Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-44mx8 Total loading time: 0 Render date: 2025-04-17T20:22:43.753Z Has data issue: false hasContentIssue false

Affective Touching

Neurobiology and Technological Applications

Published online by Cambridge University Press:  20 February 2025

Mark Paterson
Affiliation:
University of Pittsburgh

Summary

At the end of the twentieth century the discovery of 'slow', affective touch nerves in humans known as C Tactile (CT) afferents, which are entirely separate from the faster pathways for touching objects, had huge social implications. The Swedish neuroscientists responsible formulated an “affective touch hypothesis” or “social touch hypothesis” to consider their purpose. Part I offers a history of the science of social touch, from related discoveries in mammals by physiologists in the 1930s, to the recent rediscoveries of the CT nerves in humans. Part II considers how these findings are being intentionally folded into technologies for interaction. First, as mediated social touch, communicating at a distance through haptics. Second, with the increasing number of social and service robots in health care and domestic settings, the role of affective touch within human-robot interaction design.
Get access
Type
Element
Information
Online ISBN: 9781009484404
Publisher: Cambridge University Press
Print publication: 20 February 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Ackerley, R., Wasling, H. B., Liljencrantz, J., et al. (2014). Human C-tactile Afferents Are Tuned to the Temperature of a Skin-Stroking Caress. The Journal of Neuroscience, 34(8), 28792883. https://doi.org/10.1523/jneurosci.2847-13.2014.Google Scholar
Adrian, E. D., & Zotterman, Y. (1926). The Impulses Produced by Sensory Nerve Endings. The Journal of Physiology, 61(4), 465483. https://doi.org/10.1113/jphysiol.1926.sp002308.Google Scholar
Ainsworth, M. D. S. (1979). Attachment as Related to Mother-Infant Interaction. In Rosenblatt, J. S., Hinde, R. A., Beer, C., & Busnel, M.-C. (Eds.), Advances in the Study of Behavior (Vol. 9, pp. 151). Academic Press. https://doi.org/10.1016/S0065-3454(08)60032-7.Google Scholar
Andreasson, R., Alenljung, B., Billing, E., & Lowe, R. (2017). Affective Touch in Human–Robot Interaction: Conveying Emotion to the Nao Robot. International Journal of Social Robotics, 10(4), 473491. https://doi.org/10.1007/s12369-017-0446-3.Google Scholar
Arnold, T., & Scheutz, M. (2017). The Tactile Ethics of Soft Robotics: Designing Wisely for Human–Robot Interaction. Soft Robotics, 4(2), 8187. https://doi.org/10.1089/soro.2017.0032.Google Scholar
Arnold, T., & Scheutz, M. (2018). Observing Robot Touch in Context: How Does Touch and Attitude Affect Perceptions of a Robot’s Social Qualities? Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA. https://doi.org/10.1145/3171221.3171263.Google Scholar
Arthur, C. (2002, Wednesday 30 October). Touching Moment 3,000 Miles Apart Becomes a Virtual Reality. The Independent, 7.Google Scholar
Asada, M. (2014). Towards Artificial Empathy. International Journal of Social Robotics, 7(1), 1933. https://doi.org/10.1007/s12369-014-0253-z.Google Scholar
Asada, M. (2015a). Development of Artificial Empathy. Neuroscience Research, 90, 4150. https://doi.org/10.1016/j.neures.2014.12.002.Google Scholar
Asada, M. (2015b). Towards Artificial Empathy: How Can Artificial Empathy Follow the Developmental Pathway of Natural Empathy? International Journal of Social Robotics, 7(1), 1933. https://doi.org/10.1007/s12369-014-0253-z.Google Scholar
Barker, N., & Jewitt, C. (2022). Filtering Touch: An Ethnography of Dirt, Danger, and Industrial Robots. Journal of Contemporary Ethnography, 51(1), 103130. https://doi.org/10.1177/08912416211026724.Google Scholar
Bastian, H. C. (1869). On the ‘Muscular Sense’, and on the Physiology of Thinking. British Medical Journal, 1(435), 394396. https://doi.org/10.1136/bmj.1.435.394.Google Scholar
BBC. (2002). Lover’s Touch Is Special. http://news.bbc.co.uk/1/hi/health/2158489.stm.Google Scholar
Bemelmans, R., Gelderblom, G. J., Jonker, P., & de Witte, L. (2015). Effectiveness of Robot Paro in Intramural Psychogeriatric Care: A Multicenter Quasi-experimental Study. Journal of the American Medical Directors Association, 16(11), 946950. https://doi.org/10.1016/j.jamda.2015.05.007.Google Scholar
Bevan, C., & Fraser, D. S. (2015). Shaking Hands and Cooperation in Tele-present Human-Robot Negotiation. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (pp. 247–254), Portland, Oregon, USA. Association for Computing Machinery. https://doi.org/10.1145/2696454.2696490.Google Scholar
Block, A. E., Seifi, H., Hilliges, O., Gassert, R., & Kuchenbecker, K. J. (2023). In the Arms of a Robot: Designing Autonomous Hugging Robots with Intra-hug Gestures. Transactions on Human-Robot Interaction, 12(2), 1–49. https://doi.org/10.1145/3526110.Google Scholar
Boddice, R., & Smith, M. (2020). Emotion, Sense, Experience. Cambridge University Press. https://doi.org/10.1017/9781108884952.Google Scholar
Burgoon, J. K. (1991). Relational Message Interpretations of Touch, Conversational Distance, and Posture. Journal of Nonverbal Behavior, 15(4), 233259. https://doi.org/10.1007/BF00986924.Google Scholar
Cannon, W. B. (1939). The Wisdom of the Body. W.W. Norton.Google Scholar
Casteñada, C. (2001). Robotic Skin: The Future of Touch? In Ahmed, S., & Stacey, J. (Eds.), Thinking Through the Skin (pp. 223236). Routledge.Google Scholar
Chang, A. (2002). ComTouch: A Vibrotactile Mobile Communication Device. MIT Press.Google Scholar
Chartrand, T. L., & Bargh, J. A. (1999). The Chameleon Effect: The Perception–Behavior Link and Social Interaction. Journal of Personality and Social Psychology, 76(6), 893910. https://doi.org/10.1037/0022-3514.76.6.893.Google Scholar
Chartrand, T. L., & Lakin, J. L. (2013). The Antecedents and Consequences of Human Behavioral Mimicry. Annual Review of Psychology, 64, 285308. https://doi.org/10.1146/annurev-psych-113011-143754.Google Scholar
Chun, B., & Knight, H. (2020). The Robot Makers: An Ethnography of Anthropomorphism at a Robotics Company. ACM Transactions on Human-Robot Interaction, 9(3), 136. https://doi.org/10.1145/3377343.Google Scholar
Coker, D. A., & Burgoon, J. K. (1987). The Nature of Conversational Involvement and Nonverbal Encoding Patterns. Human Communication Research, 13(4), 463494. https://doi.org/10.1111/j.1468-2958.1987.tb00115.x.Google Scholar
Cole, J. (1995). Pride and a Daily Marathon (1st Ed.). MIT Press.Google Scholar
Craig, A. D. (2003). Interoception: The Sense of the Physiological Condition of the Body. Current Opinion in Neurobiology, 13(4), 500505. https://doi.org/10.1016/s0959-4388(03)00090-4.Google Scholar
Cramer, H., Kemper, N., Amin, A., Wielinga, B., & Evers, V. (2009). ‘Give Me a Hug’: The Effects of Touch and Autonomy on People’s Responses to Embodied Social Agents. Computer Animation and Virtual Worlds, 20(2–3), 437445. https://doi.org/10.1002/cav.317.Google Scholar
Crusco, A. H., & Wetzel, C. G. (1984). The Midas Touch: The Effects of Interpersonal Touch on Restaurant Tipping. Personality and Social Psychology Bulletin, 10(4), 512517. https://doi.org/10.1177/0146167284104003.Google Scholar
Dumouchel, P., & Damiano, L. (2017). Living with Robots (DeBevoise, M., Trans.). Harvard University Press.Google Scholar
Ebbinghaus, H. (1902). Grundzüge der psychologie. Veit.Google Scholar
Ellingsen, D. M., Leknes, S., Loseth, G., Wessberg, J., & Olausson, H. (2015). The Neurobiology Shaping Affective Touch: Expectation, Motivation, and Meaning in the Multisensory Context. Frontiers in Psychology, 6, Article 1986. https://doi.org/10.3389/fpsyg.2015.01986.Google Scholar
Erlanger, J., & Gasser, H. S. (1930). The Action Potential in Fibers of Slow Conduction in Spinal Roots and Somatic Nerves. American Journal of Physiology, 92(1), 4382. https://doi.org/10.1152/ajplegacy.1930.92.1.43.Google Scholar
Fairhurst, M. T., McGlone, F., & Croy, I. (2022). Affective Touch: A Communication Channel for Social Exchange. Current Opinion in Behavioral Sciences, 43, 5461. https://doi.org/10.1016/j.cobeha.2021.07.007.Google Scholar
Fechner, G. T. (1860). Elemente der Psychophysik. von Breitkopf und Härtel.Google Scholar
Feil-Seifer, D., & Mataric, M. (2011). Socially Assistive Robotics. IEEE Robotics & Automation Magazine, 18(1), 2431. https://doi.org/10.1109/mra.2010.940150.Google Scholar
Field, T. (2001). Touch. MIT Press.Google Scholar
Field, T. (2014). Touch (2nd Ed.). MIT Press.Google Scholar
Field, T., Hernandez-Reif, M., Diego, M., Schanberg, S., & Kuhn, C. (2005). Cortisol Decreases and Seratonin and Dopamine Increase Following Massage Therapy. International Journal of Neuroscience, 115(10), 13971413. https://doi.org/10.1080/00207450590956459.Google Scholar
Field, T. M., Schanberg, S. M., Scafidi, F., et al. (1986). Tactile/Kinesthetic Stimulation Effects on Preterm Neonates. Pediatrics, 77(5), 654658. https://doi.org/10.1542/peds.77.5.654.Google Scholar
Fisher, J. D., Rytting, M., & Heslin, R. (1976). Hands Touching Hands: Affective and Evaluative Effects of an Interpersonal Touch. Sociometry, 39(4), 416421. https://doi.org/10.2307/3033506.Google Scholar
Foerster, O. (1936). The Motor Cortex in Man in the Light of Hughling Jackson’s Doctrines. Brain, 59(2), 135159. https://doi.org/10.1093/brain/59.2.135.Google Scholar
Foerster, O., & Gagel, O. (1932). Die Vorderseitenstrangdurchschneidung beim Menschen. Julius Springer.Google Scholar
Fretwell, E. (2020). Sensory Experiments: Psychophysics, Race, and the Aesthetics of Feeling. Duke University Press. www.dukeupress.edu/sensory-experiments.Google Scholar
George, E. I., Brand, T. C., LaPorta, A., Marescaux, J., & Satava, R. M. (2018). Origins of Robotic Surgery: From Skepticism to Standard of Care. Jsls, 22(4). https://doi.org/10.4293/jsls.2018.00039.Google Scholar
Gibson, J. J. (Ed.). (1968). The Senses Considered as Perceptual Systems. George Allan & Unwin.Google Scholar
Haans, A., & Ijsselsteijn, W. (2006). Mediated Social Touch: A Review of Current Research and Future Directions. Virtual Reality, 9(2), 149159. https://doi.org/10.1007/s10055-005-0014-2.Google Scholar
Haans, A., & Ijsselsteijn, W. (2009). The Virtual Midas Touch: Helping Behavior after a Mediated Social Touch. IEEE Transactions on Haptics, 2(3), 136140. https://doi.org/10.1109/TOH.2009.20.Google Scholar
Haggarty, C. J., Malinowski, P., McGlone, F. P., & Walker, S. C. (2020). Autistic Traits Modulate Cortical Responses to Affective but Not Discriminative Touch. European Journal of Neuroscience, 51(8), 18441855. https://doi.org/10.1111/ejn.14637.Google Scholar
Hall, J. A., & Knapp, M. L. (2009). Nonverbal Communication in Human Interaction (7th Ed.). Cengage Learning. https://doi.org/10.1515/9783110238150.Google Scholar
Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H., & Bao, Z. (2013). 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 25(42), 59976038. https://doi.org/10.1002/adma.201302240.Google Scholar
Harlow, H. F. (1958). The Nature of Love. American Psychologist, 13(12), 673685. https://doi.org/10.1037/h0047884.Google Scholar
Heslin, R., & Alper, T. (1982). Touch: A Bonding Gesture. In Wiemann, J. M. & Harrison, R. P. (Eds.), Nonverbal Interaction (pp. 4775). Sage.Google Scholar
Hillis, K. (Ed.). (1999). Digital Sensations: Space, Identity and Embodiment in Virtual Reality. University Of Minnesota Press.Google Scholar
Hoffmann, L., & Krämer, N. C. (2021). The Persuasive Power of Robot Touch. Behavioral and Evaluative Consequences of Non-functional Touch from a Robot. PLoS One, 16(5), e0249554. https://doi.org/10.1371/journal.pone.0249554.Google Scholar
Howes, D. (2009). The Sixth Sense Reader. Berg.Google Scholar
Huisman, G. (2012). A touch of affect: Mediated social touch and affect. Proceedings of the 14th ACM International Conference on Multimodal Interaction, Santa Monica, CA. https://doi.org/10.1145/2388676.2388746.Google Scholar
Huisman, G. (2017). Social Touch Technology: A Survey of Haptic Technology for Social Touch. IEEE Transactions on Haptics, 10(3), 391408. https://doi.org/10.1109/TOH.2017.2650221.Google Scholar
Iggo, A. (1960). Cutaneous Mechanoreceptors with Afferent C Fibres. The Journal of Physiology, 152(2), 337353. https://doi.org/10.1113/jphysiol.1960.sp006491.Google Scholar
Iriuchijima, J., & Zotterman, Y. (1960). The Specificity of Afferent Cutaneous C Fibres in Mammals. Acta Physiologica Scandinavica, 49(2–3), 267278. https://doi.org/10.1111/j.1748-1716.1960.tb01952.x.Google Scholar
Iwata, H. (2008). History of Haptic Interface. In Grunwald, M. (Ed.), Human Haptic Perception: Basics and Applications (pp. 355361). Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7612-3_29.Google Scholar
James, W. (1890). The Principles of Psychology. H. Holt and CompanyGoogle Scholar
Jeannerod, M. (1985). The Brain Machine: The Development of Neurophysiological Thought (Urion, D., Trans.). Harvard University Press.Google Scholar
Jewitt, C., & Price, S. (2024). Digital Touch. Polity Press. https://books.google.com/books?id=BxYLEQAAQBAJ.Google Scholar
Johansson, R. S., Trulsson, M., Olsson, K. Å., & Westberg, K. G. (1988). Mechanoreceptor Activity from the Human Face and Oral Mucosa. Experimental Brain Research, 72(1), 204208. https://doi.org/10.1007/BF00248518.Google Scholar
Jones, S. E., & Yarbrough, A. E. (1985). A Naturalistic Study of the Meanings of Touch. Communication Monographs, 52(1), 1956. https://doi.org/10.1080/03637758509376094.Google Scholar
Jung, M. & Hinds, P. (2018). Robots in the Wild: A Time for More Robust Theories of Human-Robot Interaction. ACM Transactions on Human-Robot Interaction, 7(1), 15.Google Scholar
Katz, D. (1989). The World of Touch (Krueger, L. E., Ed.). Lawrence Erlbaum. https://books.google.co.uk/books?id=49Vtnp2k1MEC.Google Scholar
Kim, J., Kim, H., Tay, B. K., et al. (2004). Transatlantic Touch: A Study of Haptic Collaboration over Long Distance. Presence, 13(3), 328337. https://doi.org/10.1162/1054746041422370.Google Scholar
Kumazawa, T., & Perl, E. R. (1977). Primate Cutaneous Sensory Units with Unmyelinated (C) Afferent Fibers. Journal of Neurophysiology, 40(6), 13251338. https://doi.org/10.1152/jn.1977.40.6.1325.Google Scholar
Logan, D. E., Breazeal, C., Goodwin, M. S., et al. (2019). Social Robots for Hospitalized Children. Pediatrics, 144(1), e20181511. https://doi.org/10.1542/peds.2018-1511.Google Scholar
Lombroso, C. (1876). L’Uomo delinquente. Bocca.Google Scholar
Marshall, A. G., & McGlone, F. P. (2020). Affective Touch: The Enigmatic Spinal Pathway of the C-tactile Afferent. Neuroscience Insights, 15, 2633105520925072. https://doi.org/10.1177/2633105520925072.Google Scholar
McGlone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and Affective Touch: Sensing and Feeling. Neuron, 82(4), 737755. https://doi.org/10.1016/j.neuron.2014.05.001.Google Scholar
McGlone, F. P., & Walker, S. C. (2020). 4.06The Neurobiological Basis of Affective Touch. In Fritzsch, B. (Ed.), The Senses: A Comprehensive Reference (2nd Ed.) (pp. 6778). Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.24227-2.Google Scholar
McKenna, P. E., Ghosh, A., Aylett, R., Broz, F., & Rajendran, G. (2018). Cultural Social Signal Interplay with an Expressive Robot. IVA ‘18. International Conference on Intelligent Virtual Agents (211–218). Association for Computing Machinery.Google Scholar
McLaughlin, M., Jung, Y., Peng, W., Jin, S., & Zhu, W. (2008). Touch in Computer-Mediated Communication. In Konijn, E. A., Utz, S., Tanis, M., & Barnes, S. B. (Eds.), Mediated Interpersonal Communication (pp. 158176). Routledge.Google Scholar
McLuhan, M. (1964). Understanding Media: The Extensions of Man (1st Ed.). McGraw-Hill.Google Scholar
Merleau-Ponty, M. (2013). Phenomenology of Perception (Landes, D., Trans.). Taylor & Francis. https://books.google.co.uk/books?id=Lh_e0_y1YjgC.Google Scholar
Miyashita, T., Tajika, T., Ishiguro, H., Kogure, K., & Hagita, N. (2007). Haptic Communication between Humans and Robots. In Thrun, S., Brooks, R., & Durrant-Whyte, H. (Eds.), Robotics Research: Springer Tracts in Advanced Robotics (pp. 525–536). Springer .Google Scholar
Montagu, A. (1971). Touching: The Human Significance of the Skin. Columbia University Press.Google Scholar
Montagu, A. (Ed.). (1986). Touching: The Human Significance of the Skin (3rd Ed.). Harper and Row.Google Scholar
Mori, M., MacDorman, K. F., & Kageki, N. (2012). The Uncanny Valley. IEEE Robotics & Automation Magazine, 19(2), 98100. https://spectrum.ieee.org/the-uncanny-valley (M. Mori, ‘The Uncanny Valley’, Energy, 7(4), 33–35, 1970 (in Japanese)).Google Scholar
Morrison, I. (2016a). Affective and Social Touch. In Greene, J. D., Morrison, I., & Seligman, M. E. P. (Eds.), Positive Neuroscience (pp. 720). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199977925.003.0002.Google Scholar
Morrison, I. (2016b). Keep Calm and Cuddle on: Social Touch as a Stress Buffer. Adaptive Human Behavior and Physiology, 2(4), 344362. https://doi.org/10.1007/s40750-016-0052-x.Google Scholar
Morrison, I. (2023). Touching to Connect, Explore, and Explain: How the Human Brain Makes Social Touch Meaningful. The Senses and Society, 18(2), 92109. https://doi.org/10.1080/17458927.2023.2200065.Google Scholar
Morrison, I., Loken, L. S., & Olausson, H. (2010). The Skin as a Social Organ. Experimental Brain Research, 204(3), 305314. https://doi.org/10.1007/s00221-009-2007-y.Google Scholar
Nass, C., & Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of Social Issues, 56(1), 81103. https://doi.org/10.1111/0022-4537.00153.Google Scholar
Nordin, M. (1990). Low-Threshold Mechanoreceptive and Nociceptive Units with Unmyelinated (C) Fibres in the Human Supraorbital Nerve. The Journal of Physiology, 426, 229240. https://doi.org/10.1113/jphysiol.1990.sp018135.Google Scholar
Okamura, A. M. (2018). Haptic Dimensions of Human-Robot Interaction. ACM Transactions on Human-Robot Interaction, 7(1), 13. https://doi.org/10.1145/3209768.Google Scholar
Olausson, H., Lamarre, Y., Backlund, H., et al. (2002). Unmyelinated Tactile Afferents Signal Touch and Project to Insular Cortex. Nature Neuroscience, 5(9), 900904. https://doi.org/10.1038/nn896.Google Scholar
Olausson, H., Wessberg, J., Morrison, I., McGlone, F., & Vallbo, A. (2010). The Neurophysiology of Unmyelinated Tactile Afferents. Neuroscience Biobehavioral Reviews, 34(2), 185191. https://doi.org/10.1016/j.neubiorev.2008.09.011.Google Scholar
Olausson, H. W., Cole, J., Vallbo, A., et al. (2008). Unmyelinated Tactile Afferents Have Opposite Effects on Insular and Somatosensory Cortical Processing. Neuroscience Letters, 436(2), 128132. https://doi.org/10.1016/j.neulet.2008.03.015.Google Scholar
Parisi, D. (2018). Archaeologies of Touch: Interfacing with Haptics from Electricity to Computing. University of Minnesota Press.Google Scholar
Paterson, M. (2006). Feel the Presence: Technologies of Touch and Distance. Environment and Planning D: Society and Space, 24(5), 691708. https://doi.org/10.1068/d394t.Google Scholar
Paterson, M. (2007). The Senses of Touch: Haptics, Affects, and Technologies. Routledge.Google Scholar
Paterson, M. (2009). Haptic Geographies: Ethnography, Haptic Knowledges and Sensuous Dispositions. Progress in Human Geography, 33(6), 766788. https://doi.org/10.1177/0309132509103155.Google Scholar
Paterson, M. (2019). On Pain as a Distinct Sensation: Mapping Intensities, Affects, and Difference in ‘Interior States’. Body and Society, 25(3), 100135. https://doi.org/10.1177/1357034x19834631.Google Scholar
Paterson, M. (2021). How We Became Sensorimotor: Movement, Measurement, Sensation. University of Minnesota Press.Google Scholar
Paterson, M. (2023a). Fatigue as a Physiological Problem: Experiments in the Observation and Quantification of Movement and Industrial Labor, 1873–1947. History and Technology, 39(1), 6590. https://doi.org/10.1080/07341512.2023.2226288.Google Scholar
Paterson, M. (2023b). Getting a Grip on New Objects, Technologies, and Sensations through Aura, Presence, and Mimesis. In Vannini, P. (Ed.), The Routledge International Handbook of Sensory Ethnography (pp. 5368). Routledge.Google Scholar
Perl, E. R. (1971). Is Pain a Specific Sensation? Journal of Psychiatric Research, 8(3), 273287. https://doi.org/10.1016/0022-3956(71)90024-0.Google Scholar
Price, S., Bianchi-Berthouze, N., Jewitt, C., et al. (2022). The Making of Meaning through Dyadic Haptic Affective Touch. ACM Transactions in Computer-Human Interaction, 29(3), 142, Article 21. https://doi.org/10.1145/3490494.Google Scholar
Raisamo, R., Salminen, K., Rantala, J., Farooq, A., & Ziat, M. (2022). Interpersonal Haptic Communication: Review and Directions for the Future. International Journal of Human-Computer Studies, 166, 102881. https://doi.org/10.1016/j.ijhcs.2022.102881.Google Scholar
Robles-De-La-Torre, G. (2006). The Importance of the Sense of Touch in Virtual and Real Environments. IEEE Multimedia, 13(3), 2430. https://doi.org/10.1109/MMUL.2006.69.Google Scholar
Roegiers, S., Corneillie, E., Lievens, F., et al. (2022). Distinctive Features of Nonverbal Behavior and Mimicry in Application Interviews through Data Analysis and Machine Learning. Machine Learning with Applications, 9, 100318. https://doi.org/10.1016/j.mlwa.2022.100318.Google Scholar
Salter, T., Dautenhahn, K., & Boekhorst, R. T. (2006). Learning about Natural Human–Robot Interaction Styles. Robotics and Autonomous Systems, 54(2), 127134. https://doi.org/10.1016/j.robot.2005.09.022.Google Scholar
Salter, T., Michaud, F., Létourneau, D., Lee, D. C., & Werry, I. P. (2007). Using Proprioceptive Sensors for Categorizing Human-Robot Interactions. Proceeding of the ACM/IEEE International Conference (105–112). Association for Computing Machinery.Google Scholar
Scassellati, B., Admoni, H., & Matarić, M. (2012). Robots for Use in Autism Research. Annual Review of Biomedical Engineering, 14(1), 275294. https://doi.org/10.1146/annurev-bioeng-071811-150036.Google Scholar
Schirmer, A., Croy, I., & Ackerley, R. (2023). What Are C-tactile Afferents and How Do They Relate to ‘Affective Touch’? Neuroscience & Biobehavioral Reviews, 151, 105236. https://doi.org/10.1016/j.neubiorev.2023.105236.Google Scholar
Sheridan, T. B. (1989). Telerobotics. Automatica, 25(4), 487507. https://doi.org/10.1016/0005-1098(89)90093-9.Google Scholar
Sherrington, C. S. (1906). The Integrative Action of the Nervous System. C. Scribner’s Sons.Google Scholar
Sherrington, C. S. (1907). On the Proprio-ceptive System, Especially in Its Reflex Aspect. Brain, 29(4), 467482. https://doi.org/10.1093/brain/29.4.467.Google Scholar
Sterling, P., & Eyer, J. (1990). Allostasis: A New Paradigm to Explain Arousal Pathology. Handbook on Life Stress, Cognition, and Health, 629649.Google Scholar
Stiehl, W. D., Lee, J. K., Breazeal, C., et al. (2009). The Huggable: A Platform for Research in Robotic Companions for Pediatric Care. Proceedings of the 8th International Conference on Interaction Design and Children (pp. 317–320), Como, Italy. Association for Computing Machinery. https://doi.org/10.1145/1551788.1551872.Google Scholar
Stiehl, W. D., Lieberman, J., Breazeal, C., et al. (2005). Design of a Therapeutic Robotic Companion for Relational, Affective Touch. ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005.Google Scholar
Thayer, S. (1986). History and Strategies of Research on Social Touch. Journal of Nonverbal Behavior, 10(1), 1228. https://doi.org/10.1007/BF00987202.Google Scholar
Titchener, E. B. (1908). The Tridimensional Theory of Feeling. The American Journal of Psychology, 19(2), 213231. https://doi.org/10.2307/1412760.Google Scholar
Tsetserukou, D., Neviarouskaya, A., Prendinger, H., Kawakami, N., & Tachi, S. (2009, 10–12 September 2009). Affective Haptics in Emotional Communication. 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (pp. 1–6), Amsterdam, Netherlands.Google Scholar
Vallbo, Å., Olausson, H., Wessberg, J., & Norrsell, U. (1993). A System of Unmyelinated Afferents for Innocuous Mechanoreception in the Human Skin. Brain Research, 628(1), 301304. https://doi.org/10.1016/0006-8993(93)90968-S.Google Scholar
Vallbo, Å. B. (2018). Microneurography: How It Started and How It Works. Journal of Neurophysiology, 120(3), 14151427. https://doi.org/10.1152/jn.00933.2017.Google Scholar
Vallbo, Å. B., & Hagbarth, K. E. (1968). Activity from Skin Mechanoreceptors Recorded Percutaneously in Awake Human Subjects. Experimental Neurology, 21(3), 270289. https://doi.org/10.1016/0014-4886(68)90041-1.Google Scholar
Vallbo, A. B., Olausson, H., & Wessberg, J. (2009). Pleasant Touch. In Squire, L. R. (Ed.), Encyclopedia of Neuroscience (pp. 741748). Academic Press. https://doi.org/10.1016/B978-008045046-9.01916-1.Google Scholar
Vallbo, Å. B., Olausson, H., & Wessberg, J. (1999). Unmyelinated Afferents Constitute a Second System Coding Tactile Stimuli of the Human Hairy Skin. Journal of Neurophysiology, 81(6), 27532763. https://doi.org/10.1152/jn.1999.81.6.2753.Google Scholar
van Baaren, R. B., Holland, R. W., Kawakami, K., & van Knippenberg, A. (2004). Mimicry and Prosocial Behavior. Psychological Science, 15(1), 7174. https://doi.org/10.1111/j.0963-7214.2004.01501012.x.Google Scholar
van Swol, L. M. (2003). The Effects of Nonverbal Mirroring on Perceived Persuasiveness, Agreement with an Imitator, and Reciprocity in a Group Discussion. Communication Research, 30(4), 461480. https://doi.org/10.1177/0093650203253318.Google Scholar
Ventre-Dominey, J., Gibert, G., Bosse-Platiere, M., et al. (2019). Embodiment into a Robot Increases Its Acceptability. Scientific Reports, 9(1), 10083. https://doi.org/10.1038/s41598-019-46528-7.Google Scholar
Walker, R., & Bartneck, C. (2013, 26–29 August 2013). The Pleasure of Receiving a Head Massage from a Robot. 2013 IEEE RO-MAN.Google Scholar
Weber, E. H. (1996). E.H. Weber on the Tactile Senses Ross, H. E., & Murray, D. J. (Eds.), (2nd Ed.). Taylor & Francis.Google Scholar
Wessberg, J., Olausson, H., Fernstrom, K. W., & Vallbo, A. B. (2003). Receptive Field Properties of Unmyelinated Tactile Afferents in the Human Skin. Journal of Neurophysiology, 89(3), 15671575. https://doi.org/10.1152/jn.00256.2002.Google Scholar
Wundt, W. M. (1896). Grundriss der Psychologie. W. Engelmann.Google Scholar
Yohanan, S., & MacLean, K. E. (2008). The Haptic Creature Project: Social Human-Robot Interaction through Affective Touch. Proceedings of the AISB 2008 Symposium on the Reign of Catz & Dogs: The Second AISB Symposium on the Role of Virtual Creatures in a Computerised Society (pp. 7–11). The Society for the Study of Artificial Intelligence and Simulation of Behaviour,Google Scholar
Yohanan, S., & MacLean, K. E. (2009). A Tool to Study Affective Touch CHI ‘09 Extended Abstracts on Human Factors in Computing Systems, Boston, MA, USA. https://doi-org.pitt.idm.oclc.org/10.1145/1520340.1520632.Google Scholar
Yohanan, S., & MacLean, K. E. (2011). The Role of Affective Touch in Human-Robot Interaction: Human Intent and Expectations in Touching the Haptic Creature. International Journal of Social Robotics, 4(2), 163180. https://doi.org/10.1007/s12369-011-0126-7.Google Scholar
York, G. K. III, & Steinberg, D. A. (2011). Hughlings Jackson’s Neurological Ideas. Brain, 134(10), 31063113. https://doi.org/10.1093/brain/awr219.Google Scholar
Zotterman, Y. (1936). Specific Action Potentials in the Lingual Nerve of Cat. Skandinavisches Archiv Für Physiologie, 75(3), 105119. https://doi.org/10.1111/j.1748-1716.1936.tb01558.x.Google Scholar
Zotterman, Y. (1937). A Note on the Relation between Conduction Rate and Fibre Size in Mammalian Nerves 1. Skandinavisches Archiv Für Physiologie, 77(2), 123128. https://doi.org/10.1111/j.1748-1716.1937.tb01174.x.Google Scholar
Zotterman, Y. (1939a). The Nervous Mechanism of Touch and Pain. Acta Psychiatrica Scandinavica, 14(1–2), 9197. https://doi.org/10.1111/j.1600-0447.1939.tb06617.x.Google Scholar
Zotterman, Y. (1939b). Touch, Pain and Tickling: An Electro-Physiological Investigation on Cutaneous Sensory Nerves. The Journal of Physiology, 95(1), 128. https://doi.org/10.1113/jphysiol.1939.sp003707.Google Scholar
Zotterman, Y. (1979). How It Started: A Personal Review. In Kenshalo, D. R. (Ed.), SensoryFunctions of the Skin of Humans (pp. 522). Springer. https://doi.org/10.1007/978-1-4613-3039-4_2.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Affective Touching
  • Mark Paterson, University of Pittsburgh
  • Online ISBN: 9781009484404
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Affective Touching
  • Mark Paterson, University of Pittsburgh
  • Online ISBN: 9781009484404
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Affective Touching
  • Mark Paterson, University of Pittsburgh
  • Online ISBN: 9781009484404
Available formats
×