol. 24, no. 22, pp. 3351–6, 2014.Google Scholar
Zhu, S., So, J.-H., Mays, R. et al., ‘Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core’, Adv. Funct. Mater., vol. 23, no. 18, pp. 2308–14, 2013.Google Scholar
Palleau, E., Reece, S., Desai, S. C., Smith, M. E. and Dickey, M. D., ‘Self-healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics’, Adv. Mater., vol. 25, no. 11, pp. 1589–92, 2013.Google Scholar
Vilouras, A., Christou, A., Manjakkal, L. and Dahiya, R., ‘Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement’, ACS Applied Electronic Materials, vol. 2, no. 8, pp. 2601–10, 2020.Google Scholar
Kumaresan, Y., Kim, H., Pak, Y. et al., ‘Omnidirectional Stretchable Inorganic-Material-Based Electronics with Enhanced Performance’, Adv. Electron. Mater., vol. 6, no. 7, p. 2000058, 2020.Google Scholar
Savagatrup, S., Printz, A. D., Wu, H. et al., ‘Viability of Stretchable Poly(3-heptylthiophene) (P3HpT) for Organic Solar Cells and Field-Effect Transistors’, Synth. Met., vol. 203, pp. 208–14, 2015.Google Scholar
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T. and Someya, T., ‘A Rubberlike Stretchable Active Matrix Using Elastic Conductors’, Science, vol. 321, no. 5895, p. 1468, 2008.Google Scholar
Song, E., Kang, B., Choi, H. H. et al., ‘Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix’, Adv. Electron. Mater., vol. 2, no. 1, p. 1500250, 2016.Google Scholar
Müller, C., Goffri, S., Breiby, D. W. et al., ‘Tough, Semiconducting Polyethylene-poly(3-hexylthiophene) Diblock Copolymers’, Adv. Funct. Mater., vol. 17, no. 15, pp. 2674–9, 2007.Google Scholar
Wang, G.-J. N., L. Shaw, J. Xu et al., ‘Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers’, Adv. Funct. Mater., vol. 26, no. 40, pp. 7254–62, 2016.Google Scholar
Oh, J. Y., S. Rondeau-Gagné, Y.-C. Chiu et al., ‘Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors’, Nature, vol. 539, no. 7629, pp. 411–15, 2016.Google Scholar
London, J. M., Loomis, A. H., Ahadian, J. F. and Fonstad, C. G., ‘Preparation of Silicon-on-Gallium Arsenide Wafers for Monolithic Optoelectronic Integration’, IEEE Photonics Tech. L., vol. 11, no. 8, pp. 958–60, 1999.Google Scholar
Xu, H., Yin, L., Liu, C., Sheng, X. and Zhao, N., ‘Recent Advances in Biointegrated Optoelectronic Devices’, Adv. Mater., vol. 30, no. 33, p. 1800156, 2018.Google Scholar
Liu, F., Dahiya, A. S. and Dahiya, R., ‘A Flexible Chip with Embedded Intelligence’, Nat. Electron., vol. 3, no. 7, pp. 358–9, 2020.Google Scholar
Navaraj, W. T., Gupta, S., Lorenzelli, L. and Dahiya, R., ‘Wafer Scale Transfer of Ultrathin Silicon Chips on Flexible Substrates for High Performance Bendable Systems’, Adv. Electron. Mater., vol. 4, no. 4, p. 1700277, 2018.Google Scholar
Gupta, S., Navaraj, W. T., Lorenzelli, L. and Dahiya, R., ‘Ultra-Thin Chips for High-Performance Flexible Electronics’, npj Flex. Electron., vol. 2, no. 1, p. 8, 2018.Google Scholar
Dahiya, R. S. and Gennaro, S., ‘Bendable Ultra-Thin Chips on Flexible Foils’, IEEE Sens. J., vol. 13, no. 10, pp. 4030–7, 2013.Google Scholar
Lee, Y. K., Yu, K. J., Song, E. et al., ‘Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics’, ACS Nano, vol. 11, no. 12, pp. 12562–72, 2017.Google Scholar
Dahiya, R., Gottardi, G. and Laidani, N., ‘PDMS Residues-Free Micro/macrostructures on Flexible Substrates’, Microelectron. Eng., vol. 136, pp. 5762, 2015.Google Scholar
Dahiya, R. S., Adami, A., Collini, C. and Lorenzelli, L., ‘Fabrication of Single Crystal Silicon Micro-/nanostructures and Transferring Them to Flexible Substrates’, Microelectron. Eng., vol. 98, pp. 502–7, 2012.Google Scholar
Shakthivel, D., Navaraj, W. T., Champet, S., Gregory, D. H. and Dahiya, R. S., ‘Propagation of Amorphous Oxide Nanowires via the VLS Mechanism: Growth Kinetics’, Nanoscale Adv., vol. 1, no. 9, pp. 3568–78, 2019.Google Scholar
Ejaz, A., Han, J. H. and Dahiya, R., ‘Influence of Solvent Molecular Geometry on the Growth of Nanostructures’, J. Colloid Interface Sci., vol. 570, pp. 322–31, 2020.Google Scholar
Shakthivel, D., Ahmad, M., Alenezi, M. R., Dahiya, R. and Silva, S. R. P., 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. Cambridge: Cambridge University Press, 2019. www.cambridge.org/core/elements/1d-semiconducting-nanostructures-for-flexible-and-largearea-electronics/AB256ABD4C286D6E270A8021CFD930FE.Google Scholar
García Núñez, C., Liu, F., Xu, S. and Dahiya, R., Integration Techniques for Micro/Nanostructure- Based Large-Area Electronics. Cambridge: Cambridge University Press, 2018. www.cambridge.org/core/elements/integration-techniques-for-micronanostructurebased-largearea-electronics/F83E7CAF7CDBE93E69C7434C3EE29DED .Google Scholar
Zumeit, A., Navaraj, W. T., Shakthivel, D. and Dahiya, R., ‘Nanoribbon-Based Flexible High-Performance Transistors Fabricated at Room Temperature’, Adv. Electron. Mater., vol. 6, no. 4, p. 1901023, 2020.Google Scholar
Khang, D.-Y., Jiang, H., Huang, Y. and Rogers, J. A., ‘A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates’, Science, vol. 311, no. 5758, p. 208, 2006.Google Scholar
García Núñez, C., Navaraj, W. T., Liu, F., Shakthivel, D. and Dahiya, R., ‘Large-Area Self-Assembly of Silica Microspheres/Nanospheres by Temperature-Assisted Dip-Coating’, ACS Appl. Mater. Interfaces, vol. 10, no. 3, pp. 3058–68, 2018.Google Scholar
Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. and Rogers, J. A., ‘Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics’, Nat. Nanotechnol., vol. 1, no. 3, pp. 201–7, 2006.Google Scholar
Dahiya, A. S., Kumaresan, Y., Shakthivel, D., Zumeit, A., Christou, A. and Dahiya, R., ‘High-Performance Printed Electronics based on Inorganic Semiconducting Nano to Chip Scale StructuresNano Converg., vol. 7, no.NoNo. 37, 2020.Google Scholar
Xu, F., Wu, M.-Y., Safron, N. S. et al., ‘Highly Stretchable Carbon Nanotube Transistors with Ion Gel Gate Dielectrics’, Nano Lett., vol. 14, no. 2, pp. 682–6, 2014.Google Scholar
Chae, S. H., Yu, W. J., Bae, J. J. et al., ‘Transferred Wrinkled Al2O3 for Highly Stretchable and Transparent Graphene–Carbon Nanotube Transistors’, Nat. Mater., vol. 12, no. 5, pp. 403–9, 2013.Google Scholar
Yu, X., Mahajan, K. B., Shou, W. and Pan, H., ‘Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors’, Micromachines, vol. 8, no. 1, p. 7, 2017.Google Scholar
Miyajima, H. and Mehregany, M., ‘High-Aspect-Ratio Photolithography for MEMS Applications’, J. Microelectromech. S., vol. 4, no. 4, pp. 220–9, 1995.Google Scholar
Tuinea-Bobe, C. L., Lemoine, P., Manzoor, M. U. et al., ‘Photolithographic Structuring of Stretchable Conductors and Sub-kPa Pressure Sensors’, J. Micromech.Microeng., vol. 21, no. 11, p. 115010, 2011.Google Scholar
Acikgoz, C., Hempenius, M. A., Huskens, J. and Vancso, G. J., ‘Polymers in Conventional and Alternative Lithography for the Fabrication of Nanostructures’, Eur. Polym. J., vol. 47, no. 11, pp. 2033–52, 2011.Google Scholar
Guo, L. and DeWeerth, S. P., ‘An Effective Lift-Off Method for Patterning High-Density Gold Interconnects on an Elastomeric Substrate’, Small, vol. 6, no. 24, pp. 2847–52, 2010.Google Scholar
Patel, J. N., Kaminska, B., Gray, B. L. and Gates, B. D., ‘A Sacrificial SU-8 Mask for Direct Metallization on PDMS’, J. Micromech.Microeng., vol. 19, no. 11, p. 115014, 2009.Google Scholar
Kang, M.-G. and Guo, L. J., ‘Metal Transfer Assisted Nanolithography on Rigid and Flexible Substrates’, J. Vac. Sci. Technol. B, vol. 26, no. 6, pp. 2421–5, 2008.Google Scholar
Adrega, T. and Lacour, S. P., ‘Stretchable Gold Conductors Embedded in PDMS and Patterned by Photolithography: Fabrication and Electromechanical Characterization’, J. Micromech.Microeng., vol. 20, no. 5, p. 055025, 2010.Google Scholar
Tsay, C., Lacour, S. P., Wagner, S. and Morrison, B., ‘Architecture, Fabrication, and Properties of Stretchable Micro-electrode Arrays’, SENSORS, 2005 IEEE, 2005, pp. 1169–72.Google Scholar
Lacour, S. P., Chan, D., Wagner, S., Li, T. and Suo, Z., ‘Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates’, Appl. Phys. Lett., vol. 88, no. 20, p. 204103, 2006.Google Scholar
Bandodkar, A. J., Nuñez-Flores, R., Jia, W. and Wang, J., ‘All-printed Stretchable Electrochemical Devices’, Adv. Mater., vol. 27, no. 19, pp. 3060–5, 2015.Google Scholar
Yao, S. and Zhu, Y., ‘Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires’, Nanoscale, vol. 6, no. 4, pp. 2345–52, 2014.Google Scholar
Zhang, S., Hubis, E., Tomasello, G., Soliveri, G., Kumar, P. and Cicoira, F., ‘Patterning of Stretchable Organic Electrochemical Transistors’, Chem. Mater., vol. 29, no. 7, pp. 3126–32, 2017.Google Scholar
Chung, S., Lee, J., Song, H., Kim, S., Jeong, J. and Hong, Y., ‘Inkjet-Printed Stretchable Silver Electrode on Wave Structured Elastomeric Substrate’, Appl. Phys. Lett., vol. 98, no. 15, p. 153110, 2011.Google Scholar
Kim, Y., Ren, X., Kim, J. W. and Noh, H., ‘Direct Inkjet Printing of Micro-scale Silver Electrodes on Polydimethylsiloxane (PDMS) Microchip’, J. Micromech.Microeng., vol. 24, no. 11, p. 115010, 2014.Google Scholar
Zhao, X.-M., Xia, Y. and Whitesides, G. M., ‘Soft Lithographic Methods for Nano-fabrication’, J. Mater. Chem., vol. 7, no. 7, pp. 1069–74, 1997.Google Scholar
Husemann, M., Mecerreyes, D., Hawker, C. J., Hedrick, J. L., Shah, R. and Abbott, N. L., ‘Surface- Initiated Polymerization for Amplification of Self-assembled Monolayers Patterned by Microcontact Printing’, Angew. Chem., vol. 38, no. 5, pp. 647–9, 1999.Google Scholar
Toprak, M., Kim, D. K., Mikhailova, M. and Muhammed, M., ‘Patterning 2D Metallic Surfaces by Soft Lithography’, MRS Proceedings, vol. 705, Y7.22, 2001.Google Scholar
Loo, Y.-L., Willett, R. L., Baldwin, K. W. and Rogers, J. A., ‘Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in Plastic Electronics’, Appl. Phys. Lett., vol. 81, no. 3, pp. 562–4, 2002.Google Scholar
Tan, E. K. W., ‘Technological Development of Chemical Sensors for Healthcare and Safety Applications’, doctorate, University of Cambridge, 2019.Google Scholar
Tan, E. K. W., Rughoobur, G., Rubio-Lara, J. et al., ‘Nanofabrication of Conductive Metallic Structures on Elastomeric Materials’, Sci. Rep., vol. 8, no. 1, p. 6607, 2018.Google Scholar
Wen, X., Li, G., Zhang, J. et al., ‘Transparent Free-standing Metamaterials and Their Applications in Surface- Enhanced Raman Scattering’, Nanoscale, vol. 6, no. 1, pp. 132–9, 2014.Google Scholar
Valentine, A. D., Busbee, T. A., Boley, J. W. et al., ‘Hybrid 3D Printing of Soft Electronics’, Adv. Mater., vol. 29, no. 40, p. 1703817, 2017.Google Scholar
Ozioko, O., Nassar, H. and Dahiya, R., ‘3D Printed Interdigitated Capacitors based Tilt Sensor’, IEEE Sens. J., 2021 (DOI:10.1109/JSEN.2021.3058949).Google Scholar
Distler, T. and Boccaccini, A. R., ‘3D Printing of Electrically Conductive Hydrogels for Tissue Engineering and Biosensors – A Review’, Acta Biomater., vol. 101, pp. 113, 2020.CrossRefGoogle ScholarPubMed
Abshirini, M., Charara, M., Liu, Y., Saha, M. and Altan, M. C., ‘3D Printing of Highly Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites’, Adv. Eng. Mater., vol. 20, no. 10, p. 1800425, 2018.Google Scholar
Mohammed Ali, M., Maddipatla, D., Narakathu, B. B. et al., ‘Printed Strain Sensor Based on Silver Nanowire/Silver Flake Composite on Flexible and Stretchable TPU Substrate’, Sens. Actuator A Phys., vol. 274, pp. 109–15, 2018.Google Scholar
Salmerón, J. F., Molina-Lopez, F., Briand, D. et al., ‘Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas’, J. Electron. Mater., vol. 43, no. 2, pp. 604–17, 2014.Google Scholar
Cao, X., Lau, C., Liu, Y. et al., ‘Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors’, ACS Nano, vol. 10, no. 11, pp. 9816–22, 2016.Google Scholar
Bandodkar, A. J., Jeerapan, I., You, J.-M., Nuñez-Flores, R. and Wang, J., ‘Highly Stretchable Fully- Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability’, Nano Lett., vol. 16, no. 1, pp. 721–7, 2016.Google Scholar
Tong, Y., Feng, Z., Kim, J., Robertson, J. L., Jia, X. and Johnson, B. N., ‘3D Printed Stretchable Triboelectric Nanogenerator Fibers and Devices’, Nano Energy, vol. 75, p. 104973, 2020.Google Scholar
Peng, S., Li, Y., Wu, L. et al., ‘3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors’, ACS Appl. Mater. Interfaces, vol. 12, no. 5, pp. 6479–88, 2020.Google Scholar
Pu, J., Wang, X., Xu, R. and Komvopoulos, K., ‘Highly Stretchable Microsupercapacitor Arrays with Honeycomb Structures for Integrated Wearable Electronic Systems’, ACS Nano, vol. 10, no. 10, pp. 9306–15, 2016.Google Scholar
Lipomi, D. J., ‘Stretchable Figures of Merit in Deformable Electronics’, Adv. Mater., vol. 28, no. 22, pp. 4180–3, 2016.Google Scholar
Liu, Y., Pharr, M. and Salvatore, G. A., ‘Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring’, ACS Nano, vol. 11, no. 10, pp. 9614–35, 2017.Google Scholar
Yang, X. and Cheng, H., ‘Recent Developments of Flexible and Stretchable Electrochemical Biosensors’, Micromachines, vol. 11, no. 3, 2020.Google Scholar
Gao, W., Emaminejad, S., Nyein, H. Y. Y. et al., ‘Fully Integrated Wearable Sensor Arrays for Multiplexed In Situ Perspiration Analysis’, Nature, vol. 529, no. 7587, pp. 509–14, 2016.Google Scholar
Koh, A., Kang, D., Xue, Y. et al., ‘A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat’, Sci. Transl. Med., vol. 8, no. 366, p. 366ra165, 2016.Google Scholar
Wang, G., Zhang, S., Dong, S. et al., ‘Stretchable Optical Sensing Patch System Integrated Heart Rate, Pulse Oxygen Saturation, and Sweat pH Detection’, IEEE. Trans. Biomed. Eng., vol. 66, no. 4, pp. 1000–5, 2019.Google Scholar
Al-Halhouli, A. A., Al-Ghussain, L., El Bouri, S., Liu, H. and Zheng, D., ‘Fabrication and Evaluation of a Novel Non-invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology’, Polymers, vol. 11, no. 9, p. 1518, 2019.Google Scholar
Oh, S. Y., Hong, S. Y., Jeong, Y. R. et al., ‘Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection’, ACS Appl. Mater. Interfaces, vol. 10, no. 16, pp. 13729–40, 2018.Google Scholar
Matsuhisa, N., Kaltenbrunner, M., Yokota, T. et al., ‘Printable Elastic Conductors with a High Conductivity for Electronic Textile Applications’, Nat. Commun., vol. 6, no. 1, p. 7461, 2015.Google Scholar
Jiang, Y., Liu, Z., Matsuhisa, N. et al., ‘Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors’, Adv. Mater., vol. 30, no. 12, p. 1706589, 2018.Google Scholar
Zou, J., Zhang, M., Huang, J. et al., ‘Coupled Supercapacitor and Triboelectric Nanogenerator Boost Biomimetic Pressure Sensor’, Adv. Energy Mater., vol. 8, no. 10, p. 1702671, 2018.Google Scholar
Gupta, S., Shakthivel, D., Lorenzelli, L. and Dahiya, R., ‘Temperature Compensated Tactile Sensing Using MOSFET With P(VDF-TrFE)/BaTiO3 Capacitor as Extended Gate’, IEEE Sens. J., vol. 19, no. 2, pp. 435–42, 2019.Google Scholar
Kim, H., Kim, W., Park, J. et al., ‘Surface Conversion of ZnO Nanorods to ZIF-8 to Suppress Surface Defects for a Visible-Blind UV Photodetector’, Nanoscale, vol. 10, no. 45, pp. 21168–77, 2018.Google Scholar
Luo, L.-B., Wang, D., Xie, C., Hu, J.-G., Zhao, X.-Y. and Liang, F.-X., ‘PdSe2 Multilayer on Germanium Nanocones Array with Light Trapping Effect for Sensitive Infrared Photodetector and Image Sensing Application’, Adv. Funct. Mater., vol. 29, no. 22, p. 1900849, 2019.Google Scholar
Dai, Y., Hu, H., Wang, M., Xu, J. and Wang, S., ‘Stretchable Transistors and Functional Circuits for Human-Integrated Electronics’, Nat. Electron., vol. 4, no. 1, pp. 1729, 2021.Google Scholar
Guo, Y., Li, Y., Zhang, Q. and Wang, H., ‘Self-powered Multifunctional UV and IR Photodetector as an Artificial Electronic Eye’, J. Mater. Chem. C,vol. 5, no. 6, pp. 1436–42, 2017.Google Scholar
Deng, W., Zhang, X., Huang, L. et al., ‘Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability’, Adv. Mater., vol. 28, no. 11, pp. 2201–8, 2016.Google Scholar
Lee, W., Lee, J., Yun, H. et al., ‘High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array’, Adv. Mater., vol. 29, no. 40, p. 1702902, 2017.Google Scholar
Kim, J., Park, H. and Jeong, S.-H., ‘A Kirigami Concept for Transparent and Stretchable Nanofiber Networks-Based Conductors and UV Photodetectors’, J. Ind. Eng. Chem., vol. 82, pp. 144–52, 2020.Google Scholar
Kang, P., Wang, M. C., Knapp, P. M. and Nam, S., ‘Crumpled Graphene Photodetector with Enhanced, Strain-Tunable, and Wavelength-Selective Photoresponsivity’, Adv. Mater., vol. 28, no. 23, pp. 4639–45, 2016.Google Scholar
Kim, M., Kang, P., Leem, J. and Nam, S., ‘A Stretchable Crumpled Graphene Photodetector with Plasmonically Enhanced Photoresponsivity’, Nanoscale, vol. 9, no. 12, pp. 4058–65, 2017.Google Scholar
Liu, P., He, X., Ren, J., Liao, Q., Yao, J. and Fu, H., ‘Organic−Inorganic Hybrid Perovskite Nanowire Laser Array’, ACS Nano, vol. 11, p. 8, 2017.Google Scholar
Yalagala, B. P., Sahatiya, P., C. S. Kolli, R., Khandelwal, S., Mattela, V. and Badhulika, S., ‘V2O5 Nanosheets for Flexible Memristors and Broadband Photodetectors’, ACS Appl. Nano Mater., vol. 2, no. 2, pp. 937–47, 2019.Google Scholar
Li, L., Gu, L., Lou, Z., Fan, Z. and Shen, G., ‘ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors’, ACS Nano, vol. 11, no. 4, pp. 4067–76, 2017.Google Scholar
Yu, J., K. Javaid, L. Liang et al., ‘High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction’, ACS Appl. Mater. Interfaces, vol. 10, no. 9, pp. 8102–9, 2018.Google Scholar
Yao, A., Luo, Z., Yin, P. et al., ‘Formation and Applications of Highly-Ordered CdO Nanobranch Arrays’, Mater. Lett., vol. 172, pp. 132–6, 2016.Google Scholar
Manjakkal, L., Szwagierczak, D. and Dahiya, R., ‘Metal Oxides Based Electrochemical pH Sensors: Current Progress and Future Perspectives’, Prog. Mater. Sci., vol. 109, p. 100635, 2020.Google Scholar
Mathews, N., Varghese, B., Sun, C. et al., ‘Oxide Nanowire Networks and Their Electronic and Optoelectronic Characteristics’, Nanoscale, vol. 2, no. 10, pp. 1984–98, 2010.Google Scholar
Bhattacharjee, M., Nikbakhtnasrabadi, F. and Dahiya, R., ‘Printed Chipless Antenna as Flexible Temperature Sensor’, IEEE Internet Things J., vol. 8, no. 6, pp. 5101–10, 2021.Google Scholar
Ozioko, O., Karipoth, P., Escobedo, P., Ntagios, M., Pullanchiyodan, A. and Dahiya, R., ‘SensAct: The Soft and Squishy Tactile Sensor with Integrated Flexible Actuator’, Adv. Intell. Syst., vol. 3, no. 3, 1900145, 2021.Google Scholar
Wang, G., Z. Wang, Y. Wu et al., ‘A Robust Stretchable Pressure Sensor for Electronic Skins’, Org. Electron., vol. 86, p. 105926, 2020.Google Scholar
Ntagios, M., Nassar, H., Pullanchiyodan, A., Navaraj, W. T. and Dahiya, R., ‘Robotic Hands with Intrinsic Tactile Sensing via 3D Printed Soft Pressure Sensors’, Adv. Intell. Syst., vol. 2, 1900080, 2020.Google Scholar
Kim, H.-J., Thukral, A. and Yu, C., ‘Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor’, ACS Appl. Mater. Interfaces, vol. 10, no. 5, pp. 5000–6, 2018.Google Scholar
Choi, G., Oh, S., Kim, C. et al., ‘Omnidirectionally Stretchable Organic Transistors for Use in Wearable Electronics: Ensuring Overall Stretchability by Applying Nonstretchable Wrinkled Components’, ACS Appl. Mater. Interfaces, vol. 12, no. 29, pp. 32979–86, 2020.Google Scholar
Zhao, J., T. Bu, X. Zhang et al., ‘Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing’, Research, vol. 2020, p. 1398903, 2020.Google Scholar
Chou, H.-H., Nguyen, A., Chortos, A. et al., ‘A Chameleon-Inspired Stretchable Electronic Skin with Interactive Colour Changing Controlled by Tactile Sensing’, Nat. Commun., vol. 6, no. 1, p. 8011, 2015.Google Scholar
Schwartz, G., Tee, B. C. K., Mei, J. et al., ‘Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring’, Nat. Commun., vol. 4, no. 1, p. 1859, 2013.Google Scholar
Wang, J., Jiang, J., Zhang, C. et al., ‘Energy-Efficient, Fully Flexible, High-Performance Tactile Sensor Based on Piezotronic Effect: Piezoelectric Signal Amplified with Organic Field-Effect Transistors’, Nano Energy, vol. 76, p. 105050, 2020.Google Scholar
Kang, S., Hong, S. Y., Kim, N. et al., ‘Stretchable Lithium-Ion Battery Based on Re-entrant Micro-honeycomb Electrodes and Cross-Linked Gel Electrolyte’, ACS Nano, vol. 14, no. 3, pp. 3660–8, 2020.Google Scholar
Song, Z., Ma, T., Tang, R. et al., ‘Origami Lithium-Ion Batteries’, Nat. Commun., vol. 5, no. 1, p. 3140, 2014.Google Scholar
Xu, S., Zhang, Y., Cho, J. et al., ‘Stretchable Batteries with Self-similar Serpentine Interconnects and Integrated Wireless Recharging Systems’, Nat. Commun., vol. 4, no. 1, p. 1543, 2013.Google Scholar
Song, Z., Wang, X., Lv, C. et al., ‘Kirigami-based Stretchable Lithium-Ion Batteries’, Sci. Rep., vol. 5, no. 1, p. 10988, 2015.Google Scholar
Liu, W., Chen, Z., Zhou, G. et al., ‘3D Porous Sponge-Inspired Electrode for Stretchable Lithium-Ion Batteries’, Adv. Mater., vol. 28, no. 18, pp. 3578–83, 2016.Google Scholar
Liu, W., Chen, J., Chen, Z. et al., ‘Stretchable Lithium-Ion Batteries Enabled by Device-Scaled Wavy Structure and Elastic-Sticky Separator’, Adv. Energy Mater., vol. 7, no. 21, p. 1701076, 2017.Google Scholar
Liu, K., Kong, B., Liu, W. et al., ‘Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability’, Joule, vol. 2, no. 9, pp. 1857–65, 2018.Google Scholar
Lee, G., Kim, D., Kim, D. et al., ‘Fabrication of a Stretchable and Patchable Array of High Performance Micro- supercapacitors Using a Non-aqueous Solvent Based Gel Electrolyte’, Energy Environ. Sci., vol. 8, no. 6, pp. 1764–74, 2015.Google Scholar
Guo, H., Yeh, M.-H., Lai, Y.-C. et al., ‘All-in-One Shape-Adaptive Self-charging Power Package for Wearable Electronics’, ACS Nano, vol. 10, no. 11, pp. 10580–8, 2016.Google Scholar
Xu, J., Chen, J., Zhang, M., Hong, J.-D. and Shi, G., ‘Highly Conductive Stretchable Electrodes Prepared by In Situ Reduction of Wavy Graphene Oxide Films Coated on Elastic Tapes’, Adv. Electron. Mater., vol. 2, no. 6, p. 1600022, 2016.Google Scholar
Rajendran, V., Mohan, A. M. V., Jayaraman, M. and Nakagawa, T., ‘All-printed, Interdigitated, Freestanding Serpentine Interconnects Based Flexible Solid State Supercapacitor for Self Powered Wearable Electronics’, Nano Energy, vol. 65, p. 104055, 2019.Google Scholar
Zang, J., Cao, C., Feng, Y., Liu, J. and Zhao, X., ‘Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers’, Sci. Rep., vol. 4, no. 1, p. 6492, 2014.Google Scholar
Xiao, H., Wu, Z.-S., Zhou, F. et al., ‘Stretchable Tandem Micro-supercapacitors with High Voltage Output and Exceptional Mechanical Robustness’, Energy Storage Mater., vol. 13, pp. 233–40, 2018.Google Scholar
Yun, J., Lim, Y., Jang, G. N. et al., ‘Stretchable Patterned Graphene Gas Sensor Driven by Integrated Micro- supercapacitor Array’, Nano Energy, vol. 19, pp. 401–14, 2016.Google Scholar
Yun, J., Song, C., Lee, H. et al., ‘Stretchable Array of High-Performance Micro-supercapacitors Charged with Solar Cells for Wireless Powering of an Integrated Strain Sensor’, Nano Energy, vol. 49, pp. 644–54, 2018.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stretchable Systems
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Stretchable Systems
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Stretchable Systems
Available formats
×