Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T20:28:42.237Z Has data issue: false hasContentIssue false

Visual-vestibular Integration in Challenging Environments

Published online by Cambridge University Press:  09 December 2024

Laurence R. Harris
Affiliation:
York University
Michael Jenkin
Affiliation:
York University

Summary

This Element reviews the current state of what is known about the visual and vestibular contributions to our perception of self-motion and orientation with an emphasis on the central role that gravity plays in these perceptions. The Element then reviews the effects of impoverished challenging environments that do not provide full information that would normally contribute to these perceptions (such as driving a car or piloting an aircraft) and inconsistent challenging environments where expected information is absent, such as the microgravity experienced on the International Space Station.
Get access
Type
Element
Information
Online ISBN: 9781009518581
Publisher: Cambridge University Press
Print publication: 31 January 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abekawa, N, Ferrè, ER, Gallagher, M, et al. (2018) Disentangling the visual, motor and representational effects of vestibular input. Cortex 104:4657. https://doi.org/10.1016/j.cortex.2018.04.003.CrossRefGoogle ScholarPubMed
Alais, D, Burr, D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol CB 14:257262. https://doi.org/10.1016/j.cub.2004.01.029.CrossRefGoogle ScholarPubMed
Alberts, BGT, Selen, LPJ, Verhagen, WIM, Medendorp, WP (2015) Sensory substitution in bilateral vestibular a-reflexic patients. Physiol Rep 3:110. https://doi.org/10.14814/phy2.12385.CrossRefGoogle ScholarPubMed
Allison, R, Harris, L, Hogue, A (2002) Simulating self-motion ii: A virtual reality tricycle. Virtual Real 6:8695. https://doi.org/10.1007/s100550200009.CrossRefGoogle Scholar
Allison, RS, Harris, LR, Jenkin, MR, et al. (2001) Tolerance of temporal delay in virtual environments. IEEE IntConference Virtual Real 3:247254.Google Scholar
Allison, RS, Howard, IP, Zacher, JE (1999) Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room. Perception 28:299306.CrossRefGoogle Scholar
Allison, RS, Zacher, JE, Kirollos, R, et al. (2012) Perception of smooth and perturbed vection in short-duration microgravity. Exp Brain Res 223:479487. https://doi.org/10.1007/s00221-012-3275-5.CrossRefGoogle ScholarPubMed
Allum, JHJ, Honegger, F, Acuna, H (1995) Differential control of leg and trunk muscle-activity by vestibulospinal and proprioceptive signals during human balance corrections. Acta Otolaryngol (Stockh) 115:124129.CrossRefGoogle ScholarPubMed
Anastasopoulos, D, Bronstein, A, Haslwanter, T, et al. (1999) The role of somatosensory input for the perception of verticality. Ann N Y Acad Sci 871:379383.CrossRefGoogle ScholarPubMed
Anastasopoulos, D, Haslwanter, T, Bronstein, A, et al. (1997) Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151153.CrossRefGoogle ScholarPubMed
Angelaki, DE, Cullen, KE (2008) Vestibular system: The many facets of a multimodal sense. Annu Rev Neurosci 31:125150. https://doi.org/10.1146/annurev.neuro.31.060407.125555.CrossRefGoogle ScholarPubMed
Angelaki, DE, Dickman, JD (2003) Gravity or translation: Central processing of vestibular signals to detect motion or tilt. J Vestib Res Equilib Orientat 13:245253.CrossRefGoogle ScholarPubMed
Angelaki, DE, Klier, EM, Snyder, LH (2009) A vestibular sensation: Probabilistic approaches to spatial perception. Neuron 64:448461. https://doi.org/10.1016/j.neuron.2009.11.010.CrossRefGoogle ScholarPubMed
Angelaki, DE, Wei, M, Merfeld, DM (2001) Vestibular discrimination of gravity and translational acceleration. Ann N Y Acad Sci 942:114–27.CrossRefGoogle ScholarPubMed
Angelaki, DE, Yakusheva, TA (2009) How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus. Ann N Acad Sci 1164:1928.CrossRefGoogle ScholarPubMed
Aubert, H (1861) Eine scheinbare Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Arch 20:381393.CrossRefGoogle Scholar
Bansal, A, McManus, M, Jörges, B, Harris, LR (2024) Perceived travel distance depends on the speed and direction of self-motion. PLOS One 19(9): e0305661. https://doi.org/10.1371/journal.pone.0305661.CrossRefGoogle Scholar
Barbot, A, Xue, S, Carrasco, M (2021) Asymmetries in visual acuity around the visual field. J Vis 21:123. https://doi.org/10.1167/jov.21.1.2.CrossRefGoogle ScholarPubMed
Barnett-Cowan, M, Jenkin, HL, Dyde, RT, et al. (2013) Asymmetrical representation of body orientation. J Vis 13:19. https://doi.org/10.1167/13.2.3.CrossRefGoogle ScholarPubMed
Barra, J, Marquer, A, Joassin, R, et al. (2010) Humans use internal models to construct and update a sense of verticality. Brain 133:35523563. https://doi.org/10.1093/brain/awq311.CrossRefGoogle ScholarPubMed
Barra, J, Pérennou, D, V, Thilo K, et al. (2012) The awareness of body orientation modulates the perception of visual vertical. Neuropsychologia 50:24922498. https://doi.org/10.1016/j.neuropsychologia.2012.06.021.CrossRefGoogle ScholarPubMed
Bauermeister, M, Werner, H, Wapner, S (1964) The effect of body tilt on tactual-kinesthetic perception of verticality. Am J Psychol 77:451456.CrossRefGoogle ScholarPubMed
Beck, B, Saramandi, A, Ferrè, ER, Haggard, P (2020) Which way is down? Visual and tactile verticality perception in expert dancers and non-experts. Neuropsychologia 146:19. https://doi.org/10.1016/j.neuropsychologia.2020.107546.CrossRefGoogle ScholarPubMed
Berthoz, A, Pavard, B, Young, LR (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual–vestibular interactions. Exp Brain Res 23:471489.CrossRefGoogle ScholarPubMed
Bertolini, G, Ramat, S, Laurens, J, et al. (2011) Velocity storage contribution to vestibular self-motion perception in healthy human subjects. J Neurophysiol 105:209223.CrossRefGoogle ScholarPubMed
Betts, GA, Curthoys, IS (1998) Visually perceived vertical and visually perceived horizontal are not orthogonal. Vision Res 38:19891999. https://doi.org/10.1016/S0042-6989(97)00401-X.CrossRefGoogle Scholar
Beusmans, JMH (1998) Optic flow and the metric of the visual ground plane. Vis Res 38:11531170.CrossRefGoogle ScholarPubMed
Bisdorff, AR, Wolsley, CJ, Anastasopoulos, D, et al. (1996) The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119:15231534. https://doi.org/10.1093/brain/119.5.1523.CrossRefGoogle ScholarPubMed
Blouin, J, Labrousse, L, Simoneau, M, et al. (1998) Updating visual space during passive and voluntary head-in-space movements. Exp Brain Res 122:93100.CrossRefGoogle ScholarPubMed
Böhmer, A, Rickenmann, J (1995) The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular diseases. J Vestib Res 5:3544.CrossRefGoogle ScholarPubMed
Bortolami, SB, Pierobon, A, DiZio, P, Lackner, JR (2006a) Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt. Exp Brain Res 173:364373.CrossRefGoogle ScholarPubMed
Bortolami, SB, Rocca, S, Daros, S, et al. (2006b) Mechanisms of human static spatial orientation. Exp Brain Res 173:374388. https://doi.org/10.1007/s00221-006-0387-9.CrossRefGoogle ScholarPubMed
Bourrelly, A, McIntyre, J, Luyat, M (2015) Perception of affordances during long-term exposure to weightlessness in the International Space station. Cogn Process 16, Suppl 1: S171–S174. https://doi.org/10.1007/s10339-015-0692-y.CrossRefGoogle ScholarPubMed
Brandt, T, Dichgans, JM, Koenig, E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476491.CrossRefGoogle Scholar
Bray, A, Subanandan, A, Isableu, B, et al. (2004) We are most aware of our place in the world when about to fall. Curr Biol 14:609610. https://doi.org/10.1016/j.cub.2004.07.040.CrossRefGoogle ScholarPubMed
Bremmer, F, Klam, F, Duhamel, JR, et al. (2002) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:15691586.CrossRefGoogle ScholarPubMed
Bremova, T, Caushaj, A, Ertl, M, et al. (2016) Comparison of linear motion perception thresholds in vestibular migraine and Menière’s disease. Eur Arch Otorhinolaryngol 273:29312939. https://doi.org/10.1007/s00405-015-3835-y.CrossRefGoogle ScholarPubMed
Bringoux, L, Tamura, K, Faldon, M, et al. (2004) Influence of whole-body pitch tilt and kinesthetic cues on the perceived gravity-referenced eye level. Exp Brain Res 155:385392.Google ScholarPubMed
Brown, JL (1961) Orientation to the vertical during water immersion. Aerosp Med 32:209217.Google Scholar
Bruns, P, Röder, B (2023) Development and experience-dependence of multisensory spatial processing. Trends Cogn Sci 27:961973. https://doi.org/10.1016/j.tics.2023.04.012.CrossRefGoogle ScholarPubMed
Buck, LE, Young, MK, Bodenheimer, B (2018) A comparison of distance estimation in HMD-based virtual environments with different HMD-based conditions. ACM Trans Appl Percept 15: Article 21, 1–15. https://doi.org/10.1145/3196885.CrossRefGoogle Scholar
Buckey, JC, Homick, JL (2003) Neurolab Spacelab Mission: Neuroscience Research in Space, Results from the STS-90, Neurolab Spacelab Mission. Lyndon B. Johnson Space Center, Houston.Google Scholar
Burles, F, Willson, M, Townes, P, et al. (2024) Preliminary evidence of high prevalence of cerebral microbleeds in astronauts with spaceflight experience. Front Physiol 15:113. https://doi.org/10.3389/fphys.2024.1360353.CrossRefGoogle ScholarPubMed
Bury, NA, Jenkin, M, Allison, RS, et al. (2023) Vection underwater illustrates the limitations of neutral buoyancy as a microgravity analog. Npj Microgravity 9:110. https://doi.org/10.1038/s41526-023-00282-3.CrossRefGoogle ScholarPubMed
Carpenter-Smith, TR, Futamura, RG, Parker, DE (1995) Inertial acceleration as a measure of linear vection: An alternative to magnitude estimation. Percept Psychophys 57:3542.CrossRefGoogle ScholarPubMed
Carriot, J, Bringoux, L, Charles, C, et al. (2004) Perceived body orientation in microgravity: Effects of prior experience and pressure under the feet. Aviat Space Env Med 75:795799.Google ScholarPubMed
Carriot, J, Brooks, JX, Cullen, KE (2013) Multimodal integration of self-motion cues in the vestibular system: Active versus passive translations. J Neurosci Off J Soc Neurosci 33:1955519566. https://doi.org/10.1523/JNEUROSCI.3051-13.2013.CrossRefGoogle ScholarPubMed
Carriot, J, Jamali, M, Cullen, KE (2015) Rapid adaptation of multisensory integration in vestibular pathways. Front Syst Neurosci 9:1–5. https://doi.org/10.3389/fnsys.2015.00059.CrossRefGoogle ScholarPubMed
Carriot, J, Mackrous, I, Cullen, KE (2021) Challenges to the vestibular system in space: How the brain responds and adapts to microgravity. Front Neural Circuits 15:112. https://doi.org/10.3389/fncir.2021.760313.CrossRefGoogle Scholar
Chang, C-H, Stoffregen, TA, Lei, MK, et al. (2024) Effects of decades of physical driving experience on pre-exposure postural precursors of motion sickness among virtual passengers. Front Virtual Real 5:112. https://doi.org/10.3389/frvir.2024.1258548.CrossRefGoogle Scholar
Clark, TK (2019) Effects of spaceflight on the vestibular system. In Pathak, Y, Araùjo dos Santos M, Zea, L (eds) Handbook of Space Pharmaceuticals. Springer, Cham. pp. 139.Google Scholar
Clark, TK, Newman, MC, Oman, CM, et al. (2015) Human perceptual overestimation of whole body roll tilt in hypergravity. J Neurophysiol 113:20622077. https://doi.org/10.1152/jn.00095.2014.CrossRefGoogle ScholarPubMed
Clemens, IA, De Vrijer, M, Selen, LPJ, et al. (2011) Multisensory processing in spatial orientation: An inverse probabilistic approach. J Neurosci 31:53655377.CrossRefGoogle ScholarPubMed
Clément, G, Berthoz, A, Cohen, B, et al. (2003) Perception of the spatial vertical during centrifugation and static tilt. In Buckley, J, Homick, J (eds) The Neurolab Spacelab Mission: Neuroscience Research in Space. NASA, Houston, pp. 510.Google Scholar
Clément, G, Boyle, RD, George, KA, et al. (2020a) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123:20372063. https://doi.org/10.1152/jn.00476.2019.CrossRefGoogle Scholar
Clément, G, Bukley, A, Loureiro, N, et al. (2020b) Horizontal and vertical distance perception in altered gravity. Sci Rep 10:111. https://doi.org/10.1038/s41598-020-62405-0.CrossRefGoogle ScholarPubMed
Clément, G, Moore, SJ, Raphan, T, Cohen, B (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138:410418. https://doi.org/10.1007/s002210100706.CrossRefGoogle ScholarPubMed
Convertino, VA, Bloomfield, SA, Greenleaf, JE (1997) An overview of the issues: Physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc 29:187190. https://doi.org/10.1097/00005768-199702000-00004.CrossRefGoogle ScholarPubMed
Corballis, MC, Zbrodoff, NJ, Shetzer, LI, Butler, PB (1978) Decisions about identity and orientation of rotated letters and digits. Mem Cogn 6:98107.CrossRefGoogle ScholarPubMed
Correia, MJ, Hixson, WC, Niven, JI (1968) On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol Suppl 230:120.CrossRefGoogle Scholar
Creem-Regehr, SH, Stefanucci, JK, Bodenheimer, B (2023) Perceiving distance in virtual reality: Theoretical insights from contemporary technologies. Philos Trans R Soc B Biol Sci 378:112. https://doi.org/10.1098/rstb.2021.0456.CrossRefGoogle ScholarPubMed
Curthoys, IS (1996) The role of ocular torsion in visual measures of vestibular function. Brain Res Bull 40:404405.CrossRefGoogle ScholarPubMed
Cuturi, LF, Gori, M (2019) Biases in the visual and haptic subjective vertical reveal the role of proprioceptive/vestibular priors in child development. Front Neurol 10:110. https://doi.org/10.3389/fneur.2018.01151.Google Scholar
Daprati, E, Sirigu, A, Nico, D (2010) Body and movement: Consciousness in the parietal lobes. Neuropsychologia 48:756762. https://doi.org/10.1016/j.neuropsychologia.2009.10.008.CrossRefGoogle ScholarPubMed
De Beer, GR (1947) How animals hold their heads. Proc Linn Soc 159:125139.CrossRefGoogle Scholar
de Dieuleveult, AL, Siemonsma, PC, van Erp, JBF, Brouwer, A-M (2017) Effects of aging in multisensory integration: A systematic review. Front Aging Neurosci 9:114. https://doi.org/10.3389/fnagi.2017.00080.CrossRefGoogle ScholarPubMed
de Winkel KN, Clément G, Groen, EL, Werkhoven, PJ (2012) The perception of verticality in lunar and Martian gravity conditions. Neurosci Lett 529:711.CrossRefGoogle ScholarPubMed
de Winkel, KN, Katliar, M, Diers, D, Bülthoff, HH (2018a) Causal inference in the perception of verticality. Sci Rep 8:112. https://doi.org/10.1038/s41598-018-23838-w.CrossRefGoogle ScholarPubMed
de Winkel, KN, Kurtz, M, Bülthoff, HH (2018b) Effects of visual stimulus characteristics and individual differences in heading estimation. J Vis 18:117. https://doi.org/10.1167/18.11.9.CrossRefGoogle ScholarPubMed
De Witt, JK, Edwards, WB, Scott-Pandorf, MM, et al. (2014) The preferred walk to run transition speed in actual lunar gravity. J Exp Biol 217:32003203. https://doi.org/10.1242/jeb.105684.CrossRefGoogle ScholarPubMed
Delle Monache, S, Indovina, I, Zago, M, et al. (2021) Watching the effects of gravity. Vestibular cortex and the neural representation of “visual” gravity. Front Integr Neurosci 15: 117.CrossRefGoogle ScholarPubMed
Dyde, RT, Jenkin, MR, Harris, LR (2006) The subjective visual vertical and the perceptual upright. Exp Brain Res 173:612622.CrossRefGoogle ScholarPubMed
Einstein, A (1908) Über das Relativitätsprinzip und die aus dem selben gezogenen Folgerungen. Jahrb Radioakt 4:411462.Google Scholar
A, Ekstrom, Spiers, HJ, Bohbot, VD, Rosenbaum, RS (2018) Human Spatial Navigation. Princeton University Press, Princeton, NJ.Google Scholar
Ernst, MO, Banks, MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429433. https://doi.org/10.1038/415429a.CrossRefGoogle Scholar
Evans, L, Champion, RA, Rushton, SK, Warren, PA (2020) Detection of scene-relative object movement and optic flow parsing across the adult lifespan. J Vis 20(9):12:118.CrossRefGoogle ScholarPubMed
Fajen, BR, Warren, WH (2000) Go with the flow. Trends Cogn Sci 4:369370.CrossRefGoogle ScholarPubMed
Fauville, G, Queiroz, ACM, Woolsey, ES, et al. (2021) The effect of water immersion on vection in virtual reality. Sci Rep 11:113. https://doi.org/10.1038/s41598-020-80100-y.CrossRefGoogle ScholarPubMed
Fernandez, C, Goldberg, JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985995.CrossRefGoogle ScholarPubMed
Fetter, M, Haslwanter, T, Misslisch, H, Tweed, D (1997) Three-dimensional kinematics of eye, head and limb movements. Harwood Academic, Amsterdam.Google Scholar
Fraser, LE, Makooie, B, Harris, LR (2015) The subjective visual vertical and the subjective haptic vertical access different gravity estimates. PLOS One 10:120.CrossRefGoogle ScholarPubMed
Frenz, H, Lappe, M (2005) Absolute travel distance from optic flow. Vision Res 45:16791692. https://doi.org/10.1016/j.visres.2004.12.019.CrossRefGoogle ScholarPubMed
Frisby, JP. (2010) Seeing: The computational approach to biological vision, 2nd ed. MIT Press, Boston, MA.Google Scholar
Frith, CD, Blakemore, SJ, Wolpert, DM (2000) Abnormalities in the awareness and control of action. Philos Trans R Soc Lond B Biol Sci 355:17711788.CrossRefGoogle ScholarPubMed
Fujii, Y, Seno, T (2020) The effect of optical flow motion direction on vection strength. Perception 11:113. https://doi.org/10.1177/2041669519899108.Google ScholarPubMed
Gallagher, M, Arshad, I, Ferrè, ER (2019) Gravity modulates behaviour control strategy. Exp Brain Res 237:989994. https://doi.org/10.1007/s00221-019-05479-1.CrossRefGoogle ScholarPubMed
Gallagher, M, Choi, R, FerrÃ, ER (2020) Multisensory interactions in virtual reality: Optic flow reduces vestibular sensitivity, but only for congruent planes of motion. Multisensory Res 33:625644. https://doi.org/10.1163/22134808-20201487.CrossRefGoogle ScholarPubMed
Gianna, C, Heimbrand, S, Gresty, M, et al. (1996) Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function. Brain Res Bull 40:443449.CrossRefGoogle ScholarPubMed
Gibb, R, Ercoline, B, Scharff, L (2011) Spatial disorientation: Decades of pilot fatalities. Aviat Space Environ Med 82:717724. https://doi.org/10.3357/asem.3048.2011.CrossRefGoogle ScholarPubMed
JJ, Gibson (1950) The Perception of the Visual World. Houghton Mifflin, Boston.Google Scholar
Gibson, JJ (1966) The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston.Google Scholar
AR, Girshick, Banks, MS (2009) Probabilistic combination of slant information: Weighted averaging and robustness as optimal percepts. J Vis 9:136. https://doi.org/10.1167/9.9.8.Google Scholar
Glass, SM, Rhea, CK, Wittstein, MW, et al. (2018) Changes in posture following a single session of long-duration water immersion. J Appl Biomech 34:435441. https://doi.org/10.1123/jab.2017-0181.CrossRefGoogle ScholarPubMed
Goodale, MA, Milner, AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:2025.CrossRefGoogle ScholarPubMed
Goodale, MA, Milner, AD (2018) Two visual pathways – Where have they taken us and where will they lead in future? Cortex 98:283292. https://doi.org/10.1016/j.cortex.2017.12.002.CrossRefGoogle ScholarPubMed
Grassi, M, Von Der Straten, F, Pearce, C, et al. (2024) Changes in real-world walking speed following 60-day bed-rest. Npj Microgravity 10:112. https://doi.org/10.1038/s41526-023-00342-8.CrossRefGoogle ScholarPubMed
Graybiel, A (1952) The oculogravic illusion. Am Med Assoc Arch Ophthalmol 48:605615.CrossRefGoogle ScholarPubMed
Graybiel, A, Patterson, JL (1955) Thresholds of stimulation of the otolith organs as indicated by the oculogravic illusion. J Appl Physiol 7:666670.CrossRefGoogle ScholarPubMed
Green, AM, Angelaki, DE (2003) Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J Neurosci 23:92659275.CrossRefGoogle ScholarPubMed
Guedes, LPCM, Oliveira, MLCD, Carvalho, GDA (2018) Deleterious effects of prolonged bed rest on the body systems of the elderly – a review. Rev Bras Geriatr E Gerontol 21:499506. https://doi.org/10.1590/1981-22562018021.170167.CrossRefGoogle Scholar
Hargens, AR, Vico, L (2016) Long-duration bed rest as an analog to microgravity. J Appl Physiol 120:891903. https://doi.org/10.1152/japplphysiol.00935.2015.CrossRefGoogle Scholar
Harris, LR, Herpers, R, Hofhammer, T, Jenkin, MR (2014) How much gravity is needed to establish the perceptual upright? PLOS One 9:17. https://doi.org/10.1371/journal.pone.0106207.CrossRefGoogle ScholarPubMed
Harris, LR, Herpers, R, Jenkin, M, et al. (2012a) The relative contributions of radial and laminar optic flow to the perception of linear self-motion. J Vis 12:110. https://doi.org/10.1167/12.10.7.CrossRefGoogle Scholar
LR, Harris, Jenkin, MR, Dyde, RT (2012b) The perception of upright under lunar gravity. J Gravitational Physiol 2:9–16.Google Scholar
Harris, LR, Jenkin, M, Herpers, R (2022) Long-duration head down bed rest as an analog of microgravity: Effects on the static perception of upright. J Vestib Res 32:325340. https://doi.org/10.3233/VES-210016.CrossRefGoogle Scholar
Harris, LR, Jenkin, M, Jenkin, H, et al. (2017a) The effect of long-term exposure to microgravity on the perception of upright. Npj Microgravity 3:18. https://doi.org/10.1038/s41526-016-0005-5.CrossRefGoogle ScholarPubMed
Harris, LR, Jenkin, MR, Zikovitz, DC (2000) Visual and non-visual cues in the perception of linear self motion. Exp Brain Res 135:1221. https://doi.org/10.1007/s002210000504.CrossRefGoogle ScholarPubMed
Harris, LR, Sakurai, K, Beaudot, WHA (2017b) Tactile flow overrides other cues to self motion. Sci Rep 7:18. https://doi.org/10.1038/s41598-017-01111-w.Google ScholarPubMed
Hecht, H, Brendel, E, Wessels, M, Bernhard, C (2021) Estimating time-to-contact when vision is impaired. Sci Rep 11:114. https://doi.org/10.1038/s41598-021-00331-5.CrossRefGoogle ScholarPubMed
Helland, A, Lydersen, S, Lervåg, L-E, et al. (2016) Driving simulator sickness: Impact on driving performance, influence of blood alcohol concentration, and effect of repeated simulator exposures. Accid Anal Prev 94:180187. https://doi.org/10.1016/j.aap.2016.05.008.CrossRefGoogle ScholarPubMed
H von, Helmholtz. (1866) Handbuch der physiologischen Optik (Handbook of Physiological Optics). Voss, Leipzig.Google Scholar
Hershberger, W (1970) Attached-shadow orientation perceived as depth by chickens reared in an environment illuminated from below. J Comp Physiol Psychol 73:407411.CrossRefGoogle Scholar
Hollands, MA, Patla, AE, Vickers, JN (2002) “Look where you’re going!”: Gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res Exp Hirnforsch Expérimentation Cérébrale 143:221230. https://doi.org/10.1007/s00221-001-0983-7.CrossRefGoogle ScholarPubMed
Holst, E, Mittelstaedt, H (1971) The principle of reafference: Interactions between the central nervous system and the peripheral organs. PC Dodwell Ed Trans Percept Process Stimul Equiv Pattern Recognit 4172.Google Scholar
Howard, IP (1982) Human Visual Orientation. John Wiley, New York.Google Scholar
Howard, IP, Bergstrom, SS, Ohmi, M (1990) Shape from shading in different frames of reference. Perception 19:523530.CrossRefGoogle ScholarPubMed
Hülemeier, AG, Lappe, M (2020) Combining biological motion perception with optic flow analysis for self-motion in crowds. J Vis 20:115. https://doi.org/10.1167/JOV.20.9.7.CrossRefGoogle ScholarPubMed
Hummel, N, Cuturi, LF, MacNeilage, PR, Flanagin, VL (2016) The effect of supine body position on human heading perception. J Vis 16:111. https://doi.org/10.1167/16.3.19.CrossRefGoogle ScholarPubMed
Israël, I, Fetter, M, Koenig, E (1993) Vestibular perception of passive whole-body rotation about horizontal and vertical axes in humans: Goal-directed vestibulo-ocular reflex and vestibular memory-contingent saccades. Exp Brain Res 96:335346. https://doi.org/10.1007/BF00227113.CrossRefGoogle ScholarPubMed
Iwase, S, Nishimura, N, Tanaka, K, et al. (2020) Effects of microgravity on human physiology. In Beyond LEO: Human Health Issues for Deep Space Exploration. IntechOpen. http://dx.doi.org/10.5772/intechopen.90700.CrossRefGoogle Scholar
HL, Jenkin, Jenkin, MR, Dyde, RT, Harris, LR (2004) Shape-from-shading depends on visual, gravitational, and body-orientation cues. Perception 33:14531461.Google Scholar
Jenkin, HL, Jenkin, M, Harris, LR, Herpers, R (2023) Neutral buoyancy and the static perception of upright. Npj Microgravity 9:17. https://doi.org/10.1038/s41526-023-00296-x.CrossRefGoogle ScholarPubMed
Joassin, R, Bonniaud, V, Barra, J, et al. (2010) Somaesthetic perception of the vertical in spinal cord injured patients: A clinical study. Ann Phys Rehabil Med 53:568574. https://doi.org/10.1016/j.rehab.2010.07.005.CrossRefGoogle ScholarPubMed
Jörges, B, Bury, N, McManus, M, et al. (2024) The effects of long-term exposure to microgravity and body orientation relative to gravity on perceived traveled distance. Npj Microgravity 10:18. https://doi.org/10.1038/s41526-024-00376-6.CrossRefGoogle ScholarPubMed
Kayser, C, Shams, L (2015) Multisensory causal inference in the brain. PLoS Biol 13:17. https://doi.org/10.1371/journal.pbio.1002075.CrossRefGoogle ScholarPubMed
Kleffner, DA, Ramachandran, VS (1992) On the perception of shape from shading. Percept Psychophys 52:1836.CrossRefGoogle ScholarPubMed
Knill, DC (2007) Robust cue integration: A Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant. J Vis 7:124. https://doi.org/10.1167/7.7.5.CrossRefGoogle ScholarPubMed
Kobel, MJ, Wagner, AR, Merfeld, DM (2021) Impact of gravity on the perception of linear motion. J Neurophysiol 126:875887. https://doi.org/10.1152/jn.00274.2021.CrossRefGoogle ScholarPubMed
Kobel, MJ, Wagner, AR, Merfeld, DM (2024) Vestibular contributions to linear motion perception. Exp Brain Res 242:385402. https://doi.org/10.1007/s00221-023-06754-y.CrossRefGoogle ScholarPubMed
Kolpashnikova, K, Harris, LR, Desai, S (2023) Fear of falling: Scoping review and topic analysis using natural language processing. PLOS One 18:1–19. https://doi.org/10.1371/journal.pone.0293554.CrossRefGoogle ScholarPubMed
Kooijman, L, Berti, S, Asadi, H, et al. (2024) Measuring vection: A review and critical evaluation of different methods for quantifying illusory self-motion. Behav Res Methods 56:22922310. https://doi.org/10.3758/s13428-023-02148-8.CrossRefGoogle ScholarPubMed
Körding, KP, Beierholm, UR, Ma, WJ, et al. (2007) Causal inference in multisensory perception. PLOS One 2:110.CrossRefGoogle ScholarPubMed
Kotian, V, Irmak, T, Pool, D, Happee, R (2024) The role of vision in sensory integration models for predicting motion perception and sickness. Exp Brain Res 242:685725. https://doi.org/10.1007/s00221-023-06747-x.CrossRefGoogle ScholarPubMed
Krala, M, van Kemenade, B, Straube, B, et al. (2019) Predictive coding in a multisensory path integration task: An fMRI study. J Vis 19:115. https://doi.org/10.1167/19.11.13.CrossRefGoogle Scholar
Lackner, JR, DiZio, P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:226.CrossRefGoogle ScholarPubMed
Lackner, JR, Dizio, P (2006) Space motion sickness. Exp Brain Res 175:377399. https://doi.org/10.1007/s00221-006-0697-y.CrossRefGoogle ScholarPubMed
Lake, A (1893) Illusion Apparatus. US Patent 508227.Google Scholar
Landwehr, K, Brendel, E, Hecht, H (2013) Luminance and contrast in visual perception of time to collision. Vision Res 89:1823. https://doi.org/10.1016/j.visres.2013.06.009.CrossRefGoogle ScholarPubMed
Landy, MS, Maloney, LT, Johnston, EB, Young, M (1995) Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Res 35:389412. https://doi.org/10.1016/0042-6989(94)00176-M.CrossRefGoogle ScholarPubMed
Lappe, M, Jenkin, M, Harris, LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180:3548. https://doi.org/10.1007/s00221-006-0835-6.CrossRefGoogle ScholarPubMed
Latash, ML (2021) Efference copy in kinesthetic perception: A copy of what is it? J Neurophysiol 125:10791094. https://doi.org/10.1152/jn.00545.2020.CrossRefGoogle ScholarPubMed
Laurens, J, Angelaki, DE (2017) A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 6:145. https://doi.org/10.7554/eLife.28074.CrossRefGoogle ScholarPubMed
Lechner-Steinleitner, S, Schone, H (1980) The subjective vertical under “dry” and “wet” conditions at clockwise and counterclockwise changed positions and the effect of a parallel-lined background field. Psychol Res 41:305317.CrossRefGoogle ScholarPubMed
Liegeois-Chauvel, C, Musolino, A, Chauvel, P (1991) Localization of the primary auditory area in man. Brain 114:139153.Google ScholarPubMed
Lobmaier, JS, Mast, FW (2007) The Thatcher illusion: Rotating the viewer instead of the picture. Perception 36:537546.CrossRefGoogle ScholarPubMed
Longuet-Higgins, HC, Prazdny, K (1980) The interpretation of a moving retinal image. Proceeding R Soc Lond 208:385397.Google Scholar
Mach, E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. W. Engelmann, Leipzig.Google Scholar
Mackenzie, SW, Smith, CP, Tremblay, MF, et al. (2024) Bed rest impairs the vestibular control of balance. J Physiol. 602:2985–2998. https://doi.org/10.1113/JP285834.CrossRefGoogle Scholar
MacNeilage, PR, Banks, MS, Berger, DR, Bülthoff, HH (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp Brain Res 179:263290.CrossRefGoogle ScholarPubMed
MacNeilage, PR, Banks, MS, DeAngelis, GC, Angelaki, DE (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J Neurosci 30:90849094.CrossRefGoogle ScholarPubMed
Macuga, KL, Beall, AC, Smith, RS, Loomis, JM (2019) Visual control of steering in curve driving. J Vis 19:112. https://doi.org/10.1167/19.5.1.CrossRefGoogle ScholarPubMed
Mamassian, P, Goutcher, R (2001) Prior knowledge on the illumination position. Cognition 81:B1B9.CrossRefGoogle ScholarPubMed
Mast, FW, Jarchow, T (1996) Perceived body position and the visual horizontal. Brain Res Bull 40:393398.CrossRefGoogle ScholarPubMed
Mast, FW, Kosslyn, SM, Berthoz, A (1999) Visual mental imagery interferes with allocentric orientation judgements. Cogn Neurosci 10:35493553.Google ScholarPubMed
Mayo, AM, Wade, MG, Stoffregen, TA (2011) Postural effects of the horizon on land and at sea. Psychol Sci 22:118124. https://doi.org/10.1177/0956797610392927.CrossRefGoogle ScholarPubMed
McCarthy, J, Castro, P, Cottier, R, et al. (2021) Multisensory contribution in visuospatial orientation: An interaction between neck and trunk proprioception. Exp Brain Res 239:25012508. https://doi.org/10.1007/s00221-021-06146-0.CrossRefGoogle ScholarPubMed
McManus, M, Harris, LR (2021) When gravity is not where it should be: How perceived orientation affects visual self-motion processing. PLOS One 16:124. https://doi.org/10.1371/journal.pone.0243381.CrossRefGoogle ScholarPubMed
McMullen, PA, Jolicoeur, P (1992) Reference frame and effects of orientation of finding the tops of rotated objects. J Exp Psychol Hum Perc Perf 3:807820.CrossRefGoogle Scholar
Melvill Jones, G, Spells, KE (1963) A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc R Soc Lond B Biol Sci 157:403419. https://doi.org/10.1098/rspb.1963.0019.Google Scholar
Merfeld, DM (2003) Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: A new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res Equilib Orientat 13:309320.CrossRefGoogle ScholarPubMed
Merfeld, DM, Park, S, Gianna-Poulin, C, et al. (2005a) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. J Neurophysiol 94:186198. https://doi.org/10.1152/jn.00904.2004.CrossRefGoogle ScholarPubMed
Merfeld, DM, Park, S, Gianna-Poulin, C, et al. (2005b) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation. J Neurophysiol 94:199205.CrossRefGoogle ScholarPubMed
Merfeld, DM, Zupan, L, Peterka, RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615618. https://doi.org/10.1038/19303.CrossRefGoogle ScholarPubMed
Mergner, T, Schrenk, R, Muller, C (1989) Human DC scalp potentials during vestibular and optokinetic stimulation – non-specific responses. Electroencephalogr Clin Neurophysiol 73:322333.CrossRefGoogle ScholarPubMed
Mertz, S, Lepecq, JC (1998) Test of a vestibular imagery in man – interaction between imagery and perception. Eur J Neurosci 10:15109.Google Scholar
Mittelstaedt, H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272281.CrossRefGoogle Scholar
Mittelstaedt, H (1996) Somatic graviception. Biol Psychol 42:5374.CrossRefGoogle ScholarPubMed
Mittelstaedt, H (1999) The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 871:334344.CrossRefGoogle ScholarPubMed
Morgenstern, Y, Murray, RM, Harris, LR (2011) The human visual system’s assumption that light comes from above is weak. Proceeding Natl Acad Sci 108:1255112553. https://doi.org/10.1073/pnas.1100794108.CrossRefGoogle ScholarPubMed
Mueller, AS, Timney, B (2016) Visual acceleration perception for simple and complex motion patterns. PLOS One 11:110. https://doi.org/10.1371/journal.pone.0149413.CrossRefGoogle ScholarPubMed
Müller, GE (1918) Über das Aubertsche Phënomen. Z Sinnesphysiol 49:109246.Google Scholar
Mündermann, L, Corazza, S, Andriacchi, TP (2006) The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J NeuroEngineering Rehabil 3:111. https://doi.org/10.1186/1743-0003-3-6.CrossRefGoogle ScholarPubMed
Murata, K, Seno, T, Ozawa, Y, Ichihara, S (2014) Self-motion perception induced by cutaneous sensation caused by constant wind. Psychology 5:17771782.CrossRefGoogle Scholar
Murovec, B, Spaniol, J, Campos, JL, Keshavarz, B (2021) Multisensory effects on illusory self-motion (Vection): The role of visual, auditory, and tactile cues. Multisensory Res 34:869890. https://doi.org/10.1163/22134808-bja10058.CrossRefGoogle Scholar
Nakamura, J, Shiozaki, T, Tsujimoto, N, et al. (2020) Role of somatosensory and/or vestibular sensory information in subjective postural vertical in healthy adults. Neurosci Lett 714:15. https://doi.org/10.1016/j.neulet.2019.134598.CrossRefGoogle ScholarPubMed
Naval Air Training Command (2002) Joint Aerospace Physiology Student Guide. Corpus Chrisi, Texas.Google Scholar
Navarro Morales, DC, Kuldavletova, O, Quarck, G, et al. (2023) Time perception in astronauts on board the International Space Station. Npj Microgravity 9:17. https://doi.org/10.1038/s41526-023-00250-x.CrossRefGoogle ScholarPubMed
Negishi, K, Borowski, AG, Popović, ZB, et al. (2017) Effect of gravitational gradients on cardiac filling and performance. J Am Soc Echocardiogr 30:11801188. https://doi.org/10.1016/j.echo.2017.08.005.CrossRefGoogle ScholarPubMed
Neufeld, MJ, Charles, JB (2015) Practicing for space underwater: Inventing neutral buoyancy training, 1963–1968. Endeavour 39:147159. https://doi.org/10.1016/j.endeavour.2015.05.006.CrossRefGoogle ScholarPubMed
Niehorster, DC, Li, L (2017) Accuracy and tuning of flow parsing for visual perception of object motion during self-motion. i-Perception 8:118. https://doi.org/10.1177/2041669517708206.Google ScholarPubMed
Noel, J, Angelaki, DE (2022) Cognitive, systems, and computational neurosciences of the self in motion. Annu Rev Psychol 73:8.18.27. https://doi.org/10.1146/annurev-psych-021021-103038.CrossRefGoogle ScholarPubMed
Noel, J-P, Bill, J, Ding, H, et al. (2023) Causal inference during closed-loop navigation: Parsing of self- and object-motion. Philos Trans R Soc B Biol Sci 378:113. https://doi.org/10.1098/rstb.2022.0344.CrossRefGoogle ScholarPubMed
Norcross, J, Lee, L, Witt, JKD, et al. (2009) Feasibility of Suited 10-km Ambulation “Walkback” on the Moon. Final Rep EVA Walkback Test EWT Hanover MD NASA Tech Rep TP-2009–214796.Google Scholar
Oman, CM (2003) Human visual orientation in weightlessness. In Harris, LR, Jenkin, M (eds) Levels of Perception. Springer-Verlag, New York, pp. 375398.CrossRefGoogle Scholar
Oman, CM (2007) Spatial orientation and navigation in microgravity. In Mast, FW, Jänke, L (eds) Spatial Processing in Navigation, Imagery and Perception. Springer, New York, pp. 209248.CrossRefGoogle Scholar
Oman, CM, Howard, IP, Smith, T, et al. (2003) The role of visual cues in microgravity spatial orientation. Neurolab Spacelab Mission 6981.Google Scholar
Paez, YM, Mudie, LI, Subramanian, PS (2020) Spaceflight associated neuro-ocular syndrome (Sans): A systematic review and future directions. Eye Brain 12:105117. https://doi.org/10.2147/EB.S234076.CrossRefGoogle Scholar
Palmisano, S, Allison, RS, Ash, A, et al. (2014) Evidence against an ecological explanation of the jitter advantage for vection. Front Psychol 5:1–9. https://doi.org/10.3389/fpsyg.2014.01297.CrossRefGoogle Scholar
Palmisano, S, Allison, RS, Kim, J, Bonato, F (2011) Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing Perceiving 24:173200. https://doi.org/10.1163/187847511X570817.CrossRefGoogle ScholarPubMed
Palmisano, S, Gillam, BJ, Blackburn, SG (2000) Global-perspective jitter improves vection in central vision. Perception 29:5767. https://doi.org/10.1068/p2990.CrossRefGoogle ScholarPubMed
Parker, DE, Reschke, MF, Arrott, AP, et al. (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness – implications for preflight training. Aviat Space Environ Med 56:601606.Google ScholarPubMed
Pleshkov, M, Rondas, N, Lucieer, F, et al. (2022) Reported thresholds of self-motion perception are influenced by testing paradigm. J Neurol. 269: 57555761. https://doi.org/10.1007/s00415-022-11032-y.CrossRefGoogle Scholar
Pokorny, J, Smith, VC (2020) Fifty years exploring the visual system. Annu Rev Vis Sci 6:123. https://doi.org/10.1146/annurev-vision-121219-081824.CrossRefGoogle ScholarPubMed
Previc, FH, Ercoline, WR (2004) Spatial disorientation in aviation. In Vol 203 Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Inc, Reston, Virginia, USA.Google Scholar
Ramachandran, VS (1988) The perception of shape from shading. Nature 331:163166.CrossRefGoogle ScholarPubMed
Rasmussen, R, Cole, J, Kuperman, M, Moore, R (2000) Common snowfall conditions associated with aircraft takeoff accidents. J Aircr – J Aircr 37:110116. https://doi.org/10.2514/2.2568.CrossRefGoogle Scholar
Rebenitsch, L, Owen, C (2016) Review on cybersickness in applications and visual displays. Virtual Real 20:101125. https://doi.org/10.1007/s10055-016-0285-9.CrossRefGoogle Scholar
Redlick, FP, Jenkin, M, Harris, LR (2001) Humans can use optic flow to estimate distance of travel. Vision Res 41:213219.CrossRefGoogle ScholarPubMed
Riccio, GE, Stoffregen, TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3:195240. https://doi.org/10.1207/s15326969eco0303_2.CrossRefGoogle Scholar
Riddell, H, Li, L, Lappe, M (2019) Heading perception from optic flow in the presence of biological motion. J Vis 19:114. https://doi.org/10.1167/19.14.25.CrossRefGoogle ScholarPubMed
Riecke, BE, Murovec, B, Campos, JL, Keshavarz, B (2023) Beyond the eye: Multisensory contributions to the sensation of illusory self-motion (vection). Multisensory Res 36:827864. https://doi.org/10.1163/22134808-bja10112.CrossRefGoogle Scholar
Rineau, A-L, Bringoux, L, Sarrazin, J-C, Berberian, B (2023) Being active over one’s own motion: Considering predictive mechanisms in self-motion perception. Neurosci Biobehav Rev 146:119. https://doi.org/10.1016/j.neubiorev.2023.105051.CrossRefGoogle ScholarPubMed
Rock, I, Heimer, W (1957) The effect of retinal and phenomenal orientation on the perception of form. Am J Psychol 70:493511.CrossRefGoogle ScholarPubMed
Rock, I, Schreiber, C, Ro, T (1994) The dependence of two-dimensional shape perception on orientation. Perception 23:14091426.CrossRefGoogle ScholarPubMed
Rodriguez, R, Crane, BT (2021) Effect of timing delay between visual and vestibular stimuli on heading perception. J Neurophysiol 126: 304312. https://doi.org/10.1152/jn.00351.2020.CrossRefGoogle ScholarPubMed
Rogers, B (2021) Optic flow: Perceiving and acting in a 3-D world. i-Percept 12:125. https://doi.org/10.1177/2041669520987257.Google Scholar
Rosas, P, Wagemans, J, Ernst, MO, Wichmann, FA (2005) Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination. J Opt Soc Am A 22:801809. https://doi.org/10.1364/JOSAA.22.000801.CrossRefGoogle ScholarPubMed
Roy, JE, Cullen, KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci Off J Soc Neurosci 21:21312142.CrossRefGoogle ScholarPubMed
Rupert, AH, Lawson, BD, Basso, JE (2016) Tactile Situation Awareness System: Recent developments for aviation. Proc Hum Factors Ergon Soc Annual Meeting. 721725. https://doi.org/10.1177/1541931213601165.CrossRefGoogle Scholar
Sangals, J, Heuer, H, Manzey, D, Lorenz, B (1999) Changed visuomotor transformations during and after prolonged microgravity. Exp Brain Res 129:378390. https://doi.org/10.1007/s002210050906.CrossRefGoogle ScholarPubMed
Schmitt, C, Krala, M, Bremmer, F (2022) Neural signatures of actively controlled self-motion and the subjective encoding of distance. eNeuro 9:118. https://doi.org/10.1523/ENEURO.0137-21.2022.CrossRefGoogle ScholarPubMed
Schuler, JR, Bockisch, CJ, Straumann, D, Tarnutzer, AA (2010) Precision and accuracy of the subjective haptic vertical in the roll plane. BMC Neurosci 11:111.CrossRefGoogle ScholarPubMed
Seno, T, Ogawa, M, Ito, H, Sunaga, S (2011) Consistent air flow to the face facilitates vection. Perception 40:12371240.CrossRefGoogle Scholar
Shaikh, D (2022) Learning multisensory cue integration: A computational model of crossmodal synaptic plasticity enables reliability-based cue weighting by capturing stimulus statistics. Front Neural Circuits 16:119. https://doi.org/10.3389/fncir.2022.921453.CrossRefGoogle ScholarPubMed
Shams, L, Beierholm, UR (2010) Causal inference in perception. Trends Cogn Sci 14:425432. https://doi.org/10.1016/j.tics.2010.07.001.CrossRefGoogle ScholarPubMed
Sinnott, C, Liu, J, Matera, C, et al. (2019) Underwater Virtual Reality System for Neutral Buoyancy Training: Development and Evaluation. In 25th ACM Symposium on Virtual Reality Software and Technology. ACM, Parramatta NSW Australia, pp 19.CrossRefGoogle Scholar
Snowden, RJ, Stimpson, N, Ruddle, RA (1998) Speed perception fogs up as visibility drops. Nature 392:450.CrossRefGoogle ScholarPubMed
Srinivasan, MV, Zang, S, Bidwell, N (1997) Visually mediated odometry in honeybees. J Exp Biol 200:25132522.CrossRefGoogle ScholarPubMed
Stetson, C, Cui, X, Montague, PR, Eagleman, DM (2006) Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron 51:651659. https://doi.org/10.1016/j.neuron.2006.08.006.CrossRefGoogle Scholar
Stoffregen, TA. , Mantel, B, BG, Bardy (2017). The senses considered as one perceptual system. Ecol Psychol 29:165197. https://doi.org/10.1080/10407413.2017.1331116.CrossRefGoogle Scholar
Stoffregen, TA, Chen, F-C, Varlet, M, et al. (2013) Getting your sea legs. PLOS One 8:116. https://doi.org/doi:10.1371/journal.pone.0066949.CrossRefGoogle ScholarPubMed
Stoffregen, TA, Riccio, GE (1988) An ecological theory of orientation and the vestibular system. Psychol Rev 95:314.CrossRefGoogle ScholarPubMed
Stürzel, F, Spillmann, L (2000) Thatcher illusion: Dependence on angle of rotation. Perception 29:937942. https://doi.org/10.1068/p2888.CrossRefGoogle ScholarPubMed
Sylvestre, PA, Choi, JT, Cullen, KE (2003) Discharge dynamics of oculomotor neural integrator neurons during conjugate and disjunctive saccades and fixation. J Neurophysiol 90:739754.CrossRefGoogle ScholarPubMed
AA, Tarnutzer, Bockisch, CJ, Straumann, D (2010) Roll-dependent modulation of the subjective visual vertical: Contributions of head-and trunk-based signals. J Neurophysiol 103:934941. https://doi.org/10.1152/jn.00407.2009.Google Scholar
Tarnutzer, AA, Bockisch, C, Straumann, D, Olasagasti, I (2009) Gravity dependence of subjective visual vertical variability. J Neurophysiol 102:16571671. https://doi.org/10.1152/jn.00007.2008.CrossRefGoogle ScholarPubMed
JL, Taylor (1992) Perception of the orientation of the head on the body in man. In Berthoz, A, Graf, W, Vidal, PP (eds) The Head-Neck Sensory Motor System. Oxford University Press, Oxford, pp. 488490.Google Scholar
Teaford, M, Mularczyk, ZJ, Gernon, A, et al. (2023) Joint contributions of auditory, proprioceptive and visual cues on human balance. Multisensory Res 36:865890. https://doi.org/10.1163/22134808-bja10113.CrossRefGoogle ScholarPubMed
Teixeira, J, Miellet, S, Palmisano, S (2024) Effects of vection type and postural instability on cybersickness. Virtual Real 28:118. https://doi.org/10.1007/s10055-024-00969-2.CrossRefGoogle Scholar
Telford, L, Frost, BJ (1993) Factors affecting the onset and magnitude of linear vection. Percept Psychophys 53:682692.CrossRefGoogle ScholarPubMed
Telford, L, Howard, IP, Ohmi, M (1995) Heading judgments during active and passive self-motion. Exp Brain Res 104:502510. https://doi.org/10.1007/BF00231984.CrossRefGoogle ScholarPubMed
Thompson, P (1980) Margaret Thatcher: A new illusion. Perception 9:483484.CrossRefGoogle Scholar
Torok, A, Gallagher, M, Lasbareilles, C, Ferrè, ER (2019) Getting ready for Mars: How the brain perceives new simulated gravitational environments. Q J Exp Psychol 72:23422349. https://doi.org/10.1177/1747021819839962.CrossRefGoogle ScholarPubMed
Tribukait, A (2006) Subjective visual horizontal in the upright posture and asymmetry in roll-tilt perception: Independent measures of vestibular function. J Vestib Res 16:3543.CrossRefGoogle ScholarPubMed
Trout, OF (1967) Water immersion simulation of extravehicular activities by astronauts. J Spacecr Rockets 4:806808. https://doi.org/10.2514/3.28960.CrossRefGoogle Scholar
Tsakiris, M (2010) My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia 48:703712.CrossRefGoogle Scholar
Tsakiris, M, Costantini, M, Haggard, P (2008) The role of the right temporo-parietal junction in maintaining a coherent sense of one’s body. Neuropsychologia 46:30143018.CrossRefGoogle ScholarPubMed
van den Berg, AV, Collewijn, H (1988) Directional asymmetries of human optokinetic nystagmus. Exp Brain Res 70:597604.CrossRefGoogle ScholarPubMed
Vinken, M (2022) Hepatology in space: Effects of spaceflight and simulated microgravity on the liver. Liver Int 42:25992606. https://doi.org/10.1111/liv.15444.CrossRefGoogle ScholarPubMed
Von Holst, E, Mittelstaedt, H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464476.CrossRefGoogle Scholar
Wade, NJ (1973) The effect of water immersion on perception of the visual vertical. Br J Psychol 64:351361. https://doi.org/10.1111/j.2044-8295.1973.tb01360.x.CrossRefGoogle ScholarPubMed
Wang, L, Liu, J, Fan, Q, et al. (2021a) Benign paroxysmal positional vertigo as a complication of 90-day head-down bed rest. Eur Arch Otorhinolaryngol 278:683688. https://doi.org/10.1007/s00405-020-06124-2.CrossRefGoogle ScholarPubMed
Wang, Y, Du, B, Wei, Y, So, RHY (2021b) Visually induced roll circular vection: Do effects of stimulation velocity differ for supine and upright participants? Front Virtual Real 2:110. https://doi.org/10.3389/frvir.2021.611214.CrossRefGoogle Scholar
Wann, JP, Swapp, DK (2000) Why you should look where you are going. Nat Neurosci 3:647–648.CrossRefGoogle ScholarPubMed
WH, Warren, Hannon, DJ (1990) Eye-movements and optical-flow. J Opt Soc Am Ser A 7:160169.Google Scholar
WH, Warren, Li, LY, Ehrlich, SM, et al. (1996) Perception of heading during eye-movements uses both optic flow and eye position information. Invest Ophthalmol Vis Sci 37:2066.Google Scholar
Warren, PA, Rushton, SK (2007) Perception of object trajectory: Parsing retinal motion into self and object movement components. J Vis 7:111. https://doi.org/10.1167/7.11.2.CrossRefGoogle ScholarPubMed
Warren, PA, Rushton, SK (2008) Evidence for flow-parsing in radial flow displays. Vision Res 48:655663. https://doi.org/10.1016/j.visres.2007.10.023.CrossRefGoogle ScholarPubMed
TH, Weisswange, Rothkopf, CA, Rodemann, T, Triesch, J (2011) Bayesian cue integration as a developmental outcome of reward mediated learning. PlOS One 6:111. https://doi.org/10.1371/journal.pone.0021575.Google Scholar
Wetzig, J, Reiser, M, Martin, E, et al. (1990) Unilateral centrifugation of the otoliths as a new method to determine bilateral asymmetries of the otolith apparatus in man. Acta Astronaut 21:519525. https://doi.org/10.1016/0094-5765(90)90070-2.CrossRefGoogle ScholarPubMed
Wilson, JA, Anstis, SM (1969) Visual delay as a function of luminance. Am J Psychol 82:350358.CrossRefGoogle ScholarPubMed
Wilson, VJ, Melvill Jones, G (1979) Mammalian Vestibular Physiology. Plenum, New York.CrossRefGoogle Scholar
Wu, Y, Chen, K, Ye, Y, et al. (2020) Humans navigate with stereo olfaction. Proc Natl Acad Sci U S A 117:1606516071. https://doi.org/10.1073/pnas.2004642117.CrossRefGoogle ScholarPubMed
Xu, J., Cui, J., Hao, Y., Xu, B. (2024) Multi-cue guided semi-supervised learning toward target speaker separation in real environments. IEEEACM Trans Audio Speech Lang Proc 32:151163.CrossRefGoogle Scholar
Yardley, L (1990) Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual-field. Percept Psychophys 48:131134.CrossRefGoogle ScholarPubMed
MJ, Young, Landy, MS, Maloney, LT (1993) A perturbation analysis of depth perception from combinations of texture and motion cues. Vision Res 33:26852696. https://doi.org/10.1016/0042-6989(93)90228-O.Google Scholar
LR, Young, Oman, CM, Watt, DGD, et al. (1984) Spatial orientation in weightlessness and readaptation to earth’s gravity. Science 225:205208.Google Scholar
Zanchi, S, Cuturi, LF, Sandini, G, Gori, M (2022) Interindividual differences influence multisensory processing during spatial navigation. J Exp Psychol Hum Percept Perform 48:174189. https://doi.org/10.1037/xhp0000973.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Visual-vestibular Integration in Challenging Environments
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Visual-vestibular Integration in Challenging Environments
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Visual-vestibular Integration in Challenging Environments
Available formats
×