Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T18:14:21.296Z Has data issue: false hasContentIssue false

Earth History of Oxygen and the iprOxy

Published online by Cambridge University Press:  11 September 2020

Zunli Lu
Affiliation:
Syracuse University, New York
Wanyi Lu
Affiliation:
Syracuse University, New York
Rosalind E. M. Rickaby
Affiliation:
University of Oxford
Ellen Thomas
Affiliation:
Yale University and Wesleyan University

Summary

How oxygen levels in Earth's atmosphere and oceans evolved has always been a central question in Earth System Science. Researchers have developed numerous tracers to tackle this question, utilizing geochemical characteristics of different elements. Iodine incorporated in calcium carbonate (including biogenic) minerals, reported as I/Ca, is a proxy for dissolved oxygen in seawater. Here we review the rationale behind this proxy, its recent applications and some potential future research directions.
Get access
Type
Element
Information
Online ISBN: 9781108688604
Publisher: Cambridge University Press
Print publication: 08 October 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alegret, L., Molina, E., and Thomas, E. (2003) Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences. Marine Micropaleontology 48: 251279.CrossRefGoogle Scholar
Algeo, T. J., Chen, Z.-Q., and Bottjer, D. J. (2015) Global review of the Permian–Triassic mass extinction and subsequent recovery: Part II. Earth-Science Reviews 100: 14.CrossRefGoogle Scholar
Amachi, S., Kawaguchi, N., Muramatsu, Y., Tsuchiya, S., Watanabe, Y., Shinoyama, H., and Fujii, T. (2007) Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Applied and Environmental Microbiology 73: 57255730.CrossRefGoogle ScholarPubMed
Bachan, A., Lau, K. V., Saltzman, M. R., Thomas, E., Kump, L. R., and Payne, J. L. (2017) A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic. American Journal of Science 317: 641676.CrossRefGoogle Scholar
Barker, S., Greaves, M., and Elderfield, H. (2003) A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems 4: 8407.CrossRefGoogle Scholar
Bartlett, R., Elrick, M., Wheeley, J. R., Polyak, V., Desrochers, A., and Asmerom, Y. (2018) Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences of the USA 115: 58965901.CrossRefGoogle ScholarPubMed
Bekker, A., and Holland, H. (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth and Planetary Science Letters 317: 295304.CrossRefGoogle Scholar
Berner, R. A. (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70: 56535664.CrossRefGoogle Scholar
Bowman, C. N., Lindskog, A., Kozik, N. P., Richbourg, C. G., Owens, J. D., & Young, S. A. (2020). Integrated sedimentary, biotic, and paleoredox dynamics from multiple localities in southern Laurentia during the late Silurian (Ludfordian) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 553, 109799.CrossRefGoogle Scholar
Brennecka, G. A., Herrmann, A. D., Algeo, T. J., and Anbar, A. D. (2011) Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the USA 108: 1763117634.CrossRefGoogle ScholarPubMed
Broecker, W., and Peng, T. (1982) Tracers in the sea. Palisades, NY: Lamont-Doherty Geological Observatory.Google Scholar
Chai, J. Y., and Muramatsu, Y. (2007) Determination of bromine and iodine in twenty‐three geochemical reference materials by ICP‐MS. Geostandards and Geoanalytical Research 31: 143150.CrossRefGoogle Scholar
Chance, R., Baker, A. R., Carpenter, L., and Jickells, T. D. (2014) The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts 16: 18411859.Google ScholarPubMed
Chun, C. O., Delaney, M. L., and Zachos, J. C. (2010) Paleoredox changes across the Paleocene‐Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from Mn and U enrichment factors. Paleoceanography 25: PA4202.CrossRefGoogle Scholar
Clarkson, M. O., Stirling, C. H., Jenkyns, H. C., et al. (2018) Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the USA 115: 29182923.CrossRefGoogle ScholarPubMed
Cutter, G. A., Moffett, J. W., Nielsdóttir, M. C., and Sanial, V. (2018) Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Marine Chemistry 201: 7789.CrossRefGoogle Scholar
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., et al. (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the USA 107: 1791117915.CrossRefGoogle Scholar
Diamond, C., Planavsky, N., Wang, C., and Lyons, T. (2018) What the~ 1.4 Ga Xiamaling Formation can and cannot tell us about the mid‐Proterozoic ocean. Geobiology 16: 219236.CrossRefGoogle ScholarPubMed
Dickson, A. J., Cohen, A. S., and Coe, A. L. (2012) Seawater oxygenation during the Paleocene-Eocene thermal maximum. Geology 40: 639642.CrossRefGoogle Scholar
Dickson, A. J., Rees‐Owen, R. L., März, C., et al. (2014) The spread of marine anoxia on the northern Tethys margin during the Paleocene‐Eocene Thermal Maximum. Paleoceanography 29: 471488.CrossRefGoogle Scholar
Edwards, C. T., Fike, D. A., Saltzman, M. R., Lu, W., and Lu, Z. (2018) Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. Earth and Planetary Science Letters 481: 125135.CrossRefGoogle Scholar
Elderfield, H., and Ganssen, G. (2000) Past temperature and δ 18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405: 442445.CrossRefGoogle Scholar
Elrick, M., Polyak, V., Algeo, T. J., et al. (2017) Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45: 163166.CrossRefGoogle Scholar
Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther, G. W., and Nealson, K. H. (1997a) Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Marine Chemistry 57: 347354.CrossRefGoogle Scholar
Farrenkopf, A. M., and Luther, G. W. (2002) Iodine chemistry reflects productivity and denitrification in the Arabian Sea: Evidence for flux of dissolved species from sediments of western India into the OMZ: Deep Sea Research Part II. Topical Studies in Oceanography 49: 23032318.CrossRefGoogle Scholar
Farrenkopf, A. M., Luther, G. W., Truesdale, V. W., and Van der Weijden, C. H. (1997b) Sub-surface iodide maxima: Evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon: Deep Sea Research Part II. Topical Studies in Oceanography 44: 13911409.CrossRefGoogle Scholar
Feng, X., and Redfern, S. A. (2018) Iodate in calcite, aragonite and vaterite CaCO3: Insights from first-principles calculations and implications for the I/Ca geochemical proxy. Geochimica et Cosmochimica Acta 236: 351360.CrossRefGoogle Scholar
Glock, N., Liebetrau, V., and Eisenhauer, A. (2014) I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: analytical methodology and evaluation as proxy for redox conditions. Biogeosciences 11: 70777095.CrossRefGoogle Scholar
Glock, N., Liebetrau, V., Eisenhauer, A., and Rocholl, A. (2016) High resolution I/Ca ratios of benthic foraminifera from the Peruvian oxygen-minimum-zone: A SIMS derived assessment of a potential redox proxy. Chemical Geology 447: 4053.CrossRefGoogle Scholar
Hardisty, D. S., Horner, T. J., Wankel, S. D., Blusztajn, J., and Nielsen, S. G. (2020) Experimental observations of marine iodide oxidation using a novel sparge-interface MC-ICP-MS technique. Chemical Geology 532: 11936.CrossRefGoogle Scholar
Hardisty, D. S., Lu, Z., Bekker, A., et al. (2017) Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters 463: 159170.CrossRefGoogle Scholar
Hardisty, D. S., Lu, Z., Planavsky, N. J., et al. (2014) An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42: 619622.CrossRefGoogle Scholar
He, R., Lu, W., Junium, C. K., Ver Straeten, C. A., others Lu, Z. (2019). Paleo-redox context of the Mid-Devonian Appalachian Basin and its relevance to biocrises. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.12.019CrossRefGoogle Scholar
Holland, H. D. (2006) The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences 361: 903915.CrossRefGoogle ScholarPubMed
Hoogakker, B. A., Elderfield, H., Schmiedl, G., McCave, I. N., and Rickaby, R. E. (2015) Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin. Nature Geoscience 8: 40.CrossRefGoogle Scholar
Hoogakker, B. A., Lu, Z., Umling, N., et al. (2018) Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562: 410.CrossRefGoogle ScholarPubMed
Isson, T. T., Love, G. D., Dupont, C. L., et al. (2018) Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 16: 341352.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. (2010) Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11: Q03004.CrossRefGoogle Scholar
Kast, E. R., Stolper, D. A., Auderset, A., et al. (2019) Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364: 386389.CrossRefGoogle ScholarPubMed
Keeling, R. F., Körtzinger, A., and Gruber, N. (2009) Ocean deoxygenation in a warming world. Annual Review of Marine Science 2: 463493.Google Scholar
Kennedy, H., and Elderfield, H. (1987a) Iodine diagenesis in non-pelagic deep-sea sediments. Geochimica et Cosmochimica Acta 51: 25052514.CrossRefGoogle Scholar
Kennedy, H., and Elderfield, H. (1987b) Iodine diagenesis in pelagic deep-sea sediments. Geochimica et Cosmochimica Acta 51: 24892504.CrossRefGoogle Scholar
Kerisit, S. N., Smith, F. N., Saslow, S. A., Hoover, M. E., Lawter, A. R., and Qafoku, N. P. (2018) Incorporation modes of iodate in calcite. Environmental Science & Technology 52: 59025910.CrossRefGoogle ScholarPubMed
Knoll, A. H. (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology 6: a016121.CrossRefGoogle ScholarPubMed
Lau, K. V., Maher, K., Altiner, D., et al. (2016) Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proceedings of the National Academy of Sciences of the USA 113: 23602365.CrossRefGoogle ScholarPubMed
Lenton, T. M., Daines, S. J., and Mills, B. J. (2018) COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178: 128.CrossRefGoogle Scholar
Liu, J., Luo, G., Lu, Z., Lu, W., Qie, W., Zhang, F., Wang, X., & Xie, S. (2019). Intensified ocean deoxygenation during the end Devonian mass extinction. Geochemistry, Geophysics, Geosystems, 20(12), 6187–6198.CrossRefGoogle Scholar
Loope, G. R., Kump, L. R., and Arthur, M. A. (2013) Shallow water redox conditions from the Permian–Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chemical Geology 351: 195208.CrossRefGoogle Scholar
Lowery, C. M., Bralower, T. J., Owens, J. D., et al. (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558: 288.CrossRefGoogle ScholarPubMed
Lu, W., Dickson, A. J., Thomas, E., Rickaby, R. E., Chapman, P., & Lu, Z. (2019). Refining the planktic foraminiferal I/Ca proxy: Results from the Southeast Atlantic Ocean. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.10.025CrossRefGoogle Scholar
Lu, W., Rickaby, R., Hoogakker, B., et al. 2020 I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. Earth and Planetary Science Letters 533: 116055.CrossRefGoogle Scholar
Lu, W., Ridgwell, A., Thomas, E., et al. (2018) Late inception of a resiliently oxygenated upper ocean. Science 361: 174177.Google ScholarPubMed
Lu, W., Wörndle, S., Halverson, G., et al. (2017) Iodine proxy evidence for increased ocean oxygenation during the Bitter Springs Anomaly. Geochemical Perspective Letters 5: 5357.CrossRefGoogle Scholar
Lu, Z., Hensen, C., Fehn, U., and Wallmann, K. (2008) Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling. Geochemistry, Geophysics, Geosystems 9: Q10006.CrossRefGoogle Scholar
Lu, Z., Hoogakker, B. A., Hillenbrand, C.-D., et al. (2016) Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nature Communications 7: 11146.CrossRefGoogle ScholarPubMed
Lu, Z., Jenkyns, H. C., and Rickaby, R. E. (2010) Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38: 11071110.CrossRefGoogle Scholar
Luther, G. W., and Campbell, T. (1991) Iodine speciation in the water column of the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers 38.Google Scholar
Luther, G. W., Wu, J., and Cullen, J. B. (1995) Redox chemistry of iodine in seawater: frontier molecular orbital theory considerations. Advances in Chemistry 244: 135.CrossRefGoogle Scholar
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J. (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506: 307315.CrossRefGoogle ScholarPubMed
McInerney, F. A., and Wing, S. L. (2011) The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences 39: 489516.CrossRefGoogle Scholar
Meyer, K., Ridgwell, A., and Payne, J. (2016) The influence of the biological pump on ocean chemistry: Implications for long‐term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology 14: 207219.CrossRefGoogle ScholarPubMed
Muramatsu, Y., and Wedepohl, K. H. (1998) The distribution of iodine in the earth’s crust. Chemical Geology 147: 201216.CrossRefGoogle Scholar
Olson, S. L., Kump, L. R., and Kasting, J. F. (2013) Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology 362: 3543.Google Scholar
Owens, J. D., Lyons, T. W., Hardisty, D. S., Lowery, C. M., Lu, Z., Lee, B., and Jenkyns, H. C. (2017) Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology 64: 168185.CrossRefGoogle Scholar
Pälike, C., Delaney, M. L., and Zachos, J. C. (2014) Deep‐sea redox across the Paleocene‐Eocene thermal maximum. Geochemistry, Geophysics, Geosystems 15: 10381053.CrossRefGoogle Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H. (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305: 506509.CrossRefGoogle ScholarPubMed
Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A. (2018) Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362: eaat1327.CrossRefGoogle ScholarPubMed
Podder, J., Lin, J., Sun, W., et al. (2017) Iodate in calcite and vaterite: Insights from synchrotron X-ray absorption spectroscopy and first-principles calculations. Geochimica et Cosmochimica Acta 198: 218228.CrossRefGoogle Scholar
Price, N., and Calvert, S. (1973) The geochemistry of iodine in oxidised and reduced recent marine sediments. Geochimica et Cosmochimica Acta 37: 21492158.CrossRefGoogle Scholar
Rathburn, A. E., Willingham, J., Ziebis, W., Burkett, A. M., and Corliss, B. H. (2018) A new biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera. Scientific Reports 8: Article 9456.CrossRefGoogle ScholarPubMed
Rue, E. L., Smith, G. J., Cutter, G. A., and Bruland, K. W. (1997) The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Research Part I: Oceanographic Research Papers 44: 113134.CrossRefGoogle Scholar
Sahoo, S. K., Planavsky, N., Jiang, G., et al. (2016) Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14: 457468.CrossRefGoogle ScholarPubMed
Saltzman, M., and Thomas, E. (2012) Carbon isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M. B., and Ogg, G. M. (eds.), The geologic time scale, Vol. 1 (pp. 207232). Oxford: Elsevier BV.CrossRefGoogle Scholar
Saltzman, M. R. (2005) Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33: 573576.CrossRefGoogle Scholar
Saltzman, M. R., Edwards, C. T., Adrain, J. M., and Westrop, S. R. (2015) Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43: 807810.CrossRefGoogle Scholar
Schulte, P., Alegret, L., Arenillas, I., et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327: 12141218.Google Scholar
Sepkoski, J. J. (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7: 3653.Google Scholar
Shang, M., Tang, D., Shi, X., Zhou, L., Zhou, X., Song, H., and Jiang, G. (2019) A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth and Planetary Science Letters 527: 115797.CrossRefGoogle Scholar
Shi, W., Li, C., Luo, G., et al. (2018) Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology 46: 267270.CrossRefGoogle Scholar
Song, H., Song, H., Algeo, T. J., et al. (2017) Uranium and carbon isotopes document global-ocean redoxproductivity relationships linked to cooling during the Frasnian-Famennian mass extinction. Geology 45: 887890.CrossRefGoogle Scholar
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al. (2015) Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523: 451.CrossRefGoogle Scholar
Taylor, M., Hendy, I., and Chappaz, A. (2017) Assessing oxygen depletion in the Northeastern Pacific Ocean during the last deglaciation using I/Ca ratios from multiple benthic foraminiferal species. Paleoceanography 32: 746762.CrossRefGoogle Scholar
Them, T. R., Gill, B. C., Caruthers, A. H., et al. (2018) Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proceedings of the National Academy of Sciences of the USA 115: 65966601.CrossRefGoogle ScholarPubMed
Thomas, E. (1990) Late Cretaceous–early Eocene mass extinctions in the deep sea. Geological Society of America Special Publication 247: 481495.CrossRefGoogle Scholar
Tostevin, R., Clarkson, M. O., Gangl, S., et al. (2019) Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters 506: 104112.CrossRefGoogle Scholar
Truesdale, V., and Bailey, G. (2000) Dissolved iodate and total iodine during an extreme hypoxic event in the Southern Benguela system. Estuarine, Coastal and Shelf Science 50: 751760.CrossRefGoogle Scholar
Vellekoop, J., Woelders, L., van Helmond, N. A., et al. (2018) Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact. Geology 46: 683686.CrossRefGoogle Scholar
Wallace, M. W., Shuster, A., Greig, A., Planavsky, N. J., and Reed, C. P. (2017) Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters 466: 1219.Google Scholar
Wei, H., Wang, X., Shi, X., Jiang, G., Tang, D., Wang, L., and An, Z. (2019) Iodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform, South China. Precambrian Research 322: 160169.CrossRefGoogle Scholar
Wei, W., Frei, R., Gilleaudeau, G. J., Li, D., Wei, G.-Y., Chen, X., and Ling, H.-F. (2018a) Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: Clues from Cr-isotope and Ce-anomaly in carbonates. Precambrian Research 313: 7890.CrossRefGoogle Scholar
Wei, W., Frei, R., Klaebe, R., Li, D., Wei, G.-Y., and Ling, H.-F. (2018b) Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. Precambrian Research 319: 198210.CrossRefGoogle Scholar
Wong, G. T., and Brewer, P. G. (1977) The marine chemistry of iodine in anoxic basins. Geochimica et Cosmochimica Acta 41: 151159.CrossRefGoogle Scholar
Wong, G. T., and Cheng, X. H. (2008) Dissolved inorganic and organic iodine in the Chesapeake Bay and adjacent Atlantic waters: Speciation changes through an estuarine system. Marine Chemistry 111: 221232.CrossRefGoogle Scholar
Wong, G. T., Takayanagi, K., and Todd, J. F. (1985) Dissolved iodine in waters overlying and in the Orca Basin, Gulf of Mexico. Marine Chemistry 2: 177183.CrossRefGoogle Scholar
Wong, G. T., and Zhang, L. S. (2003) Seasonal variations in the speciation of dissolved iodine in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 56: 10931106.Google Scholar
Wörndle, S., Crockford, P. W., Kunzmann, M., Bui, T. H., and Halverson, G. P. (2019) Linking the Bitter Springs carbon isotope anomaly and early Neoproterozoic oxygenation through I/[Ca+Mg] ratios. Chemical Geology 524: 119135.Google Scholar
Yang, S., Kendall, B., Lu, X., Zhang, F., and Zheng, W. (2017) Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flo. Precambrian Research 298: 187201.CrossRefGoogle Scholar
Yao, W., Paytan, A., and Wortmann, U. G. (2018) Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum. Science 361: 804806.CrossRefGoogle ScholarPubMed
Young, S. A., Kleinberg, A., and Owens, J. (2019) Geochemical evidence for expansion of marine euxinia during an early Silurian (Llandovery–Wenlock boundary) mass extinction. Earth and Planetary Science Letters 513: 187196.Google Scholar
Zhang, F., Romaniello, S. J., Algeo, T. J., et al. (2018) Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science Advances 4: e1602921.Google Scholar
Zhou, X., Jenkyns, H. C., Lu, W., Hardisty, D. S., Owens, J. D., Lyons, T. W., and Lu, Z. (2017) Organically bound iodine as a bottom-water redox proxy: Preliminary validation and application. Chemical Geology 457: 95106.CrossRefGoogle Scholar
Zhou, X., Jenkyns, H. C., Owens, J. D., et al. (2015) Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian‐Turonian OAE 2. Paleoceanography 30: 510526.CrossRefGoogle Scholar
Zhou, X., Thomas, E., Rickaby, R. E., Winguth, A. M., and Lu, Z. (2014) I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29: 964975.CrossRefGoogle Scholar
Zhou, X., Thomas, E., Winguth, A., (2016) Expanded oxygen minimum zones during the late Paleocene‐early Eocene: Hints from multiproxy comparison and ocean modeling. Paleoceanography and Paleoclimatology 31: 15321546.CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Earth History of Oxygen and the iprOxy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Earth History of Oxygen and the iprOxy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Earth History of Oxygen and the iprOxy
Available formats
×