Skip to main content Accessibility help
×
  • Cited by 32
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
Publisher:
Cambridge University Press
Online publication date:
May 2010
Print publication year:
2009
Online ISBN:
9780511691713

Book description

Totally positive matrices constitute a particular class of matrices, the study of which was initiated by analysts because of its many applications in diverse areas. This account of the subject is comprehensive and thorough, with careful treatment of the central properties of totally positive matrices, full proofs and a complete bibliography. The history of the subject is also described: in particular, the book ends with a tribute to the four people who have made the most notable contributions to the history of total positivity: I. J. Schoenberg, M. G. Krein, F. R. Gantmacher and S. Karlin. This monograph will appeal to those with an interest in matrix theory, to those who use or have used total positivity, and to anyone who wishes to learn about this rich and interesting subject.

Reviews

"... found the book particularly effective as a tool for a reading group on algebraic statistics; it is an excellent resource, cuts straight to the subject's open questions, and should be an interesting read for any researcher for theoretical statistics."
Robin J. Evans, SIAM Review

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aissen, M., Schoenberg, I. J. and Whitney, A. M. [1952], On the generating functions of totally positive sequences I, J. d'Anal. Math. 2, 93–103.
Ando, T. [1987], Totally positive matrices, Lin. Alg. and Appl. 90, 165–219.
Askey, R. and Boor, C. [1990], In memoriam : Schoenberg, I. J. (1903–1990), J. Approx. Theory 63, 1–2.
Asner, B. A. Jr. [1970], On the total nonnegativity of the Hurwitz matrix, SIAM J. Appl. Math. 18, 407–414.
Beckenbach, E. F. and Bellman, R. [1961], Inequalities, Springer–Verlag, New York.
Berenstein, A., Fomin, S. and Zelevinsky, A. [1996], Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122, 49–149.
Boocher, A. and Froehle, B. [2008], On generators of bounded ratios of minors for totally positive matrices, Lin. Alg. and Appl. 428, 1664–1684.
Boor, C. [1982], The inverse of totally positive bi-infinite band matrices, Trans. Amer. Math. Soc. 274, 45–58.
Boor, C. [1988], I. J. Schoenberg: Selected Papers, 2 Volumes, Birkhäuser, Basel.
Boor, C. and Pinkus, A. [1977], Backward error analysis for totally positive linear systems, Numer. Math. 27, 485–490.
Boor, C. and Pinkus, A. [1982], The approximation of a totally positive band matrix by a strictly banded totally positive one, Lin. Alg. and Appl. 42, 81–98.
Brenti, F. [1989], Unimodal, log-concave, and P?olya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 413.
Brenti, F. [1995], Combinatorics and total positivity, J. Comb. Theory, Series A 71, 175–218.
Brenti, F. [1996], The applications of total positivity to combinatorics and conversely, inTotal Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht, 451–473.
Brown, L. D., Johnstone, I. M. and MacGibbon, K. B. [1981], Variation diminishing transformations: a direct approach to total positivity and its statistical applications, J. Amer. Stat. Assoc. 76, 824–832.
Brualdi, R. A., and Schneider, H. [1983], Determinantal identities: Gauss, Schur, Cauchy, Dylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley, Lin. Alg. and Appl. 52/53, 769–791.
Buslaev, A. P. [1990], A variational description of the spectra of totally positive matrices, and extremal problems of approximation theory, Mat. Zametki 47, 39–46; English transl. in Math. Notes 47(1990), 26–31.
Carlson, B. C. and Gustafson, J. L. [1983], Total positivity of mean values and hypergeometric functions, SIAM J. Math. Anal. 14, 389–395.
Carlson, D. [1968], On some determinantal inequalities, Proc. Amer. Math. Soc. 19, 462–466.
Carnicer, J. M., Goodman, T. N. T. and , J. M. [1995], A generalization of the variation diminishing property, Adv. Comp. Math. 3, 375–394.
Cavaretta, A. S. Jr., Dahmen, W. A. and Micchelli, C. A. [1991], Stationary subdivision, Mem. Amer. Math. Soc. 93.
Cavaretta, A. S. Jr., Dahmen, W. A., Micchelli, C. A. and Smith, P. W. [1981], A factorization theorem for banded matrices, Lin. Alg. and Appl. 39, 229–245.
Crans, A. S., Fallat, S. M. and Johnson, C. R. [2001], The Hadamard core of the totally nonnegative matrices, Lin. Alg. and Appl. 328, 203–222.
Craven, T. and Csordas, G. [1998], A sufficient condition for strict total positivity of a matrix, Linear and Multilinear Alg. 45, 19–34.
Cryer, C. [1973], The LU-factorization of totally positive matrices, Lin. Alg. and Appl. 7, 83–92.
Cryer, C. [1976], Some properties of totally positive matrices, Lin. Alg. and Appl. 15, 1–25.
Dahmen, W., Micchelli, C. A., and Smith, P. W. [1986], On factorization of bi-infinite totally positive block Toeplitz matrices, Rocky Mountain J. Math. 16, 335–364.
Demmel, J. and Koev, P. [2005], The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. Matrix. Anal. Appl. 27, 142–152.
Dimitrov, D. K. and Peña, J. M. [2005], Almost strict total positivity and a class of Hurwitz polynomials, J. Approx. Theory 132, 212–223.
Edrei, A. [1952], On the generating functions of totally positive sequences II, J. d'Anal. Math. 2, 104–109.
Edrei, A. [1953], Proof of a conjecture of Schoenberg on the generating functions of totally positive sequences, Canadian J. Math. 5, 86–94.
Elias, U. and Pinkus, A. [2002], Non-linear eigenvalue-eigenvector problems for STP matrices, Proc. Royal Society Edinburgh: Section A 132, 1307–1331.
Eveson, S. P. [1996], The eigenvalue distribution of oscillatory and strictly sign-regular matrices, Lin. Alg. and Appl. 246, 17–21.
Fallat, S. M., Gekhtman, M. I. and Johnson, C. R. [2000], Spectral structures of irreducible totally nonnegative matrices, SIAM J. Matrix Anal. Appl. 22, 627–645.
Fallat, S. M., Gekhtman, M. I. and Johnson, C. R. [2003], Multiplicative principal-minor inequalities for totally nonnegative matrices, Adv. Applied Math. 30, 442–470.
Fan, K. [1966], Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29, 185–196.
Fan, K. [1967], Subadditive functions on a distributive lattice and an extension of Szasz's inequality, J. Math. Anal. Appl. 18, 262–268.
Fan, K. [1968], An inequality for subadditive functions on a distributive lattice with application to determinantal inequalities, Lin. Alg. and Appl. 1, 33–38.
Fekete, M. and Pólya, G. [1912], Über ein Problem von Laguerre, Rend. C. M. Palermo 34, 89–120.
Fomin, S. and Zelevinsky, A. [1999], Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12, 335–380.
Fomin, S. and Zelevinsky, A. [2000], Total positivity: tests and parametrizations, Math. Intell. 22, 23–33.
Friedland, S. [1985], Weak interlacing properties of totally positive matrices, Lin. Alg. and Appl. 71, 95–100.
Gantmacher, F. [1936],Sur les noyaux de Kellogg non symétriques, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 1 (10), 3–5.
Gantmacher, F. R. [1953], The Theory of Matrices, Gostekhizdat, Moscow- Leningrad; English transl. as Matrix Theory, Chelsea, New York, 2 vols., 1959.
Gantmacher, F. R. [1965], Obituary, in Uspekhi Mat. Nauk 20, 149–158; English transl. as Russian Math. Surveys, 20(1965), 143–151.
Gantmacher, F. R. and Krein, M. G. [1935], Sur les matrices oscillatoires, C. R. Acad. Sci.(Paris) 201, 577–579.
Gantmakher, F. R. and Krein, M. G. [1937], Sur les matrices compl`etement non négatives et oscillatoires, Compositio Math. 4, 445–476.
Gantmacher, F. R. and Krein, M. G. [1941], Oscillation Matrices and Small Oscillations of Mechanical Systems (Russian), Gostekhizdat, Moscow-Leningrad.
Gantmacher, F. R. and Krein, M. G. [1950], Ostsillyatsionye Matritsy i Yadra i Malye Kolebaniya Mekhanicheskikh Sistem, Gosudarstvenoe Izdatel'stvo, Moskva-Leningrad, 1950; German transl. as Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Akademie Verlag, Berlin, 1960; English transl. as Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, USAEC, 1961, and also a revised English edition from AMS Chelsea Publ., 2002.
Garloff, J. [1982], Criteria for sign regularity of sets of matrices, Lin. Alg. and Appl. 44, 153–160.
Garloff, J. [2003], Intervals of almost totally positive matrices, Lin. Alg. and Appl. 363, 103–108.
Garloff, J. and Wagner, D. [1996a], Hadamard products of stable polynomials are stable, J. Math. Anal. Appl. 202, 797–809.
Garloff, J. and Wagner, D. [1996b], Preservation of total nonnegativity under the Hadamard products and related topics, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht, 97–102.
Gasca, M. and Micchelli, C. A. [1996], Total Positivity and its Applications, eds., Kluwer Acad. Publ., Dordrecht.
Gasca, M., Micchelli, C. A. and Peña, J. M. [1992], Almost strictly totally positive matrices, Numerical Algorithms 2, 225–236.
Gasca, M. and Peña, J. M. [1992], Total positivity and Neville elimination, Lin. Alg. and Appl. 165, 25–44.
Gasca, M. and Peña, J. M. [1993], Total positivity, QR factorization, and Neville elimination, SIAM J. Matrix Anal. Appl. 14, 1132–1140.
Gasca, M. and Peña, J. M. [1995], On the characterization of almost strictly totally positive matrices, Adv. Comp. Math. 3, 239–250.
Gasca, M. and Peña, J. M. [1996], On factorizations of totally positive matrices, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht, 109–130.
Gasca, M. and Peña, J. M. [2006], Characterizations and decompositions of almost strictly totally positive matrices, SIAM J. Matrix Anal. 28, 1–8.
Gladwell, G. M. L. [1998], Total positivity and the QR algorithm, Lin. Alg. and Appl. 271, 257–272.
Gladwell, G. M. L. [2004], Inner totally positive matrices, Lin. Alg. and Appl. 393, 179–195.
Gohberg, I. [1989], Mathematical Tales, in The Gohberg Anniversary Collection, Eds. Dym, H., Goldberg, S., Kaashoek, M. A., Lancaster, P., pp. 17–56, Operator Theory: Advances and Applications, Vol. 40, Birkhäuser Verlag, Basel.
Gohberg, I. [1990], Mark Grigorievich Krein 1907–1989, Notices Amer. Math. Soc. 37, 284–285.
Goodman, T. N. T. [1995], Total positivity and the shape of curves, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht, 157–186.
Goodman, T. N. T. and Sun, Q. [2004], Total positivity and refinable functions with general dilation, Appl. Comput. Harmon. Anal. 16, 69–89.
Gross, K. I. and Richards, D. St. P. [1995], Total positivity, finite reflection groups, and a formula of Harish-Chandra, J. Approx. Theory 82, 60–87.
Holtz, O. [2003], Hermite-Biehler, Routh-Hurwitz and total positivity, Lin. Alg. and Appl. 372, 105–110.
Horn, R. A. and Johnson, C. R. [1991], Topics in Matrix Analysis, Cambridge University Press, Cambridge.
Karlin, S. [1964], The existence of eigenvalues for integral operators, Trans. Amer. Math. Soc. 113, 1–17.
Karlin, S. [1965], Oscillation properties of eigenvectors of strictly totally positive matrices, J. D'Analyse Math. 14, 247–266.
Karlin, S. [1968], Total Positivity. Volume 1, Stanford University Press, Stanford, CA.
Karlin, S. [1972], Some extremal problems for eigenvalues of certain matrix and integral operators, Adv. in Math. 9, 93–136.
Karlin, S. [2002], Interdisciplinary meandering in science. 50th anniversary issue of Operations Research. Oper. Res. 50, 114–121.
Karlin, S. and Pinkus, A. [1974], Oscillation properties of generalized characteristic polynomials for totally positive and positive definite matrices, Lin. Alg. and Appl. 8, 281–312.
Karlin, S. and Studden, W. J. [1966], Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience Publishers, John Wiley, New York.
Katkova, O. M. and Vishnyakova, A. M. [2006], On sufficient conditions for the total positivity and for the multiple positivity of matrices, Lin. Alg. and Appl. 416, 1083–1097.
Kellogg, O. D. [1918], Orthogonal function sets arising from integral equations, Amer. J. Math. 40, 145–154.
Kellogg, O. D. [1929], Foundations of Potential Theory, Springer-Verlag, Berlin.
Kemperman, J. H. B. [1982], A Hurwitz matrix is totally positive, SIAM J. Math. Anal. 13, 331–341.
Koev, P. [2005], Accurate eigenvalues and SVDs of totally nonnegative matrices, SIAM J. Matrix. Anal. Appl. 27, 1–23.
Koev, P. [2007], Accurate computations with totally nonnegative matrices, SIAM J. Matrix. Anal. Appl. 29, 731–751.
Koteljanskii, D. M. [1950], The theory of nonnegative and oscillating matrices (Russian), Ukrain. Mat. Z. 2, 94–101; English transl. in Amer. Math. Soc. Transl., Series 2 27(1963), 1–8.
Koteljanskii, D. M. [1955], Some sufficient conditions for reality and simplicity of the spectrum of a matrix, Mat. Sb. N.S. 36, 163–168; English transl. in Amer. Math. Soc. Transl., Series 2 27(1963), 35–42.
Krein, M. G. and Nudel'man, A. A. [1977], The Markov Moment Problem and Extremal Problems, Transl. Math. Monographs, Vol. 50, Amer. Math. Society, Providence.
Kurtz, D. C. [1992], A sufficient condition for all the roots of a polynomial to be real, Amer. Math. Monthly 99, 259–263.
Loewner, K. [1955], On totally positive matrices, Math. Z. 63, 338–340.
Lusztig, G. [1994], Total positivity in reductive groups, in Lie Theory and Geometry, Progress in Mathematics, 123, Birkhäuser, Boston, 531–568.
Maló, E. [1895], Note sur les équations algébriques dont toutes les racines sont réelles, Journal de Mathématiques Spéciales 4, 7–10.
Marden, M. [1966], Geometry of Polynomials, Math. Surveys, Vol. 3 (2nd edition), Amer. Math. Society, Providence.
Markham, T. L. [1970], A semi-group of totally nonnegative matrices, Lin. Alg. and Appl. 3, 157–164.
Marshall, A. W. and Olkin, I. [1979], Inequalities: Theory of Majorization and its Applications, Academic Press, New York.
Metelmann, K. [1973], Ein Kriterium für den Nachweis der Totalnichtnegativität von Bandmatrizen, Lin. Alg. and Appl. 7, 163–171.
Micchelli, C. A. and Pinkus, A. [1991], Descartes systems from corner cutting, Constr. Approx. 7, 161–194.
Motzkin, Th. [1936], Beiträge zur Theorie der linearen Ungleichungen, Doctoral Dissertation, Basel, 1933. Azriel Press, Jerusalem.
Mühlbach, G. and Gasca, M. [1985], A generalization of Sylvester's identity on determinants and some applications, Lin. Alg. and Appl. 66, 221–234.
Pinkus, A. [1985a], Some extremal problems for strictly totally positive matrices, Lin. Alg. and Appl. 64, 141–156.
Pinkus, A. [1985b], n-widths of Sobolev spaces in Lp, Const. Approx. 1, 15–62.
Pinkus, A. [1985c], n-Widths in Approximation Theory, Springer-Verlag, Berlin.
Pinkus, A. [1996], Spectral properties of totally positive kernels and matrices, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht, 477–511.
Pinkus, A. [1998], An interlacing property of eigenvalues of strictly totally positive matrices, Lin. Alg. and Appl. 279, 201–206.
Pinkus, A. [2008], Zero minors of totally positive matrices, Electronic J. Linear Algebra 17, 532–542.
Pitman, J. [1997], Probabilistic bounds on the coefficients of polynomials with only real zeros, J. Comb. Theory, Ser. A 77, 279–303.
Pólya, G. and Szegő, G. [1976], Problems and Theorems in Analysis II, Springer-Verlag, New York.
Rahman, Q. I. and Schmeisser, G. [2002], Analytic Theory of Polynomials, Oxford University Press, Oxford.
Schoenberg, I. J. [1930], Über variationsvermindernde lineare Transformationen, Math. Z. 32, 321–328.
Schoenberg, I. J. and Whitney, A. [1951], A theorem on polygons in n dimensions with application to variation-diminishing and cyclic variation-diminishing linear transformations, Compositio Math. 9, 141–160.
Schumaker, L. L. [1981], Spline Functions: Basic Theory, John Wiley & Sons, New York.
Shapiro, B. Z. and Shapiro, M. Z. [1995], On the boundary of totally positive upper triangular matrices, Lin. Alg. and Appl. 231, 105–109.
Shohat, J. A. and Tamarkin, J. D. [1943], The Problem of Moments, Math. Surveys, Vol. 1, Amer. Math. Society, Providence.
Skandera, M. [2004], Inequalities in products of minors of totally nonnegative matrices, J. Alg. Comb. 20, 195–211.
Smith, P. W. [1983], Truncation and factorization of bi-infinite matrices, in Approximation Theory, IV (College Station, Tex., 1983), 257–289, Academic Press, New York.
Stieltjes, T. J. [1894–95], Recherches sur les fractions continues, Annales Fac. Sciences Toulouse 8, 1–122; 9, 1–47.
Wagner, D. [1992], Total positivity of Hadamard products, J. Math. Anal. Appl. 163, 459–483.
Wang, Y. and Yeh, Y.-N. [2005], Polynomials with real zeros and Pólya frequency sequences, J. Comb. Theory, Ser. A 109, 63–74.
Whitney, A. [1952], A reduction theorem for totally positive matrices, J. d'Anal. Math. 2, 88–92.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.