Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-26T15:57:44.698Z Has data issue: false hasContentIssue false

Abstractionism

Published online by Cambridge University Press:  06 February 2025

Luca Zanetti
Affiliation:
Scuola Universitaria Superiore IUSS Pavia
Francesca Boccuni
Affiliation:
Vita-Salute San Raffaele University

Summary

The aim of this Element is to provide an overview of abstractionism in the philosophy of mathematics. The authors distinguish between mathematical abstractionism, which interprets mathematical theories on the basis of abstraction principles, and philosophical abstractionism, which attributes a philosophical significance to mathematical abstractionism. They then survey the main semantic, ontological, and epistemological theses that are associated with philosophical abstractionism. Finally, the authors suggest that the most recent developments in the debate pull abstractionism in different directions.
Get access
Type
Element
Information
Online ISBN: 9781009375139
Publisher: Cambridge University Press
Print publication: 06 February 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonelli, A. (2010a). The Nature and Purpose of Numbers. Journal of Philosophy, 107(4), 191212.CrossRefGoogle Scholar
Antonelli, A. (2010b). Notions of Invariance for Abstraction Principles. Philosophia Mathematica, 18(3), 276292.CrossRefGoogle Scholar
Antonelli, A., & May, R. (2005). Frege’s Other Program. Notre Dame Journal of Formal Logic, 46(1), 117.CrossRefGoogle Scholar
Assadian, B. (2019). Abstractionism and Mathematical Singular Reference. Philosophia Mathematica, 27(2), 177198.CrossRefGoogle Scholar
Assadian, B. (2023). Abstraction and Semantic Presuppositions. Analysis, 15(3), 419428.CrossRefGoogle Scholar
Assadian, B., & Buijsman, S. (2018). Are the Natural Numbers Fundamentally Ordinals? Philosophy and Phenomenological Research, 99(3), 564580.CrossRefGoogle Scholar
Bagaria, J. (2023). Set Theory. In Zalta, E. N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.). https://plato.stanford.edu/archives/spr2023/entries/set-theory/.Google Scholar
Batitsky, V. (2002). Some Measurement-Theoretic Concerns about Hale’s “Reals by Abstraction.” Philosophia Mathematica, 10(3), 286303.CrossRefGoogle Scholar
Benacerraf, P. (1973). Mathematical Truth. Journal of Philosophy, 70(19), 661679.CrossRefGoogle Scholar
Blanchette, P. (2012). Frege’s Conception of Logic. Oxford University Press.Google Scholar
Blanchette, P. (2021). Frege on Caesar and Hume’s Principle. In Boccuni, F., & Sereni, A. (Eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism (pp. 2754). Routledge.CrossRefGoogle Scholar
Boccuni, F. (2010). Plural Grundgesetze. Studia Logica, 2(96), 315330.CrossRefGoogle Scholar
Boccuni, F. (2013). Plural Logicism. Erkenntnis, 78(5), 10511067.CrossRefGoogle Scholar
Boccuni, F., & Panza, M. (2022). Frege’s Theory of Real Numbers: A Consistent Rendering. Review of Symbolic Logic, 15(3), 624667.CrossRefGoogle Scholar
Boccuni, F., & Woods, J. (2020). Structuralist Neologicism. Philosophia Mathematica, 28(3), 296316.CrossRefGoogle Scholar
Boghossian, P. A. (1996). Analyticity Reconsidered. Noûs, 30(3), 360391.CrossRefGoogle Scholar
Boolos, G. (1984). To Be Is to Be a Value of a Variable (or to Be Some Values of Some Variables). Journal of Philosophy, 81(8), 430449. (Reprinted in Boolos 1998b, pp. 5472)CrossRefGoogle Scholar
Boolos, G. (1985). Nominalist Platonism. Philosophical Review, 94(3), 327344. (Reprinted in Boolos 1998b, pp. 7387)Google Scholar
Boolos, G. (1987a). The Consistency of Frege’s Foundations of Arithmetic. In Thomson, J. (Ed.), On Being and Saying: Essays in Honor of Richard Cartwright (pp. 320). MIT Press. (Reprinted in Boolos 1998b, pp. 183201)Google Scholar
Boolos, G. (1987b). Saving Frege from Contradiction. Proceedings of the Aristotelian Society, 87, 137151. (Reprinted in Boolos 1998b, pp. 171182)CrossRefGoogle Scholar
Boolos, G. (1989). Iteration Again. Philosophical Topics, 17(2), 521. (Reprinted in Boolos 1998b, pp. 88104)CrossRefGoogle Scholar
Boolos, G. (1993). Whence the Contradiction? Aristotelian Society Supplementary Volume, 67, 211233. (Reprinted in Boolos 1998b, pp. 220236)CrossRefGoogle Scholar
Boolos, G. (1998a). Is Hume’s Principle Analytic? In Heck, R. (Ed.), Logic, Language, and Thought (pp. 245262). Oxford University Press. (Originally published under the name “Richard G. Heck, Jr.” Reprinted in Boolos 1998b, pp. 301–314)Google Scholar
Boolos, G. (1998b). Logic, Logic, and Logic (Jeffrey, Richard C., Ed.). Harvard University Press.Google Scholar
Boolos, G., & Heck, R. K. (1998). Die Grundlagen der Arithmetik, §§82-3. In Schirn, M. (Ed.), The Philosophy of Mathematics Today (pp. 407428). Clarendon Press. (Originally published under the name “Richard G. Heck, Jr.” Reprinted in Boolos 1998b, pp. 315–338)Google Scholar
Brandom, R. (1996). The Significance of Complex Numbers for Frege’s Philosophy of Mathematics. Proceedings of the Aristotelian Society, 96(1), 293315.CrossRefGoogle Scholar
Burgess, J. P. (1998). On a Consistent Subsystem of Frege’s Grundgesetze. Notre Dame Journal of Formal Logic, 39(2), 274278.CrossRefGoogle Scholar
Burgess, J. P. (2005). Fixing Frege. Princeton University Press.Google Scholar
Clark, M. J., & Liggins, D. (2012). Recent Work on Grounding. Analysis Reviews, 72(4), 812823.CrossRefGoogle Scholar
Cocchiarella, N. (1985). Frege’s Double Correlation Thesis and Quine’s Set Theories NF and ML. Journal of Philosophical Logic, 14(1), 139.CrossRefGoogle Scholar
Cocchiarella, N. (1992). Cantor’s Power-Set Theorem versus Frege’s Double-Correlation Thesis. History and Philosophy of Logic, 13(2), 179201.CrossRefGoogle Scholar
Conti, L. (2020). Russell’s Paradox and Free Zig Zag Solutions. Foundations of Science, 28(1), 119.Google Scholar
Cook, R. (2003). Iteration One More Time. Notre Dame Journal of Formal Logic, 44(2), 6392.CrossRefGoogle Scholar
Cook, R. (2017). Abstraction and Four Kinds of Invariance. Philosophia Mathematica, 25(1), 325.Google Scholar
Cook, R. (2019). Frege’s Little Theorem and Frege’s Way Out. In Ebert, P., & Rossberg, M. (Eds.), Essays on Frege’s Basic Laws of Arithmetic (pp. 384410). Oxford University Press.CrossRefGoogle Scholar
Cook, R. (2021a). Abstractionism in Mathematics. In Internet Encyclopedia of Philosophy. https://iep.utm.edu/abstractionism/.Google Scholar
Cook, R. (2021b). Logicism, Separation, and Complement. In Boccuni, F., & Sereni, A. (Eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism (pp. 289308). Routledge.CrossRefGoogle Scholar
Cook, R. (2023). Frege’s Logic. In Zalta, E. N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.). https://plato.stanford.edu/archives/spr2023/entries/frege-logic/.Google Scholar
Cook, R., & Ebert, P. (2005). Abstraction and Identity. Dialectica, 59(2), 121139.CrossRefGoogle Scholar
Cook, R., & Linnebo, Ø. (2018). Cardinality and Acceptable Abstraction. Notre Dame Journal of Formal Logic, 59(1), 6174.CrossRefGoogle Scholar
Correia, F., & Schnieder, B. (2012). Grounding: An Opinionated Introduction. In Correia, F., & Schnieder, B. (Eds.), Metaphysical Grounding: Understanding the Structure of Reality (pp. 130). Oxford University Press.CrossRefGoogle Scholar
Demopoulos, W., & Bell, W. (1993). Frege’s Theory of Concepts and Objects and the Interpretation of Second-Order Logic. Philosophia Mathematica, 1(2), 139156.CrossRefGoogle Scholar
deRosset, L., & Linnebo, Ø. (2023). Abstraction and Grounding. Philosophy and Phenomenological Research, 109(1), 357390.CrossRefGoogle Scholar
Doherty, F. (2021). The Ontology of Abstraction, from Neo-Fregean to Neo-Dedekindian Logicism. In Boccuni, F., & Sereni, A. (Eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism (pp. 349371). Routledge.CrossRefGoogle Scholar
Donaldson, T. (2017). The (Metaphysical) Foundations of Arithmetic? Noûs, 51(4), 775801.CrossRefGoogle Scholar
Dummett, M. (1973). Frege: Philosophy of Language. Duckworth.Google Scholar
Dummett, M. (1991). Frege: Philosophy of Mathematics. Harvard University Press.Google Scholar
Dummett, M. (1993). What Is Mathematics about? In George, A. (Ed.), The Seas of Language (pp. 429445). Oxford University Press.Google Scholar
Dummett, M. (1994). Chairman’s Address: Basic Law V. Proceedings of the Aristotelian Society, 94, 243251.CrossRefGoogle Scholar
Dummett, M. (1998). Neo-Fregeans: In Bad Company? In Schirn, M. (Ed.), The Philosophy of Mathematics Today (pp. 369388). Clarendon Press.CrossRefGoogle Scholar
Ebels-Duggan, S. (2015). The Nuisance Principle in Infinite Settings. Thought: A Journal of Philosophy, 4(4), 263268.CrossRefGoogle Scholar
Ebert, P., & Rossberg, M. (2016). Introduction to Abstractionism. In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 333). Oxford University Press.CrossRefGoogle Scholar
Ebert, P., & Shapiro, S. (2009). The Good, the Bad and the Ugly. Synthese, 170(3), 415441.CrossRefGoogle Scholar
Eklund, M. (2006). Neo-Fregean Ontology. Philosophical Perspectives, 20(1), 95121.CrossRefGoogle Scholar
Felka, K. (2014). Number Words and Reference to Numbers. Philosophical Studies, 168(1), 261282.CrossRefGoogle Scholar
Ferreira, F. (2018). Zigzag and Fregean Arithmetic. In Tahiri, H. (Ed.), The Philosophers and Mathematics: Festschrift for Roshdi Rashed (pp. 81100). Springer.CrossRefGoogle Scholar
Ferreira, F., & Wehmeier, K. F. (2002). On the Consistency of the -CA Fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, 31(4), 301311.CrossRefGoogle Scholar
Field, H. (1980). Science without Numbers: A Defence of Nominalism. Princeton University Press.Google Scholar
Field, H. (1989). Realism, Mathematics, and Modality. Blackwell.Google Scholar
Field, H. (2005). Recent Debates about the A Priori. In Gendler, T. S., & Hawthorne, J. (Eds.), Oxford Studies in Epistemology Volume 1 (pp. 6988). Oxford University Press.CrossRefGoogle Scholar
Fine, K. (1995a). The Logic of Essence. Journal of Philosophical Logic, 24(3), 241273.CrossRefGoogle Scholar
Fine, K. (1995b). Senses of Essence. In Sinnott-Armstrong, W., Raffman, D., & Asher, N. (Eds.), Modality, Morality, and Belief: Essays in Honor of Ruth Barcan Marcus (pp. 5373). Cambridge University Press.Google Scholar
Fine, K. (2002). The Limits of Abstraction. Oxford University Press.CrossRefGoogle Scholar
Fine, K. (2005). Our Knowledge of Mathematical Objects. In Gendler, T. Z., & Hawthorne, J. (Eds.), Oxford Studies in Epistemology (pp. 89109). Clarendon Press.Google Scholar
Fine, K. (2012). Guide to Ground. In Correia, F., & Schnieder, B. (Eds.), Metaphysical Grounding (pp. 3780). Cambridge University Press.CrossRefGoogle Scholar
Florio, S., & Leach-Krouse, G. (2017). What Russell Should Have Said to Burali-Forti. Review of Symbolic Logic, 10(4), 682718.CrossRefGoogle Scholar
Florio, S., & Linnebo, Ø. (2021). The Many and the One: A Philosophical Study of Plural Logic. Oxford University Press.CrossRefGoogle Scholar
Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Louis Nebert. (Translated as Concept Script, a formal language of pure thought modelled upon that of arithmetic, by Bauer-Mengelberg, S. in van Heijenoort, J. (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, 1967, pp. 182)Google Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner. (Translated as The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, by J. L. Austin, Oxford: Blackwell, 1980)Google Scholar
Frege, G. (1891). Funktion und Begriff. Jena: Hermann Pohle. (Translated as Function and Concept by P. Geach in Geach, and , Black (eds. and trans.) Translations from the Philosophical Writings of Gottlob Frege, Oxford: Blackwell, 1980, pp. 2141)Google Scholar
Frege, G. (1893/1903). Grundgesetze der Arithmetik: Band I/II. Jena: Verlag Hermann Pohle. (Complete translation by P. Ebert and M. Rossberg (with C. Wright) as Basic Laws of Arithmetic: Derived Using Concept-Script, Oxford University Press, 2013)Google Scholar
Ganea, M. (2007). Burgess’ PV Is Robinson’s Q. Journal of Symbolic Logic, 72(2), 619624.CrossRefGoogle Scholar
Hale, B. (2000). Reals by Abstraction. Philosophia Mathematica, 8(2), 100123. (Reprinted in Hale and Wright 2001a, pp. 399–420)CrossRefGoogle Scholar
Hale, B. (2001a). A Response to Potter and Smiley: Abstraction by Recarving. Proceedings of the Aristotelian Society, 101(3), 339358.Google Scholar
Hale, B. (2001b). Singular Terms (1). In The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics (pp. 3147). Clarendon Press.CrossRefGoogle Scholar
Hale, B. (2001c). Singular Terms (2). In The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics (pp. 4871). Clarendon Press.CrossRefGoogle Scholar
Hale, B. (2002). Real Numbers, Quantities, and Measurement. Philosophia Mathematica, 10(3), 304323.CrossRefGoogle Scholar
Hale, B. (2005). Real Numbers and Set Theory. Extending the Neo-Fregean Programme beyond Arithmetic. Synthese, 147(1), 2141.CrossRefGoogle Scholar
Hale, B. (2013). Necessary Beings: An Essay on Ontology, Modality, and the Relations between Them. Oxford University Press.CrossRefGoogle Scholar
Hale, B. (2018). Essence and Definition by Abstraction. Synthese, 198(8), 20012017.Google Scholar
Hale, B. (2019). Second-Order Logic: Properties, Semantics, and Existential Commitments. Synthese, 196(7), 26432669.CrossRefGoogle Scholar
Hale, B. (2020). Ordinals by Abstraction. In Leech, J. (Ed.), Essence and Existence: Selected Essays by Bob Hale (pp. 240255). Oxford University Press. (Reprinted in Boccuni, F. and Sereni, A. (Eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism. Ch. 11. Routledge. 2021.)CrossRefGoogle Scholar
Hale, B., & Wright, C. (2000). Implicit Definition and the A Priori. In Boghossian, P., & Peacocke, C. (Eds.), New Essays on the A Priori (pp. 286319). Clarendon Press.CrossRefGoogle Scholar
Hale, B., & Wright, C. (2001a). The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics. Clarendon Press.CrossRefGoogle Scholar
Hale, B., & Wright, C. (2001b). To Bury Caesar…. In The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics (pp. 335396). Clarendon Press.CrossRefGoogle Scholar
Hale, B., & Wright, C. (2002). Benacerraf’s Dilemma Revisited. European Journal of Philosophy, 10(1), 101129.CrossRefGoogle Scholar
Hale, B., & Wright, C. (2008). Abstraction and Additional Nature. Philosophia Mathematica, 16(2), 182208.CrossRefGoogle Scholar
Hale, B., & Wright, C. (2009a). Focus Restored: Comments on John MacFarlane. Synthese, 170(3), 457482.CrossRefGoogle Scholar
Hale, B., & Wright, C. (2009b). The Metaontology of Abstraction. In Manley, R. W. David Chalmers David (Ed.), Metametaphysics: New Essays on the Foundations of Ontology (pp. 178212). Oxford University Press.CrossRefGoogle Scholar
Hallett, M. (1984). Cantorian Set Theory and Limitation of Size. Clarendon Press.Google Scholar
Hawley, K. (2007). Neo-Fregeanism and Quantifier Variance. Aristotelian Society Supplementary Volume, 81(1), 233249.CrossRefGoogle Scholar
Heck, R. K. (1996). The Consistency of Predicative Fragments of Frege’s Grundgesetze der Arithmetik. History and Philosophy of Logic, 17(1–2), 209220. (Originally published under the name “Richard G. Heck, Jr.”)CrossRefGoogle Scholar
Heck, R. K. (1997a). Finitude and Hume’s Principle. Journal of Philosophical Logic, 26(6), 589617. (Originally published under the name “Richard G. Heck, Jr.”)CrossRefGoogle Scholar
Heck, R. K. (1997b). The Julius Caesar Objection. In Heck, R. K. (Ed.), Language, Thought, and Logic: Essays in Honour of Michael Dummett (pp. 273308). Oxford University Press. (Originally published under the name “Richard G. Heck, Jr.”)CrossRefGoogle Scholar
Heck, R. K. (2000). Cardinality, Counting, and Equinumerosity. Notre Dame Journal of Formal Logic, 41(3), 187209. (Originally published under the name “Richard G. Heck, Jr.”)CrossRefGoogle Scholar
Heck, R. K. (2011a). Frege’s Theorem. Oxford University Press.Google Scholar
Heck, R. K. (2011b). A Logic for Frege’s Theorem. In Frege’s Theorem: An Introduction (pp. 267296). Oxford University Press. (Originally published under the name “Richard G. Heck, Jr.”)Google Scholar
Hellman, G., & Shapiro, S. (2018). Mathematical Structuralism. Cambridge University Press.CrossRefGoogle Scholar
Hodes, H. T. (1984). Logicism and the Ontological Commitments of Arithmetic. Journal of Philosophy, 81(3), 123149.CrossRefGoogle Scholar
Hodes, H. T. (1990). Ontological Commitments, Thick and Thin. In Boolos, G. (Ed.), Method, Reason and Language: Essays in Honor of Hilary Putnam (pp. 235260). Cambridge University Press.Google Scholar
Hofweber, T. (2005). Number Determiners, Numbers, and Arithmetic. Philosophical Review, 114(2), 179225.CrossRefGoogle Scholar
Hofweber, T. (2023). Refocusing Frege’s Other Puzzle: A Response to Snyder, Samuels, and Shapiro. Philosophia Mathematica, 31(2), 216235.CrossRefGoogle Scholar
Horsten, L., & Leitgeb, H. (2009). How Abstraction Works. In Hieke, A., & Leitgeb, H. (Eds.), Reduction – Abstraction – Analysis (Vol. 11, pp. 217226). Ontos Verlag.Google Scholar
Iemhoff, R. (2020). Intuitionism in the Philosophy of Mathematics. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2020 ed.). https://plato.stanford.edu/archives/fall2020/entries/intuitionism/.Google Scholar
Jané, I., & Uzquiano, G. (2004). Well- and Non-Well-Founded Fregean Extensions. Journal of Philosophical Logic, 33(5), 437465.CrossRefGoogle Scholar
Knowles, R. (2015). What “The Number of Planets Is Eight” Means. Philosophical Studies, 172(10), 27572775.CrossRefGoogle Scholar
Leach-Krouse, G. (2015). Structural-Abstraction Principles. Philosophia Mathematica, 25(1), 4572.Google Scholar
Linnebo, Ø. (2009a). Bad Company Tamed. Synthese, 170(3), 371391.CrossRefGoogle Scholar
Linnebo, Ø. (2009b). Introduction. Synthese, 170(3), 321329.CrossRefGoogle Scholar
Linnebo, Ø. (2010). Pluralities and Sets. Journal of Philosophy, 107(3), 144164.Google Scholar
Linnebo, Ø. (2011). Some Criteria for Acceptable Abstraction. Notre Dame Journal of Formal Logic, 52(3), 331338.CrossRefGoogle Scholar
Linnebo, Ø. (2013). The Potential Hierarchy of Sets. Review of Symbolic Logic, 6(2), 205228.CrossRefGoogle Scholar
Linnebo, Ø. (2016). Impredicativity in the Neo-Fregean Programme. In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 247268). Oxford University Press.CrossRefGoogle Scholar
Linnebo, Ø. (2018). Thin Objects: An Abstractionist Account. Oxford University Press.CrossRefGoogle Scholar
Linnebo, Ø. (2022). Plural Quantification. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2022 ed.). https://plato.stanford.edu/archives/spr2022/entries/plural-quant/.Google Scholar
Linnebo, Ø. (2023a). Platonism in the Philosophy of Mathematics. In Zalta, E. N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy (Summer 2023 ed.). https://plato.stanford.edu/archives/sum2023/entries/platonism-mathematics/.Google Scholar
Linnebo, Ø. (2023b). Replies. Theoria, 89(3), 393406.CrossRefGoogle Scholar
Linnebo, Ø. , & Pettigrew, R. (2014). Two Types of Abstraction for Structuralism. Philosophical Quarterly, 64(255), 267283.CrossRefGoogle Scholar
Linnebo, Ø. , & Shapiro, S. (2017). Actual and Potential Infinity. Noûs, 53(1), 160191.CrossRefGoogle Scholar
Linsky, B., & Zalta, E. N. (2006). What Is Neologicism? Bulletin of Symbolic Logic, 12(1), 6099.CrossRefGoogle Scholar
Litland, J. E. (2022). Collective Abstraction. Philosophical Review, 131(4), 453497.CrossRefGoogle Scholar
MacBride, F. (2000). On Finite Hume. Philosophia Mathematica, 8(2), 150159.CrossRefGoogle Scholar
MacBride, F. (2003). Speaking with Shadows: A Study of Neo-logicism. British Journal for the Philosophy of Science, 54(1), 103163.CrossRefGoogle Scholar
MacBride, F. (2006). The Julius Caesar Objection: More Problematic than Ever. In MacBride, F. (Ed.), Identity and Modality (pp. 174202). Oxford University Press.CrossRefGoogle Scholar
MacBride, F. (2016). Neofregean Metaontology. In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 94112). Oxford: Oxford University Press.CrossRefGoogle Scholar
MacFarlane, J. (2017). Logical Constants. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 ed.). https://plato.stanford.edu/archives/win2017/entries/logical-constants/.Google Scholar
Mackereth, S. (in press). Neo-Logicism and Conservativeness. Journal of Philosophy.Google Scholar
Mackereth, S., & Avigad, J. (2022). Two-Sorted Frege Arithmetic Is Not Conservative. Review of Symbolic Logic, 16(4), 11991232.CrossRefGoogle Scholar
Mancosu, P. (2016). Abstraction and Infinity. Oxford University Press.CrossRefGoogle Scholar
Moltmann, F. (2013). Reference to Numbers in Natural Language. Philosophical Studies, 162(3), 499536.CrossRefGoogle Scholar
Moltmann, F. (2016). The Number of Planets, a Number-Referring Term? In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 113129). Oxford University Press.CrossRefGoogle Scholar
Moretti, L., & Wright, C. (2023). Epistemic Entitlement, Epistemic Risk and Leaching (1st ed.). Philosophy and Phenomenological Research, 106(3), 566580.CrossRefGoogle Scholar
Nolt, J. (2021). Free Logic. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 ed.). https://plato.stanford.edu/archives/fall2021/entries/logic-free/.Google Scholar
Nutting, E. S. (2018). The Limits of Reconstructive Neologicist Epistemology. Philosophical Quarterly, 68(273), 717738.CrossRefGoogle Scholar
Panza, M., & Sereni, A. (2013). Plato’s Problem: An Introduction to Mathematical Platonism. Palgrave MacMillan.CrossRefGoogle Scholar
Panza, M., & Sereni, A. (2019). Frege’s Constraint and the Nature of Frege’s Foundational Program. Review of Symbolic Logic, 12(1), 97143.CrossRefGoogle Scholar
Parsons, T. (1987). On the Consistency of the First-Order Portion of Frege’s Logical System. Notre Dame Journal of Formal Logic, 28(1), 161168.CrossRefGoogle Scholar
Paseau, A. C. (2015). Did Frege Commit a Cardinal Sin? Analysis, 75(3), 379386.CrossRefGoogle Scholar
Payne, J. (2013a). Abstraction Relations Need Not Be Reflexive. Thought: A Journal of Philosophy, 2(2), 137147.CrossRefGoogle Scholar
Payne, J. (2013b). Expansionist Abstraction (Unpublished doctoral dissertation). University of Sheffield.Google Scholar
Pedersen, N. J. (2016). Hume’s Principle and Entitlement: On the Epistemology of the Neo-Fregean Program. In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 161185). Oxford University Press.Google Scholar
Picardi, E. (2017). Michael Dummett’s Interpretation of Frege’s Context Principle: Some Reflections. In Frauchiger, M. (Ed.), Truth, Meaning, Justification, and Reality: Themes from Dummett (pp. 2962). De Gruyter. (Reprinted in Picardi 2022, Ch. 4)Google Scholar
Picardi, E. (2022). Frege on Language, Logic and Psychology: Selected Essays (Coliva, A., Ed.). Oxford University Press.CrossRefGoogle Scholar
Plebani, M., San Mauro, L., & Venturi, G. (2023). Thin Objects Are Not Transparent. Theoria, 89(3), 314325.CrossRefGoogle ScholarPubMed
Potter, M., & Smiley, T. (2001). Abstraction by Recarving. Proceedings of the Aristotelian Society, 101(3), 327338.CrossRefGoogle Scholar
Potter, M., & Smiley, T. (2002). Recarving Content: Hale’s Final Proposal. Proceedings of the Aristotelian Society, 102(3), 301304.CrossRefGoogle Scholar
Pregel, F. (2023). Neo-Logicism and Gödelian Incompleteness. Mind, 131(524), 10551082.CrossRefGoogle Scholar
Quine, W. V. O. (1955). On Frege’s Way Out. Mind, 64(254), 145159.CrossRefGoogle Scholar
Quine, W. V. O. (1970). Philosophy of Logic. Harvard University Press.Google Scholar
Rayo, A. (2002). Frege’s Unofficial Arithmetic. Journal of Symbolic Logic, 67(4), 16231638.CrossRefGoogle Scholar
Rayo, A. (2007). Ontological Commitment. Philosophy Compass, 2(3), 428444.CrossRefGoogle Scholar
Rayo, A. (2013). The Construction of Logical Space. Oxford University Press.CrossRefGoogle Scholar
Rayo, A. (2014). Reply to Critics. Inquiry: An Interdisciplinary Journal of Philosophy, 57(4), 498534.CrossRefGoogle Scholar
Reck, E. (2018). On Reconstructing Dedekind Abstraction Logically. In Reck, E. (Ed.), Logic, Philosophy of Mathematics, and Their History: Essays in Honor of W.W. Tait (pp. 113138). College Publications.Google Scholar
Reck, E. (2020). Dedekind’s Contributions to the Foundations of Mathematics. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2020 ed.). https://plato.stanford.edu/archives/win2020/entries/dedekind-foundations/.Google Scholar
Reck, E. (2021). Dedekind’s Logicism: A Reconsideration and Contextualization. In Boccuni, F., & Sereni, A. (Eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism (pp. 119146). Routledge.CrossRefGoogle Scholar
Reck, E., & Schiemer, G. (2023). Structuralism in the Philosophy of Mathematics. In Zalta, E. N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.). https://plato.stanford.edu/archives/spr2023/entries/structuralism-mathematics/.Google Scholar
Roeper, P. (2016). A Vindication of Logicism. Philosophia Mathematica, 24(3), 360378.CrossRefGoogle Scholar
Roeper, P. (2020). Reflections on Frege’s Theory of Real Numbers. Philosophia Mathematica, 28(2), 236257.CrossRefGoogle Scholar
Rosen, G. (1993). The Refutation of Nominalism (?). Philosophical Topics, 21(2), 149186.CrossRefGoogle Scholar
Rosen, G. (2010). Metaphysical Dependence: Grounding and Reduction. In Hale, B., & Hoffmann, A. (Eds.), Modality: Metaphysics, Logic, and Epistemology (pp. 109136). Oxford University Press.CrossRefGoogle Scholar
Rosen, G. (2011). The Reality of Mathematical Objects. In Polkinghorne, J. (Ed.), Meaning in Mathematics (pp. 113131). Oxford University Press.Google Scholar
Rosen, G. (2016). Mathematics and Metaphysical Naturalism. In Clark, K. (Ed.), The Blackwell Companion to Naturalism (pp. 277288). Wiley Blackwell.CrossRefGoogle Scholar
Rosen, G., & Yablo, S. (2020). Solving the Caesar Problem – with Metaphysics. In Miller, A. (Ed.), Logic, Language, and Mathematics: Themes from the Philosophy of Crispin Wright (pp. 116132). Oxford University Press.CrossRefGoogle Scholar
Rumfitt, I. (2003). Singular Terms and Arithmetical Logicism. Philosophical Books, 44(3), 193219.CrossRefGoogle Scholar
Rumfitt, I. (2018). Neo-Fregeanism and the Burali-Forti Paradox. In Rivera, I. F., & Leech, J. (Eds.), Being Necessary: Themes of Ontology and Modality from the Work of Bob Hale (pp. 188223). Oxford University Press.Google Scholar
Schiemer, G. (2021). Logicism in Logical Empiricism. In Boccuni, F., & Sereni, A. (Eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism (pp. 243266). Routledge.CrossRefGoogle Scholar
Schiemer, G., & Wigglesworth, J. (2019). The Structuralist Thesis Reconsidered. British Journal for the Philosophy of Science, 70(4), 12011226.CrossRefGoogle Scholar
Schindler, T. (2021). Steps towards a Minimalist Account of Numbers. Mind, 131(523), 863891.Google Scholar
Schirn, M. (2002). Second-Order Abstraction, Logicism and Julius Caesar. Diálogos. Revista de Filosofía de la Universidad de Puerto Rico, 37(79), 319372.Google Scholar
Schirn, M. (2013). Frege’s Approach to the Foundations of Analysis (1874–1903). History and Philosophy of Logic, 34(3), 266292.CrossRefGoogle Scholar
Schirn, M. (2023). Frege on the Introduction of Real and Complex Numbers by Abstraction and Cross-Sortal Identity Claims. Synthese, 201(6), 118.CrossRefGoogle Scholar
Schroeder-Heister, P. (1987). A Model-Theoretic Reconstruction of Frege’s Permutation Argument. Notre Dame Journal of Formal Logic, 28(1), 6979.CrossRefGoogle Scholar
Schwartzkopff, R. (2011). Numbers as Ontologically Dependent Objects: Hume’s Principle Revisited. Grazer Philosophische Studien, 82(1), 353373.CrossRefGoogle Scholar
Schwartzkopff, R. (2015). Number Sentences and Specificational Sentences: Reply to Moltmann. Philosophical Studies, 173(8), 21732192.CrossRefGoogle Scholar
Schwartzkopff, R. (2016). Singular Terms Revisited. Synthese, 193(3), 909936.CrossRefGoogle Scholar
Sereni, A. (2019). On the Philosophical Significance of Frege’s Constraint. Philosophia Mathematica, 27(2), 244275.CrossRefGoogle Scholar
Shapiro, S. (1991). Foundations without Foundationalism: A Case for Second-Order Logic (Vol. 17). Clarendon Press.Google Scholar
Shapiro, S. (1997). Philosophy of Mathematics: Structure and Ontology. Oxford University Press.Google Scholar
Shapiro, S. (2000). Frege Meets Dedekind: A Neologicist Treatment of Real Analysis. Notre Dame Journal of Formal Logic, 41(4), 335364.CrossRefGoogle Scholar
Shapiro, S. (2003). Prolegomenon to Any Future Neo-Logicist Set Theory: Abstraction and Indefinite Extensibility. British Journal for the Philosophy of Science, 54(1), 5991.CrossRefGoogle Scholar
Shapiro, S. (2009). The Measure of Scottish Neo-Logicism. In Lindström, S., Palmgren, E., Segerberg, K., & Stoltenberg-Hansen, V. (Eds.), Logicism, Intuitionism, and Formalism: What Has Become of Them? (pp. 6990). Springer.CrossRefGoogle Scholar
Shapiro, S., & Linnebo, Ø. (2015). Frege Meets Brouwer (or Heyting or Dummett). The Review of Symbolic Logic, 8(3), 540552.CrossRefGoogle Scholar
Shapiro, S., & Uzquiano, G. (2016). Ineffability within the Limits of Abstraction Alone. In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 283307). Oxford University Press.CrossRefGoogle Scholar
Shapiro, S., & Weir, A. (2000). “Neo-Logicist” Logic Is Not Epistemically Innocent. Philosophia Mathematica, 8(2), 160189.CrossRefGoogle Scholar
Shapiro, S., & Wright, C. (2006). All Things Indefinitely Extensible. In Rayo, A., & Uzquiano, G. (Eds.), Absolute Generality (pp. 255304). Oxford University Press.CrossRefGoogle Scholar
Sider, T. (2007). Neo-Fregeanism and Quantifier Variance. Aristotelian Society Supplementary Volume, 81(1), 201232.CrossRefGoogle Scholar
Simons, P. M. (1987). Frege’s Theory of Real Numbers. History and Philosophy of Logic, 8(1), 2544.CrossRefGoogle Scholar
Snyder, E. (2017). Numbers and Cardinalities: What’s Really Wrong with the Easy Argument for Numbers? Linguistics and Philosophy, 40(4), 373400.CrossRefGoogle Scholar
Snyder, E., Samuels, R., & Shapiro, S. (2018). Neologicism, Frege’s Constraint, and the Frege-Heck Condition. Noûs, 54(1), 5477.CrossRefGoogle Scholar
Snyder, E., Samuels, R., & Shapiro, S. (2022a). Hofweber’s Nominalist Naturalism. In Oliveri, G., Ternullo, C., & Boscolo, S. (Eds.), Objects, Structures, and Logics (pp. 3162). Springer.CrossRefGoogle Scholar
Snyder, E., Samuels, R., & Shapiro, S. (2022b). Resolving Frege’s Other Puzzle. Philosophia Mathematica, 30(1), 5987.CrossRefGoogle Scholar
Snyder, E., & Shapiro, S. (2019). Frege on the Real Numbers. In Ebert, P., & Rossberg, M. (Eds.), Essays on Frege’s Basic Laws of Arithmetic (pp. 343383). Oxford University Press.CrossRefGoogle Scholar
Studd, J. P. (2016). Abstraction Reconceived. British Journal for the Philosophy of Science, 67(2), 579615.CrossRefGoogle Scholar
Studd, J. P. (2023). The Caesar Problem – a Piecemeal Solution. Philosophia Mathematica, 31(2), 236267.CrossRefGoogle Scholar
Tappenden, J. (1995). Geometry and Generality in Frege’s Philosophy of Arithmetic. Synthese, 102(3), 319361.CrossRefGoogle Scholar
Tappenden, J. (2019). Infinitesimals, Magnitudes, and Definition in Frege. In Ebert, P., & Rossberg, M. (Eds.), Essays on Frege’s Basic Laws of Arithmetic (pp. 235263). Oxford University Press.CrossRefGoogle Scholar
Tennant, N. (1987). Anti-Realism and Logic: Truth as Eternal. Oxford University Press.Google Scholar
Tennant, N. (2022). The Logic of Number. Oxford University Press.CrossRefGoogle Scholar
Thomasson, A. (2013). Fictionalism versus Deflationism. Mind, 122(488), 10231051.CrossRefGoogle Scholar
Thomasson, A. (2014). Ontology Made Easy. Oxford University Press.CrossRefGoogle Scholar
Urbaniak, R. (2010). Neologicist Nominalism. Studia Logica, 96(2), 149173.CrossRefGoogle Scholar
Uzquiano, G. (2009). Bad Company Generalized. Synthese, 170(3), 331347.CrossRefGoogle Scholar
Uzquiano, G. (2019). Impredicativity and Paradox. Thought: A Journal of Philosophy, 8(3), 209221.CrossRefGoogle Scholar
Väänänen, J. (2021). Second-Order and Higher-Order Logic. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 ed.). https://plato.stanford.edu/archives/fall2021/entries/logic-higher-order/.Google Scholar
Visser, A. (2009). The Predicative Frege Hierarchy. Annals of Pure and Applied Logic, 160(2), 129153.CrossRefGoogle Scholar
Walsh, S. (2016). The Strength of Abstraction with Predicative Comprehension. Bulletin of Symbolic Logic, 22(1), 105120.CrossRefGoogle Scholar
Walsh, S., & Ebels-Duggan, S. (2015). Relative Categoricity and Abstraction Principles. Review of Symbolic Logic, 8(3), 572606.CrossRefGoogle Scholar
Wehmeier, K. F. (1999). Consistent Fragments of Grundgesetze and the Existence of Non-Logical Objects. Synthese, 121(3), 309328.CrossRefGoogle Scholar
Weir, A. (2003). Neo-Fregeanism: An Embarrassment of Riches? Notre Dame Journal of Formal Logic, 44(1), 1348.CrossRefGoogle Scholar
Wetzel, L. (1990). Dummett’s Criteria for Singular Terms. Mind, 99(394), 239254.CrossRefGoogle Scholar
Wigglesworth, J. (2018). Non-Eliminative Structuralism, Fregean Abstraction, and Non-Rigid Structures. Erkenntnis, 86(1), 113127.CrossRefGoogle Scholar
Woods, J. (2014). Logical Indefinites. Logique Et Analyse, 227, 277307.Google Scholar
Wright, C. (1983). Frege’s Conception of Numbers as Objects. Aberdeen University Press.Google Scholar
Wright, C. (1990). Field & Fregean Platonism. In Irvine, A. D. (Ed.), Physicalism in Mathematics (pp. 7393). Springer.CrossRefGoogle Scholar
Wright, C. (1998). On the Harmless Impredicativity of N= (“Hume’s Principle”). In Schirn, M. (Ed.), The Philosophy of Mathematics Today (pp. 339368). Clarendon Press. (Reprinted in Hale and Wright 2001a, §10)CrossRefGoogle Scholar
Wright, C. (1999). Is Hume’s Principle Analytic? Notre Dame Journal of Formal Logic, 40(1), 630. (Reprinted in Hale and Wright 2001a, pp. 307–32)CrossRefGoogle Scholar
Wright, C. (2000). Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege’s Constraint. Notre Dame Journal of Formal Logic, 41(4), 317334.CrossRefGoogle Scholar
Wright, C. (2004a). Intuition, Entitlement and the Epistemology of Logical Laws. Dialectica, 58(1), 155175.CrossRefGoogle Scholar
Wright, C. (2004b). Warrant for Nothing (and Foundations for Free)? Aristotelian Society Supplementary Volume, 78(1), 167212.CrossRefGoogle Scholar
Wright, C. (2007). On Quantifying into Predicate Position: Steps towards a New(Tralist) Perspective. In Leng, M., Paseau, A., & Potter, M. (Eds.), Mathematical Knowledge (pp. 150174). Oxford University Press.CrossRefGoogle Scholar
Wright, C. (2014). On Epistemic Entitlement (II): Welfare State Epistemology. In Dodd, D., & Zardini, E. (Eds.), Scepticism and Perceptual Justification (pp. 213247). Oxford University Press.CrossRefGoogle Scholar
Wright, C. (2016). Abstraction and Epistemic Entitlement: On the Epistemological Status of Hume’s Principle. In Ebert, P., & Rossberg, M. (Eds.), Abstractionism: Essays in Philosophy of Mathematics (pp. 134161). Oxford University Press.Google Scholar
Wright, C. (2020). Frege and Logicism: Replies to Demopoulos, Rosen and Yablo, Edwards, Boolos, and Heck. In Miller, A. (Ed.), Logic, Language, and Mathematics: Themes from the Philosophy of Crispin Wright (pp. 279353). Oxford University Press.CrossRefGoogle Scholar
Yablo, S. (2001). Go Figure: A Path through Fictionalism. Midwest Studies in Philosophy, 25(1), 72102.CrossRefGoogle Scholar
Yablo, S. (2005). The Myth of the Seven. In Kalderon, M. E. (Ed.), Fictionalism in Metaphysics (pp. 88115). Clarendon Press.CrossRefGoogle Scholar
Zalta, E. N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics. D. Reidel.CrossRefGoogle Scholar
Zalta, E. N. (2023). Frege’s Theorem and Foundations for Arithmetic. In Zalta, E. N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.). https://plato.stanford.edu/archives/spr2023/entries/frege-theorem/.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Abstractionism
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Abstractionism
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Abstractionism
Available formats
×