Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:22:02.758Z Has data issue: false hasContentIssue false

Reconstructing Precambrian pCO2 and pO2 Using Paleosols

Published online by Cambridge University Press:  02 February 2021

Nathan D. Sheldon
Affiliation:
University of Michigan, Ann Arbor
Ria L. Mitchell
Affiliation:
Swansea University
Rebecca M. Dzombak
Affiliation:
University of Michigan, Ann Arbor

Summary

Paleosols formed in direct contact with the Earth's atmosphere, so they can record the composition of the atmosphere through weathering processes and products. Herein we critically review a variety of different approaches for reconstructing atmospheric O2 and CO2 over the past three billion years. Paleosols indicate relatively low CO2 over that time, requiring additional greenhouse forcing to overcome the 'faint young Sun' paradox in the Archean and Mesoproterozoic, as well as low O2 levels until the Neoproterozoic. Emerging techniques will revise the history of Earth's atmosphere further and may provide a window into atmospheric evolution on other planets.
Get access
Type
Element
Information
Online ISBN: 9781108870962
Publisher: Cambridge University Press
Print publication: 04 March 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Crowe, S. A., Dossing, L. N., Beukes, N. J., et al., 2013. Atmospheric oxygenation three billion years ago. Nature 501, 535538.Google Scholar
Kanzaki, Y., Murakami, T., 2015. Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochimica et Cosmochimica Acta 159, 190219.CrossRefGoogle Scholar
Maynard, J. B., 1992. Chemistry of modern soils and a guide to interpreting Precambrian paleosols. The Journal of Geology 100, 279289.Google Scholar
Ohmoto, H., 1996. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24, 11351138.Google Scholar
Retallack, G. J., 1991. Untangling the effects of burial alteration and ancient soil formation. Annual Reviews of Earth and Planetary Sciences 19, 183206.Google Scholar
Retallack, G. J., 1992. How to find a Precambrian paleosol, in Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., Trudinger, P. A. (eds.), Early Organic Evolution and Mineral and Energy Resources. Berlin: Springer, pp. 1630.Google Scholar
Rye, R., Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. American Journal of Science 298, 621672.Google Scholar
Rye, R., Kuo, P. H., Holland, H. D., 1995. Atmospheric carbon dioxide levels before 2.2 billion years ago. Nature 378, 603605.Google Scholar
Sheldon, N. D., 2006. Precambrian paleosols and atmospheric CO2 levels. Precambrian Research 147, 148155.Google Scholar
Sheldon, N. D., Tabor, N. J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews 95, 152.Google Scholar

Secondary Sources

Alfimova, N. A., Novoselov, A. A., Matrenichev, V. A., de Souza Filho, C. R., 2014. Conditions of subaerial weathering of basalts in the Neoarchean and Paleoproterozoic. Precambrian Research 2014, 116.CrossRefGoogle Scholar
Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A whiff of oxygen before the great oxidation event? Science 317, 19031906.Google Scholar
Babechuk, M. G., Kleinhanns, I.C., Schoenberg, R., 2017. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosols. Geobiology 15, 3050.Google Scholar
Babechuk, M. G., Weimar, N., Kleinhanns, I. C., et al., 2019. Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol. Precambrian Research 323, 126163.CrossRefGoogle Scholar
Bekker, A., Holland, H. D., Wang, P.-L., et al., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117120.Google Scholar
Blake, R. E., Chang, S. J., Lepland, A., 2010. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 10291032.CrossRefGoogle ScholarPubMed
Cloud, P. E., Jr., 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science 160, 729736.CrossRefGoogle ScholarPubMed
Cerling, T. E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.CrossRefGoogle Scholar
Colwyn, D. A., Sheldon, N. D., Maynard, J. B., et al., 2019. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology, doi: 10.1111/gbi.12360Google Scholar
Dimroth, E., Kimberley, M. M., 1976. Precambrian atmospheric oxygen: evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Canadian Journal of Earth Sciences 13, 11611185.Google Scholar
Driese, S. D., 2004. Pedogenic translocation of Fe in modern and ancient Vertisols and implications for interpretations of the Hekpoort paleosol (2.25 Ga). Journal of Geology 112, 543560.CrossRefGoogle Scholar
Driese, S. G., Jirsa, M. A., Ren, M., et al., 2011. Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research 189, 117.CrossRefGoogle Scholar
Driese, S. G., Medaris Jr., L. G., Ren, M., Runkel, A. C., Langford, R. P., 2007. Differentiating pedogenesis from diagenesis in early terrestrial weathering surfaces formed on granitic composition parent materials. Journal of Geology 115, 387406.Google Scholar
Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756758.CrossRefGoogle ScholarPubMed
Farquhar, J., Wing, B. A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters 213, 113.Google Scholar
Fiorella, R. P., Sheldon, N. D., 2017. Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45, 231234.CrossRefGoogle Scholar
Galili, N., Shemesh, A., Yam, R., et al., 2019. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365, 469473.Google Scholar
Gay, A. L., Grandstaff, D. E., 1980. Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Research 12, 349373.Google Scholar
Hessler, A. M., Lowe, D. R., Jones, R. L., Bird, D. K., 2004. A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736738.Google Scholar
Holland, H. D., 1999. When did the Earth’s atmosphere become oxic? A Reply. The Geochemical News 100, 2022Google Scholar
Holland, H. D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton, NJ: Princeton University Press.Google Scholar
Holland, H. D., Feakes, C. R., Zbinden, E. A., 1989. The Flin Flon paleosol and the composition of the atmosphere 1.8 bybp. American Journal of Science 289, 362389.Google Scholar
Holland, H. D., Zbinden, E. A., 1988. Paleosols and evolution of the atmosphere: part I, in Lerman, A., Meybeck, M. (eds.) Physical and Chemical Weathering in Geochemical Cycles. Dordecht: Reidel, pp. 6182.CrossRefGoogle Scholar
Hren, M. T., Sheldon, N. D., 2020. Terrestrial microbialites provide constraints on the Mesoproterozoic atmosphere. The Depositional Record 6, 420. doi: 10.1002/dep2.79CrossRefGoogle Scholar
Hren, M. T., Tice, M. M., Chamberlain, C. P., 2009. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205208.Google Scholar
Jacobson, A., Blum, J. D., Walter, L. M., 2002. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Earth and Planetary Science Letters 66, 34173429.Google Scholar
Kanzaki, Y., Murakami, T., 2018a. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation. Geochimica et Cosmochimica Acta 233, 159186.Google Scholar
Kanzaki, Y., Murakami, T., 2018b. Effects of atmospheric composition on apparent activation energy of silicate weathering: II. Implications for evolution of atmospheric CO2 in the Precambrian. Geochimica et Cosmochimica Acta 240, 314330.Google Scholar
Kasting, J. F., 1993. Earth’s early atmosphere. Science 259, 920926.CrossRefGoogle ScholarPubMed
Kavanagh, L., Goldblatt, C., 2015. Using raindrops to constrain past atmospheric density. Earth and Planetary Science Letters 413, 5158.CrossRefGoogle Scholar
Kenrick, P., Crane, P. R., 1997. The origin and early evolution of plants on land. Nature 389, 3339.CrossRefGoogle Scholar
Laakso, T. A., Schrag, D. P., 2019. Methane in the Precambrian atmosphere. Earth and Planetary Science Letters 522, 4854.Google Scholar
Lalonde, S. V., Konhauser, K. O., 2015. Benthic perspective on Earth’s oldest evidence for oxygenic phtosynthesis. Proceedings of the National Academy of Sciences (USA) 112, 9951000.Google Scholar
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307315.Google Scholar
Maynard, J. B., Sutherland, S. J., RumbleIII, D., Bekker, A., 2013. Mass-independently fractionated sulfur in paleosols: a large reservoir of negative Δ33S. Chemical Geology 362, 7481.CrossRefGoogle Scholar
Mitchell, R. L., Sheldon, N. D., 2010. The ~1100 Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels. Precambrian Research 183, 738748.Google Scholar
Mitchell, R. L., Sheldon, N. D., 2016. Sedimentary provenance and weathering processes in the 1.1 Ga Midcontinental Rift of the Keewenaw Peninsula, Michigan, USA. Precambrian Research 275, 225240.Google Scholar
Murakami, T., Matsuura, K., Kanzaki, Y., 2016. Behaviors of trace elements in Neoarchean and Paleoproterozoic paleosols: implications for atmospheric oxygen and continental oxidative weathering. Geochemica et Cosmochimica Acta 192, 203219.Google Scholar
Murakami, T., Sreenivas, B., Sharma, S. D., Sugimori, H., 2011. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochimica et Cosmochimica Acta 75, 39824004.Google Scholar
Ohmoto, H., 1997. When did the Earth’s atmosphere become oxic? The Geochemical News 93, 12–13, 2627.Google Scholar
Ohmoto, H., Watanabe, Y., Kumazawa, K., 2004. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billions years ago. Nature 429, 395399.Google Scholar
Olson, S. L., Reinhard, C. T., Lyons, T. W., 2016. Limited role for methane in the mid-Proterozoic greenhouse. Proceedings of the National Academy of Science 113, 1144711552.Google Scholar
Payne, R. C., Brownlee, D., Kasting, J. F., 2020. Oxidized micrometeorites suggest either high pCO2 or low pN2 during the Neoarchean. Proceedings of the National Academy of Sciences 117, 13601366.Google Scholar
Pinto, J. P., Holland, H. D., 1988. Paleosols and the evolution of the atmosphere: part II, in, Reinhardt, J., Sigleo, W., (eds.) Paleosols and Weathering through Geologic Time. Geological Society of America Special Paper 216, pp.2134.Google Scholar
Planavsky, N. J., Cole, D. B., Isson, T. T., et al., 2018. A case for low oxygen during Earth’s middle history. Emerging Topics in Life Sciences 2, 149159.Google Scholar
Planavsky, N. J., Reinhard, C. T., Isson, T. T., Ozaki, K., Crockford, P. W., 2020. Oxygen isotope fractionations in Mid-Proterozoic sediments: evidence for a low-oxygen atmosphere? Astrobiology 20 (5), doi: http://doi.org/101.1089/ast.2019.2060Google Scholar
Poulsen, C. J., Tabor, C., White, J. D., 2015. Long-term climate forcing by atmospheric oxygen concentration. Science 348, 12381241.Google Scholar
Retallack, G. J., 2013. A short history and long future for paleopedology, in Driese, S. G., Nordt, L. (eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication 104, pp. 516.Google Scholar
Rybacki, K. S., Kump, L. R., Hanski, E. J., Melezhik, V. A., 2016. Weathering during the Great Oxidation Event: Fennoscandai, arctic Russia 2.06 Ga ago. Precambrian Research 275, 513525.Google Scholar
Sheldon, N. D., 2013. Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic. Chemical Geology 362, 224231.CrossRefGoogle Scholar
Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M., Buick, R., 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484, 359362.Google Scholar
Utsunomiya, S., Murakami, T., Nakada, M., Kasama, T., 2003. Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics. Geochemica et Cosmochimica Acta 67, 213221.Google Scholar
Wei, W., Klaebe, R., Ling, H-F., Huang, F., Frei, R., 2020. Biogeochemical cycle of chromium isotopes at the modern Earth’s surface and its application as a paleo-environmental proxy. Chemical Geology 541, article 119570.Google Scholar
White, A. F., Brantley, S. L., 2003. The effect of time on the weathering rates of silicate minerals: why do weathering rates differ in the laboratory and in the field? Chemical Geology 202, 479506.Google Scholar
Wordsworth, R., Pierrehumbert, R., 2013. Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 6467.Google Scholar
Yokota, K., Kanzaki, Y., Murakami, T., 2013. Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic. Geochimica et Cosmochimica Acta 117, 332347.Google Scholar
Zbinden, E. A., Holland, H. D., Feakes, C. R., 1988.The Sturgeon Falls paleosol and the composition of the atmosphere 1.1GaBP. Precambrian Research 42, 141163.Google Scholar
Zhao, M., Reinhard, C. T., Planavsky, N., 2017. Terrestrial methane fluxes and Proterozoic climate. Geology 46, 139142.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reconstructing Precambrian pCO2 and pO2 Using Paleosols
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Reconstructing Precambrian pCO2 and pO2 Using Paleosols
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Reconstructing Precambrian pCO2 and pO2 Using Paleosols
Available formats
×