Skip to main content Accessibility help
×
  • Cited by 20
Publisher:
Cambridge University Press
Online publication date:
September 2015
Print publication year:
2015
Online ISBN:
9781139600286

Book description

This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between thermodynamics and advanced topics in condensed matter, this textbook is an invaluable resource to all students of physics.

Reviews

'… a coherent presentation of classical thermodynamics and statistical physics on [the] one hand, and more recent developments and the front of contemporary research on the other … it [is] well suited for students and graduates as well as researchers. I recommend it!'

Peter Fulde - Max Planck Institute for the Physics of Complex Systems, Dresden

'An excellent textbook which starts from the basics, classical thermodynamics and quantum statistical mechanics, and proceeds to an insightful exposition of a wide range of modern topics.'

Maurice Rice - Institute for Theoretical Physics, ETH Zurich

'With its exceptionally broad range of topics, from basic theoretical techniques to numerous applications, ranging from phase transitions to quantum gases and disordered electron systems, this textbook is a most valuable asset for the condensed matter community. Two renowned experts have conflated their expertise, for the benefit of students and researchers alike.'

Ulrich Eckern - University of Augsburg

'This book amply fulfils the promise in the preface that it will provide 'a bridge from thermodynamics and statistical mechanics towards many-body theory and its applications'. Students, teachers and researchers will all benefit from it.'

Joel Lebowitz - Rutgers, The State University of New Jersey

'With exceptional clarity this book treats every topic from the beginning. It thus succeeds in being pedagogically effective while still capturing the interest of the expert. It is truly unique in connecting key ideas of statistical mechanics, [such as] the renormalization group, to many-body theories of electronic systems.'

Giovanni Vignale - University of Missouri, Columbia

'… this remarkable book provides access to several modern subject areas in condensed matter physics within a single monograph. Both authors are internationally acknowledged experts in condensed matter theory, with Carlo Di Castro being one of the founding fathers of the field-theoretic renormalization group approach to critical phenomena. In view of the broad spectrum of topics the author’s suggestions of how to use the book for regular courses on, for example, introductory statistical mechanics, critical phenomena, dissipative phenomena in classical and quantum systems, or modern trends in quantum statistical mechanics, are very helpful. This book is an impressive achievement. It will be very useful not only to graduate students but also to experienced researchers in modern condensed matter physics. I recommend it highly - it belongs in every physics library.'

Dieter Vollhardt - Universität Augsburg

'The authors, whose competence is beyond doubt, employ a well-considered approach to bridge background statistical mechanics topics, standard condensed matter physics applications, and a limited but inspiring choice of advanced and timely many-body themes … Statistical Mechanics and Applications in Condensed Matter is a well-designed, user-friendly text that represents an impressive and successful effort to synthesize modern aspects of condensed matter and many-body phenomena. I have no doubt that this book will soon be found - and deservedly so - in physics libraries and on the bookshelves of many students and researchers.'

Erio Tosatti Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Abanov, Ar., Chubukov, A. V. and Schmalian, J. 2003. Quantum-critical theory of the spinfermion model and its application to cuprates: normal state analysis. Adv. Phys., 52 CrossRef | Google Scholar, 119.
Abbamonte, P., Rusydi, A., Smadici, S., Gu, G. D., Sawatzky, G. A. and Feng, D. L. 2005. Spatially modulated ‘Mottness’ in La2−xBaxCuO4. Nature Physics, 1 CrossRef | Google Scholar, 155.
Abel, W. R., Anderson, A. C. and Wheatley, J. C. 1966. Propagation of zero sound in liquid He3 at low temperatures. Phys. Rev. Lett., 17 CrossRef | Google Scholar, 74.
Abrahams, E., Anderson, P. W., Licciardello, D. C. and Ramakrishnan, T. V. 1979. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42 CrossRef | Google Scholar, 673.
Abramowitz, M. and Stegun, I. A. 1965. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York Google Scholar: Dover.
Abrikosov, A. A. 1957. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP, 5 Google Scholar, 1174.
Abrikosov, A. A., Gorkov, L. P. and Dzyaloshinski, I. E. 1963. Methods of Quantum Field Theory in Statistical Physics. Englewood Cliffs, New Jersey Google Scholar: Prentice-Hall, Inc.
Ahlers, G. 1968. Thermal conductivity of He I near the superfluid transition. Phys. Rev. Lett., 21 CrossRef | Google Scholar, 1159.
Akhmetov, D. G. 2009. Vortex Rings. Berlin & Heidelberg CrossRef | Google Scholar: Springer.
Allen, J. F. and Misener, A. D. 1938. Flow of liquid helium II. Nature, 141 CrossRef | Google Scholar, 75.
Altshuler, B. L. and Aronov, A. G. 1970. Contribution to the theory of disordered metals in strongly doped semiconductors. Zh. Eksp. Teor. Fiz, 77 Google Scholar, 2028 (JETP, 50, 968).
Altshuler, B. L. and A. G., Aronov 1985. Electron–electron interaction in disordered conductors. In Pollak, M. and Efros, A. L. (eds.), Electron–Electron Interactions in Disordered Systems. Amsterdam Google Scholar: North-Holland.
Altshuler, B. L., Aronov, A. G. and Lee, P. A. 1980a. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett., 44 CrossRef | Google Scholar, 1288.
Altshuler, B. L., Khmel'nitzkii, D., Larkin, A. I. and Lee, P. A. 1980b. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B, 22 CrossRef | Google Scholar, 5142.
Alvesalo, T. A., Anufriyev, Yu. D., Collan, H. K., Lounasmaa, O. V. and Wennerström, P. 1973. Evidence for superfluidity in the newly found phases of 3He. Phys. Rev. Lett., 30 CrossRef | Google Scholar, 962.
Amit, D. J. and Martín-Mayor, V. 2005. Field Theory, the Renormalization Group, and Critical Phenomena. Singapore CrossRef | Google Scholar: World Scientific.
Andergassen, S., Caprara, S., Di Castro, C. and Grilli, M. 2001. Anomalous isotopic effect near the charge-ordering quantum criticality. Phys. Rev. Lett., 87 CrossRef | Google Scholar | PubMed, 056401.
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in dilute atomic vapor. Science, 269 CrossRef | Google Scholar | PubMed, 198.
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109 CrossRef | Google Scholar, 1492.
Anderson, P. W. 1966. Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38 CrossRef | Google Scholar, 298.
Anderson, P. W. 2007. Is there glue in cuprate superconductors? Science, 316 CrossRef | Google Scholar | PubMed, 1705.
Anderson, P. W. and Brinkman, W. F. 1973. Anisotropic superfluidity in 3He: a possible interpretation of its stability as a spin-fluctuation effect. Phys. Rev. Lett., 30 CrossRef | Google Scholar, 1108.
Anderson, P. W. and Morel, P. 1961. Generalized Bardeen–Cooper–Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev., 123 CrossRef | Google Scholar, 1911.
Ando, Y., Komiya, S., Segawa, K., Ono, S. and Kurita, Y. 2004. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett., 93 CrossRef | Google Scholar | PubMed, 267001.
Andronikashvili, E. L. 1946. A direct observation of two kinds of motion in helium II. J. Phys. (USSR), 10 Google Scholar, 201.
Aslamazov, L. G. and Larkin, A. I. 1968. The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. A, 26 CrossRef | Google Scholar, 238.
Atkins, K. R. 1959. Liquid Helium. Cambridge Google Scholar: Cambridge University Press.
Balian, R. and Werthamer, N. R. 1963. Superconductivity with pairs in a relative p Wave. Phys. Rev., 131 CrossRef | Google Scholar, 1553.
Bardeen, J., Cooper, L. N. and Schrieffer, J. R. 1957. Theory of superconductivity. Phys. Rev., 108 CrossRef | Google Scholar, 1175.
Baym, G. and Pethick, C. 1978. Low temperature properties of dilute solutions of 3He in superfluid 4He. Page 123 of: Bennemann, K. H. and Ketterson, J. B. (eds.), The Physics of Liquid and Solid Helium. New York Google Scholar: Wiley.
Baym, G. and Pethick, C. 1991. Landau Fermi-liquid Theory: Concepts and Applications. New York CrossRef | Google Scholar: Wiley.
Bednorz, J. G., Müller, K. A. and Takashige, M. 1987. Superconductivity in alkaline earthsubstituted La2CuO4−y. Science, 236 CrossRef | Google Scholar, 73.
Belitz, D. and Kirkpatrick, T. R. 1994. The Anderson–Mott transition. Rev. Mod. Phys., 66 CrossRef | Google Scholar, 261.
Benettin, G., Di Castro, C., Jona-Lasinio, G., Peliti, L. and Stella, A. 1977. On the equivalence of different renormalization groups. In Lévy, M. and Mitter, P. (eds.), New Developments in Quantum Theory and Statistical Mechanics. New York Google Scholar: Plenum Press.
Bergmann, G. 1984. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Physics Reports, 107 CrossRef | Google Scholar, 1.
Bernoulli, D. and Bernoulli, J. 2005. Hydrodynamics and Hydraulics. Mineola (N.Y.) Google Scholar: Dover.
Biondi, M. A., Garfunkel, M. P. and Mc Coubrey, A. O. 1957a. Microwave measurements of the energy gap in superconducting aluminum. Phys. Rev., 108 CrossRef | Google Scholar, 495.
Biondi, M. A., Forrester, A. T. and Garfunkel, M. P. 1957b. Millimeter wave studies of superconducting tin. Phys. Rev., 108 CrossRef | Google Scholar, 497.
Bloch, I., Dalibard, J. and Zwerger, W. 2008. Many-body physics with ultracold gases. Rev. Mod. Phys., 80 CrossRef | Google Scholar, 885.
Blume, M., Emery, V. J. and Griffiths, R. B. 1971. Ising model for the λ transition and phase separation in 3He–4He mixtures. Phys. Rev. A, 4 CrossRef | Google Scholar, 1071.
Bogoliubov, N. N. 1947. On the theory of superfluidity. J. Phys., 11 Google Scholar, 23.
Bogoliubov, N. N. and Shirkov, D. V. 1959. Introduction to the Theory of Quantized Fields. New York Google Scholar: Wiley-Interscience.
Boltzmann, L. 1964. Lectures on Gas Theory. New York Google Scholar: Dover.
Bonch-Bruevich, V. L. and Tyablikov, S. V. 1962. The Green FunctionMethod in Statistical Physics. Amsterdam Google Scholar: North-Holland Publishing Company.
Bose, S. N. 1924. Plancks Gesetz und Lichtquantenhypothese. Z. Phys., 26 CrossRef | Google Scholar, 178.
Bradley, C. C., Sackett, C. A., Tollett, J. J. and Hulet, R. G. 1995. Evidence of Bose– Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75 CrossRef | Google Scholar, 1687.
Brezin, E., Le Guillou, J. C. and Zinn-Justin, J. 1973. Approach to scaling in renormalized perturbation theory. Phys. Rev. D, 8 CrossRef | Google Scholar, 2418.
Brooks, J. S. and Donnelly, R. J. 1977. The calculated thermodynamic properties of superfluid helium-4. J. Phys. Chem. Ref. Data, 6 CrossRef | Google Scholar, 51.
Brueckner, K. A., Soda, T., Anderson, P. W. and Morel, P. 1960. Level structure of nuclear matter and liquid He3. Phys. Rev., 118 CrossRef | Google Scholar, 1442.
Byers, N. and Yang, C. N. 1961. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett., 7 CrossRef | Google Scholar, 46.
Callen, H. B. and Welton, T. A. 1951. Irreversibility and generalized noise. Phys. Rev. Google Scholar, 83, 34.
Campisi, M., Hänggi, P. and Talkner, P. 2011. Quantum fluctuation relations: foundations and applications. Rev. Mod. Phys., 83 CrossRef | Google Scholar, 771.
Castellani, C. and Di Castro, C. 1986. Effective Landau theory for disordered interacting electron systems: specific-heat behavior. Phys. Rev. B, 34 CrossRef | Google Scholar | PubMed, 5935.
Cassandro, M. and Gallavotti, G. 1975. The Lavoisier law and the critical point. Nuovo Cimento B, 25 CrossRef | Google Scholar, 691.
Cassandro, M. and Jona-Lasinio, G. 1978. Critical point behaviour and probability theory. Advances in Physics, 27 CrossRef | Google Scholar, 913.
Castellani, C., Di Castro, C., Forgacs, G. and Tabet, E. 1983. Gauge invariance and the multiplicative renormalisation group in the Anderson transition. J. Phys. C Solid State Physics, 16 CrossRef | Google Scholar, 159.
Castellani, C., Di Castro, C., Lee, P. A. and Ma, M. 1984a. Interaction-driven metal– insulator transitions in disordered fermion systems. Phys. Rev. B, 30 CrossRef | Google Scholar, 527.
Castellani, C., Di Castro, C., Lee, P. A., Ma, M., Sorella, S. and Tabet, E. 1984b. Spin fluctuations in disordered interacting electrons. Phys. Rev. B, 30 CrossRef | Google Scholar, 1596.
Castellani, C., Di Castro, C., Lee, P. A., Ma, M., Sorella, S. and Tabet, E. 1986. Enhancement of the spin susceptibility in disordered interacting electrons and the metal–insulator transition. Phys. Rev. B, 33 CrossRef | Google Scholar | PubMed, 6169.
Castellani, C., Di Castro, C. and Grilli, M. 1995. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett., 75 CrossRef | Google Scholar | PubMed, 4650.
Castellani, C., Di Castro, C., Pistolesi, F. and Strinati, G. C. 1997. Infrared behavior of interacting bosons at zero temperature. Phys. Rev. Lett., 78 CrossRef | Google Scholar, 1612.
Castellani, C., Di Castro, C. and Lee, P. A. 1998. Metallic phase and metal–insulator transition in two-dimensional electronic systems. Phys. Rev. B, 57 CrossRef | Google Scholar, 9381.
Chaikin, P. M. and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Chang, J., Blackburn, E., Holmes, A. T., et al. 2012. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Physics, 8 CrossRef | Google Scholar, 871.
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases. Cambridge Google Scholar: Cambridge University Press.
Chin, C., Grimm, R., Julienne, P. and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82 CrossRef | Google Scholar, 1225.
Chu, S. 1998. Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 70 CrossRef | Google Scholar, 685.
Clausius, R. 1857. Über die Art der Bewegung, welche wir Wärme nennen. Ann. Phys., 176 CrossRef | Google Scholar, 353.
Clausius, R. 1858. Über die mittlere Läge der Wege, welche bei Molecularbewegung gasförmigen Körper von den einzelnen Molecülen zurücklegen werden, nebst anderen Bemerkungen über der mechanischen Wärmetheorie. Ann. Phys., 181 CrossRef | Google Scholar, 239.
Cohen, D. and Imry, Y. 2012. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality. Phys. Rev. E, 86 CrossRef | Google Scholar | PubMed, 011111.
Cohen-Tannoudji, C. N. 1998. Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 70 CrossRef | Google Scholar, 707.
Comin, R., Frano, A., Yee, M. M., et al. 2014. Charge order driven by Fermi-arc instability in Bi2Sr2?xLaxCuO6+δ. Science, 343 CrossRef | Google Scholar, 390.
Corak, W. S., Goodman, B. B., Satterthwaite, C. B. and Wexler, A. 1956. Atomic heats of normal and superconducting vanadium. Phys. Rev., 102 CrossRef | Google Scholar, 656.
Crooks, G. E. 1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60 CrossRef | Google Scholar | PubMed, 2721.
da Silva Neto, E. H., Aynajian, P., Frano, A., et al. 2014. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science, 343 CrossRef | Google Scholar | PubMed, 393.
Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71 CrossRef | Google Scholar, 463.
Dash, J. G. and Taylor, R. D. 1957. Hydrodynamics of oscillating disks in viscous fluids: density and viscosity of normal fluid in pure He4 from 1.2 K to the lambda point. Phys. Rev., 105 CrossRef | Google Scholar, 7.
Davis, K. B., Mewes, M. O., Andrews, M. R., et al. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75 CrossRef | Google Scholar, 3969.
De Gennes, P. G. 1966. Superconductivity of Metals and Alloys. NewYork Google Scholar:W. A. Benjamin.
de Groot, S. R., Hooman, G. J. and Seldam, C. A. T. 1950. On the Bose–Einstein condensation. Proc. R. Soc. Lond. A, 203 CrossRef | Google Scholar, 266.
Deaver, B. S. and Fairbank, W. M. 1961. Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett., 7 CrossRef | Google Scholar, 43.
Debye, P. 1912. Zur Theorie der spezifischen Wärmen. Ann. Phys., 344 CrossRef | Google Scholar, 789.
DeMarco, B. and Jin, D. S. 1999. Onset of Fermi degeneracy in a trapped atomic gas. Science, 285 CrossRef | Google Scholar, 1703.
DeMarco, B., Papp, S. B. and Jin, D. S. 2001. Pauli blocking of collisions in a quantum degenerate atomic Fermi gas. Phys. Rev. Lett., 86 CrossRef | Google Scholar, 5409.
Di Castro, C. 1972. The multiplicative renormalization group and the critical behavior in d = 4 − ∊ dimensions. Lett. Nuovo Cimento, 5 CrossRef | Google Scholar, 69.
Di Castro, C. and Jona-Lasinio, G. 1969. On the microscopic foundation of scaling laws. Phys. Lett. A, 29 CrossRef | Google Scholar, 322.
Di Castro, C. and Metzner, W. 1991. Ward identities and the β function in the Luttinger liquid. Phys. Rev. Lett., 67 CrossRef | Google Scholar | PubMed, 3852.
Di Castro, C. and Raimondi, R. 2004. Disordered electron systems. In Giuliani, G. F. and Vignale, G. (eds.), The Electron Liquid Paradigm in Condensed Matter Physics. Amsterdam Google Scholar: IOS Press.
Dingle, R. B. 1973. Asymptotic Expansions: Their Derivation and Interpretation. London and New York Google Scholar: Academic Press.
Dirac, P. A. M. 1926. On the theory of quantum mechanics. Proc. R. Soc. Lond. A, 112 CrossRef | Google Scholar, 661.
Dobrosavljević, V., Trivedi, N. and Valles, J. M. Jr. (eds.). 2012. Conductor–Insulator Quantum Phase Transitions. Oxford CrossRef | Google Scholar: Oxford University Press.
Dolan, G. J. and Osheroff, D. D. 1979. Nonmetallic conduction in thin metal films at low temperatures. Phys. Rev. Lett., 43 CrossRef | Google Scholar, 721.
Domb, C. and Green, M. S. (eds.). 1976. Phase Transitions and Critical Phenomena: Volume 6. San Diego Google Scholar: Academic Press Inc.
Drude, P. 1900. Zur Elektronentheorie der Metalle. Ann. Phys., 306 CrossRef | Google Scholar, 566.
Dzyaloshinskii, I. E. and Larkin, A. I. 1973. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Zh. Eksp. Teor. Fiz., 65 Google Scholar, 411 (Sov. Phys. JETP, 38, 202 (1974)).
Edwards, J. T. and Thouless, D. J. 1972. Numerical studies of localization in disordered systems. J. Phys. C, 5 CrossRef | Google Scholar, 807.
Efetov, K. B., Larkin, A. I. and Khmel'nitskii, D. E. 1980. Interaction of diffusion modes in the theory of localization. Zh. Eksp. Teor. Fiz., 79 Google Scholar, 1120 (JETP, 52, 568).
Ehrenfest, P. 1933. Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. Proceedings Koninklijke Akademie van Wetenschappen, 36 Google Scholar, 153.
Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322 CrossRef | Google Scholar, 549.
Einstein, A. 1907. Berichtigung zu meiner Arbeit: die Plancksche Theorie der Strahlung. Ann. Phys., 327 CrossRef | Google Scholar, 800.
Einstein, A. 1910. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys., 338 CrossRef | Google Scholar, 1275.
Einstein, A. 1924. Quantentheorie des einatomigen idealen Gases / Quantum theory of ideal monoatomic gases. Sitz. Ber. Preuss. Akad. Wiss., 22 Google Scholar, 261.
Einstein, A. 1925. Quantentheorie des einatomigen idealen Gases, 2. Sitz. Preuss. Akad. Wiss., 1 Google Scholar, 3.
Emery, V. J. and Kivelson, S. A. 1993. Frustrated electronic phase separation and hightemperature superconductors. Physica C, 209 CrossRef | Google Scholar, 597.
Emery, V. J. and Sessler, A. M. 1960. Possible phase transition in Liquid He3. Phys. Rev., 119 CrossRef | Google Scholar, 43.
Esposito, M., Harbola, U. and Mukamel, S. 2009. Nonequilibrium fluctuations, fluctuation theorems and counting statistics in quantum systems. Rev. Mod. Phys., 81 CrossRef | Google Scholar, 1665.
Fauqué, B., Sidis, Y., Hinkov, V., et al. 2006. Magnetic order in the pseudogap phase of high-TC superconductors. Phys. Rev. Lett., 96 CrossRef | Google Scholar | PubMed, 197001.
Fermi, E. 1926a. Sulla quantizzazione del gas perfetto monoatomico. Rendiconti della R. Accademia Nazionale dei Lincei, 3 Google Scholar, 145.
Fermi, E. 1926b. Zur Quantelung des idealen einatomigen Gases. Z. Phys., 36 CrossRef | Google Scholar, 902.
Ferrell, R. A., Màenyhàrd, N., Schmidt, H., Schwabl, F. and Szépfalusy, P. 1968. Fluctuations and lambda phase transition in liquid helium. Ann. Phys., 47 CrossRef | Google Scholar, 565.
Ferrenberg, A. M. and Landau, D. P. 1991. Critical behavior of the three-dimensional Ising model: a high-resolution Monte Carlo study. Phys. Rev. B, 44 CrossRef | Google Scholar | PubMed, 5081.
Ferrier-Barbut, I., Delehaye, M., Laurent, S., et al. 2014. A mixture of Bose and Fermi superfluids. Science, 345 CrossRef | Google Scholar | PubMed, 1035.
Fetter, A. L. and Walecka, J. D. 1971. Quantum Theory of Many-particle Systems. New York Google Scholar: McGraw-Hill.
Feynman, R. P. 1953a. Atomic theory of liquid helium near absolute zero. Phys. Rev., 91 CrossRef | Google Scholar, 1301.
Feynman, R. P. 1953b. Atomic theory of the λ transition in helium. Phys. Rev., 91 CrossRef | Google Scholar, 1291.
Feynman, R. P. 1954. Atomic theory of the two-fluid model of liquid helium. Phys. Rev., 94 CrossRef | Google Scholar, 262.
Feynman, R. P. 1972. Statistical Mechanics. Reading, Mass. Google Scholar: W. A. Benjamin.
Feynman, R. P. and Cohen, M. 1956. Energy spectrum of the excitations in liquid helium. Phys. Rev., 102 CrossRef | Google Scholar, 1189.
Finkelstein, A. M. 1983. Influence of Coulomb interaction on the properties of disordered metals. Zh. Eksp. Teor. Fiz., 84 Google Scholar, 168 (Sov. Phys. JETP, 57, 97).
Finkelstein, A. M. 1984.Weak localization and Coulomb interaction in disordered systems. Z. Phys. B, 56 CrossRef | Google Scholar, 189.
Finkelstein, A. M. 1990. Electron liquid in disordered conductors. Sov. Sci. Rev., 14 Google Scholar, 1.
Fisher, M. E. 1967. The theory of equilibrium critical phenomena. Rep. Prog. Phys, 30 CrossRef | Google Scholar, 615.
Fokker, A. D. 1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys., 348 CrossRef | Google Scholar, 810.
Gao, L., Xue, Y. Y., Chen, F., et al. 1994. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50 CrossRef | Google Scholar | PubMed, 4260.
Gavoret, J. and Nozières, P. 1964. Structure of the perturbation expansion for the Bose liquid at zero temperature. Ann. Phys., 28 CrossRef | Google Scholar(3), 349.
Gell-Mann, M. and Low, F. E. 1954. Quantum electrodynamics at small distances. Phys. Rev., 95 CrossRef | Google Scholar, 1300.
Ghiringhelli, G., Le Tacon, M., Minola, M., et al. 2012. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science, 337 CrossRef | Google Scholar, 821.
Giamarchi, T. 2004. Quantum Physics in One Dimension. New York Google Scholar: Oxford University Press.
Gibbs, J. W. 1902. Elementary Principles in Statistical Mechanics. New York Google Scholar: Charles Scribner's Sons.
Giorgini, S., Pitaevskii, L. P. and Stringari, S. 2008. Theory of ultracold Fermi gases. Rev. Mod. Phys., 80 CrossRef | Google Scholar, 1215.
Glover, R. E. 1967. Ideal resistive transition of a superconductor. Phys. Lett. A, 25 CrossRef | Google Scholar, 542.
Glover, R. E. and Tinkham, M. 1957. Conductivity of superconducting films for photon energies between 0.3 and 40kTc. Phys. Rev., 108 CrossRef | Google Scholar, 243.
Goldner, L. S. and Ahlers, G. 1992. Superfluid fraction of 4He very close to Tλ. Phys. Rev. B, 45 CrossRef | Google Scholar, 13129.
Gor'kov, L. P., Larkin, A. I. and Khmel'nitskii, D. E. 1979. Particle conductivity in a two-dimensional random potential. JETP Lett., 30 Google Scholar, 228.
Graf, E. H., Lee, D. M. and Reppy, John D. 1967. Phase separation and the superfluid transition in liquid 3He-4He mixtures. Phys. Rev. Lett., 19 CrossRef | Google Scholar, 417.
Griffiths, R. B. 1970. Thermodynamics near the two-fluid critical mixing point in 3He-4He. Phys. Rev. Lett., 24 CrossRef | Google Scholar, 715.
Griffiths, R. B. and Pearce, P. A. 1978. Position-space renormalization-group transformations: some proofs and some problems. Phys. Rev. Lett., 41 CrossRef | Google Scholar, 917.
Gross, E. P. 1961. Structure of a quantized vortex in boson systems. Nuovo Cimento, 20 CrossRef | Google Scholar, 454.
Haldane, F. D. M. 1981. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys., 14 CrossRef | Google Scholar, 2585.
Halperin, B. I. and Hohenberg, P. C. 1969a. Hydrodynamic theory of spin waves. Phys. Rev., 188 CrossRef | Google Scholar, 898.
Halperin, B. I. and Hohenberg, P. C. 1969b. Scaling laws for dynamic critical phenomena. Phys. Rev., 177 CrossRef | Google Scholar, 952.
Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., et al. 1991. Superconductivity at 18 K in potassium-doped C60. Nature, 350 CrossRef | Google Scholar, 600.
Heisenberg, W. 1926. Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys., 38 CrossRef | Google Scholar, 411.
Henshaw, D. G. and Woods, A. D. B. 1961. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev., 121 CrossRef | Google Scholar, 1266.
Hertel, G., Bishop, D. J., Spencer, E. G., Rowell, J. M. and Dynes, R. C. 1983. Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si. Phys. Rev. Lett., 50 CrossRef | Google Scholar, 743.
Hewson, A. C. 1997. The Kondo Problem to Heavy Fermions. Cambridge Google Scholar: Cambridge University Press.
Hikami, S. 1981. Anderson localization in a nonlinear σ-model representation. Phys. Rev. B, 24 CrossRef | Google Scholar, 2671.
Hikami, S., Larkin, A. I. and Nagaoka, Y. 1980. Spin–orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 63 CrossRef | Google Scholar(2), 707.
Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158 CrossRef | Google Scholar, 383.
Hohenberg, P. C. and Halperin, B. I. 1977. Theory of dynamic critical phenomena. Rev.Mod. Phys., 49 CrossRef | Google Scholar, 435.
Hohenberg, P. C. and Martin, P. C. 1965. Microscopic theory of superfluid helium. Ann. Phys., 34 CrossRef | Google Scholar, 291.
Holm, C. and Janke, W. 1993. Critical exponents of the classical three-dimensional Heisenberg model: a single-cluster Monte Carlo study. Phys. Rev. B, 48 CrossRef | Google Scholar | PubMed, 936.
Hor, P. H., Gao, L., Meng, R. L., et al. 1987. High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Phys. Rev. Lett., 58 CrossRef | Google Scholar, 911.
Huang, K. 1963. Statistical Mechanics. New York Google Scholar: J. Wiley & Sons.
Hubbard, J. 1963. Electron correlations in narrow energy bands. Proc. Roy. Soc. A, 276 CrossRef | Google Scholar, 238.
Ioffe, A. F. and Regel, A. R. 1960. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond., 4 Google Scholar, 237.
Ishida, K., Nakaii, Y. and Hosono, H. 2009. To what extent iron-pnictide new superconductors have been clarified: a progress report. J. Phys. Soc. Jpn., 78 CrossRef | Google Scholar, 062001.
Ito, T., Takenaka, K. and Uchida, S. 1993. Systematic deviation from T -linear behavior in the in-plane resistivity of YBa2Cu3O7−y : evidence for dominant spin scattering. Phys. Rev. Lett., 70 CrossRef | Google Scholar, 3995.
Jaklevic, R. C., Lambe, J., Silver, A. H. and Mercereau, J. E. 1964. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett., 12 CrossRef | Google Scholar, 159.
Jarzynski, C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78 CrossRef | Google Scholar, 2690.
Jasnow, D. and Wortis, M. 1968. High-temperature critical indices for the classical anisotropic Heisenberg model. Phys. Rev., 176 CrossRef | Google Scholar, 739.
Johnson, J. B. 1928. Thermal agitation of electricity in conductors. Phys. Rev., 32 CrossRef | Google Scholar, 97.
Jona-Lasinio, G. 1973. Generalized renormalization transformations. In Lundquist, B. and Lundquist, S. (eds.), Collective Properties of Physical Systems. New York Google Scholar: Academic Press,.
Josephson, B. D. 1964. Coupled superconductors. Rev. Mod. Phys., 36 CrossRef | Google Scholar, 216.
Josephson, B. D. 1966. Relation between the superfluid density and order parameter for superfluid He near Tc. Phys. Lett., 21 CrossRef | Google Scholar(6), 608–9.
Kac, M. 1959. Probability and Related Topics in the Physical Sciences. New York Google Scholar: Interscience.
Kadanoff, L. P. 1966. Scaling laws for Ising models near Tc. Physics, 2 CrossRef | Google Scholar, 263.
Kadanoff, L. P., Götze, W., Hamblen, D., et al. 1967. Static phenomena near critical points: theory and experiment. Rev. Mod. Phys., 39 CrossRef | Google Scholar, 395.
Kamerling-Onnes, H. 1911. Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. KNAW, Proceedings, 13 Google Scholar, 1274.
Kamihara, Y., Watanabe, T., Hirano, M. and Osono, H. 2008. Iron-based layered superconductors La[O1−xFx] FeAs (x = 0.05 ÷ 0.12) with Tc = 26. J. Am. Chem. Soc., 130 CrossRef | Google Scholar, 3296.
Kaminski, A., Rosenkranz, S., Fretwell, H. M., et al. 2002. Spontaneous breaking of timereversal symmetry in the pseudogap state of a high-Tc superconductor. Nature, 416 CrossRef | Google Scholar, 610.
Kapitza, P. L. 1938. Viscosity of liquid helium below the λ-point. Nature, 141 CrossRef | Google Scholar, 74.
Katsumoto, S. 1988. Themetal–insulator transition in a persistent photoconductor. In Ando, T. and Fukuyama, H. (eds.), Anderson Localization. Proceedings of the International Symposium, Tokyo, Japan, 1987. Berlin and New York Google Scholar: Springer.
Katsumoto, S., Komori, F., Sano, N. and Kobayashi, S.-I. 1987. Fine tuning of metal– insulator transition in Al0.3Ga0.7As using persistent photoconductivity. J. Phys. Soc. Jpn., 56 CrossRef | Google Scholar, 2259.
Keesom, W.H. and Clusius, K. 1932. Über die spezifische Wärme des flüssigen Heliums. Proc. R. Acad. Amsterdam, 35 Google Scholar.
Keesom, W. H. and MacWood, G. E. 1938. The viscosity of liquid helium. Physica, 5 CrossRef | Google Scholar, 737.
Keesom, W. H. and van den Ende, J. N. 1930. The specific heat of substances at the temperature obtained with the aid of helium. II Measurements of the atomic heats of lead and of bismath. Proc. R. Acad. Amsterdam, 33 Google Scholar, 243.
Kerrisk, J. F. and Keller, W. E. 1967. Thermal conductivity of liquid helium I. Bull. Am. Phys. Soc. Ser. II, 12 Google Scholar, 550.
Ketterle, W. and Zwierlein|M. W. 2008. Making, probing and understanding ultracold Fermi gases. In Inguscio, M., Ketterle, W. and Salomon, C. (eds.), Ultra-cold Fermi Gases. International School of Physics Enrico Fermi. Amsterdam Google Scholar: IOS Press.
Ketterle, W., Durfee, D. S. and Stamper-Kurn, D. M. 1999. Making, probing and understanding Bose–Einstein condensates. In Inguscio, M., Stringari, S. and Wieman, C. (eds.), Bose–Einstein Condensation in Atomic Gases. International School of Physics Enrico Fermi. Amsterdam Google Scholar: IOS Press.
Khalatnikov, I. M. 1965. An Introduction to the Theory of Superfluidity. New York, Amsterdam Google Scholar: W. A. Benjamin.
Khinchin, A. I. 1949. Mathematical Foundations of Statistical Mechanics. New York Google Scholar: Dover.
Khorana, B. M. and Chandrasekhar, B. S. 1967. AC Josephson effect in superfluid helium. Phys. Rev. Lett., 18 CrossRef | Google Scholar, 230.
Kordyuk, A. A. 2012. Iron-based superconductors: magnetism, superconductivity, and electronic structure. Low Temp. Phys., 38 CrossRef | Google Scholar, 888.
Krönig, A. 1856. Grundzüge einer Theorie der Gase. Annalen der Physik und Chemie, 99 CrossRef | Google Scholar, 315.
Lamb, H. 1945. Hydrodynamics. New York Google Scholar: Dover.
Landau L., D. 1937a. Theory of phase transformations. I. Zh. Eksp. Teor. Fiz., 7 Google Scholar, 19 (Sov. Phys. JETP, 11, 26 (1937)).
Landau, L. D. 1937b. Theory of phase transformations. II. Zh. Eksp. Teor. Fiz., 7 Google Scholar, 627 (Sov. Phys. JETP, 11, 545 (1937)).
Landau, L. D. 1941. The theory of superfluidity on Helium II. Zh. Eksp. Teor. Fiz., 11 Google Scholar, 542 (J. Phys. USSR, 5, 71 (1941)).
Landau, L. D. 1947. On the Theory of Superfluidity of Helium II. J. Phys. (USSR), 11 Google Scholar, 91.
Landau, L. D. 1956. The theory of a Fermi liquid. Zh. Eksp. Teor. Fiz., 30 Google Scholar, 1058 (Sov. Phys. JETP, 3, 920 (1957)).
Landau, L. D. 1957. Oscillations in a Fermi liquid. Zh. Eksp. Teor. Fiz., 32 Google Scholar, 59 (Sov. Phys. JETP, 5, 101 (1957)).
Landau, L. D. 1958. On the theory of the Fermi liquid. Zh. Eksp. Teor. Fiz., 35 Google Scholar, 97 (Sov. Phys. JETP, 8, 70 (1959)).
Landau, L. D. and Lifshitz, E. M. 1959. Statistical Physics. London Google Scholar: Pergamon Press.
Lanford, O. E. 1975. Dynamical Systems, Theory and Applications, Lecture Notes in physics, vol. 38. Berlin Google Scholar: Springer.
Langevin, P. 1908. Sur la théorie du mouvement brownien. C.R. Acad. Sci. (Paris), 146 Google Scholar, 530.
Larkin, A. I. and Varlamov, A. 2005. Theory of Fluctuations in Superconductors. Oxford CrossRef | Google Scholar: Oxford University Press.
LeBoeuf, D., Doiron-Leyraud, N., Levallois, J., et al. 2007. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature, 450 CrossRef | Google Scholar | PubMed, 533.
Lee, D. M. and Leggett, A. J. 2011. Superfluid 3He – the early days. J. Low Temp. Phys., 164 CrossRef | Google Scholar, 140.
Lee, P. A. and Ramakrishnan, T. V. 1985. Disordered electronic systems. Rev. Mod. Phys., 57 CrossRef | Google Scholar, 287.
Lee, P. A., Nagaosa, N. and Wen, X. G. 2006. Doping a Mott insulator: physics of hightemperature superconductivity. Rev. Mod. Phys., 78 CrossRef | Google Scholar, 17.
Lee, T.D. and Yang, C.N. 1952. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 87 CrossRef | Google Scholar, 410.
Leggett A., J. 1965. Theory of a superfluid Fermi liquid. I. General formalism and static properties. Phys. Rev., 140 CrossRef | Google Scholar, A1869.
Leggett A., J. 1980. Diatomic molecules and Cooper pairs. In Pfôkalski, A. and Przystawa J., A. (eds.), Modern Trends in the Theory of Condensed Matter. Lecture Notes in Physics, vol. 115. Berlin CrossRef | Google Scholar: Springer.
Leggett A., J. 2006. Quantum Liquids. Oxford CrossRef | Google Scholar: Oxford University Press.
Leggett A., J. 1975. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys., 47 CrossRef | Google Scholar, 331.
Leggett A., J. 2001. Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys., 73 CrossRef | Google Scholar, 307.
Licciardello D., C. and Thouless D., J. 1975. Constancy of minimum metallic conductivity in two dimensions. Phys. Rev. Lett., 35 CrossRef | Google Scholar, 1475.
Lipa J., A., Swanson, D., R., Nissen J., A., Chui T. C., P. and Israelsson U., E. 1996. Heat capacity and thermal relaxation of bulk helium very near the lambda point. Phys. Rev. Lett., 76 CrossRef | Google Scholar | PubMed, 944.
Livingston J., D. 1963. Magnetic properties of superconducting lead-base alloys. Phys. Rev., 129 CrossRef | Google Scholar, 1943.
London, F. 1938. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature, 141 CrossRef | Google Scholar, 643.
London, F. 1959. Superfluids II. New York Google Scholar: Wiley.
London, F. and London, H. 1935. The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A, 149 CrossRef | Google Scholar, 71.
Löw, U., Emery V., J., Fabricius, K. and Kivelson S., A. 1994. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett., 72 CrossRef | Google Scholar | PubMed, 1918.
Luther, A. and Peschel, I. 1974. Single-particle states, Kohn anomaly and pairing fluctuations in one dimension. Phys. Rev. B, 9 CrossRef | Google Scholar, 2911–2919.
Luttinger J., M. 1963. An exactly soluble model of a many-fermion system. J. Math. Phys., 4 CrossRef | Google Scholar, 1154.
Ma S., K. 1976. Modern Theory of Critical Phenomena. London Google Scholar: Benjamin.
Machida, K. 1989. Magnetism in La2CuO4 based compounds. Physica C, 158 CrossRef | Google Scholar, 192.
Mahan G., D. 2000. Many-particle Physics. New York CrossRef | Google Scholar: Kluwer/Plenum.
Matsubara, T. 1955. A new approach to quantum-statistical mechanics. Prog. Theor. Phys., 14 CrossRef | Google Scholar, 351.
Mattis D., C. and Lieb E., H. 1965. Exact solution of a many fermion system and its associated boson field. J. Math. Phys., 6 CrossRef | Google Scholar, 304.
Maxwell J., C. 1860a. Illustrations of the dynamical theory of gases. Part II. Philos. Magazine, 20 Google Scholar, 21.
Maxwell J., C. 1860b. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Philos. Magazine, 19 Google Scholar, 19.
Maxwell J., C. 1875. On the dynamical evidence of the molecular constitution of Bodies. Nature, 11 CrossRef | Google Scholar, 357.
McMillan W., L. and Mochel, J. 1981. Electron tunneling experiments on amorphous Ge1−xAux. Phys. Rev. Lett., 46 CrossRef | Google Scholar, 556.
Meissner, W. and Ochsenfeld, R. 1933. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften, 21 CrossRef | Google Scholar, 787.
Mermin N., D. and Wagner, H. 1966. Absence of ferromagnetism or anti ferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17 CrossRef | Google Scholar, 1133.
Metzner, W. and Di Castro, C. 1993. Conservation laws and correlation functions in the Luttinger liquid. Phys. Rev. B, 47 CrossRef | Google Scholar | PubMed, 16107.
Metzner, W., Castellani, C. and Di Castro, C. 1998. Fermi systems with strong forward scattering. Adv. Phys., 47 CrossRef | Google Scholar, 317.
Migdal, A. A. 1969. A diagram technique near the Curie point and the second order phase transition in a Bose liquid. Sov. Phys. JETP, 28 Google Scholar, 1036.
Mott N., F. 1967. Electrons in disordered structures. Adv. Phys., 16 CrossRef | Google Scholar, 49.
Mott N., F. 1972. Conduction in non-crystalline systems IX. The minimum metallic conductivity. Philos. Magazine, 26 CrossRef | Google Scholar, 1015.
Nakamura, Y. and Uchida, S. 1993. Anisotropic transport properties of single crystal La2−x SrxCuO4: evidence for the dimensional crossover. Phys. Rev. B, 47 CrossRef | Google Scholar, 8369
Nernst W., H. 1906 Google Scholar. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachrichten von der Gesellschaft Wissenschaften zu Göttingen Matematisch-Physikalische Klasse, 1.
Nishida, N., Furubayashi, T., Yamaguchi, M., Morigaki, K. and Ishimoto, H. 1985. Metal– insulator transition in the amorphous Si1−xAux system with a strong spin–orbit interaction. Solid State Electronics, 28 CrossRef | Google Scholar, 81.
Nozières, P. 1964. Theory of Interacting Fermi Systems. New York Google Scholar: W. A. Benjamin.
Nozières, P. and Pines, D. 1966. The Theory ofQuantum Liquids. NewYork Google Scholar: W.A.Benjamin.
Nozières, P. and Schmitt-Rink, S. 1985. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. L. Temp. Phys., 59 CrossRef | Google Scholar, 195.
Nyquist, H. 1928. Thermal agitation of electric charge in conductors. Phys. Rev., 32 CrossRef | Google Scholar, 110.
Okuma, S., Komori, F. and Kobayashi, S. 1988. Themetal–insulator transition in disordered metals. In Ando, T. and Fukuyama, H. (eds.), Anderson Localization. Proceedings of the International Symposium. Berlin Google Scholar: Springer.
Onsager, L. 1931a. Reciprocal relations in irreversible processes. I. Phys. Rev., 37 CrossRef | Google Scholar, 405.
Onsager, L. 1931b. Reciprocal relations in irreversible processes. II. Phys. Rev., 38 CrossRef | Google Scholar, 2265.
Ornstein, L. S. and Zernike, F. 1914. Accidental deviations of density and opalescence at the critical point of a single substance. KNAW, Proceedings, 17 Google Scholar, 793.
Osheroff D., D., Richardson R., C. and Lee D., M. 1972a. Evidence for a new phase of solid He3. Phys. Rev. Lett., 28 CrossRef | Google Scholar, 885.
Osheroff, D., D., Gully, W. J., Richardson R., C. and Lee D., M. 1972b. New magnetic phenomena in liquid He3 below 3 mK. Phys. Rev. Lett., 29 CrossRef | Google Scholar, 920.
Paalanen M., A., Sachdev, S., Bhatt R., N. and Ruckenstein A., E. 1986. Spin dynamics of nearly localized electrons. Phys. Rev. Lett., 57 CrossRef | Google Scholar | PubMed, 2061.
Patashinskij A., Z. and Pokrovskij V., L. 1966. Behavior of ordered systems near the transition point. Sov. Phys. JETP, 23 Google Scholar, 292.
Patashinskij A., Z. and Pokrovskij V., L. 1979. Fluctuations Theory of Phase Transitions. Oxford Google Scholar: Pergamon Press.
Paulson D., N., Kojima, H. and Wheatley J., C. 1974. Profound effect of a magnetic field on the phase diagram of superfluid 3He. Phys. Rev. Lett., 32 CrossRef | Google Scholar, 1098.
Peliti, L. 2011. Statistical Mechanics in a Nutshell. Princeton Google Scholar: Princeton University Press.
Penrose, O. and Onsager, L. 1956. Bose–Einstein condensation and liquid helium. Phys. Rev., 104 CrossRef | Google Scholar, 576.
Perali, A., Pieri, P., Pisani, L. and Strinati, G. C. 2004. BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms. Phys. Rev. Lett., 92 CrossRef | Google Scholar | PubMed, 220404.
Perrin, J. B. 1913. Les Atoms. Paris Google Scholar: Librairie Felix Alcan.
Pethick C., J. and Smith, H. 2008. Bose–Einstein Condensation in Dilute Gases. 2nd edn. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Phillips N., E. 1959. Heat capacity of aluminum between 0.1 K and 4.0K. Phys. Rev., 114 CrossRef | Google Scholar, 676.
Phillips W., D. 1998. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70 CrossRef | Google Scholar, 721.
Pippard A., B. 1955. Trapped flux in superconductors. Phil. Trans. R. Soc. Lond. A, 248 CrossRef | Google Scholar, 97.
Pippard A., B. 1957. Elements of Classical Thermodynamics: for Advanced Students of Physics. Cambridge Google Scholar: Cambridge University Press.
Pitaevskii L., P. 1959. On the superfluidity of liquid 3He. Zh. Eksp. Teor. Fiz., 37 Google Scholar, 1794 (Sov. Phys. JETP, 10, 1267 (1960)).
Pitaevskii L., P. 1961. Vortex lines in imperfect Bose gas. Zh. Eksp. Teor. Fiz., 40 Google Scholar, 646 (Sov. Phys. JETP, 13, 451 (1961)).
Pitaevskii, L. P. and Stringari, S. 2003. Bose–Einstein Condensation. Oxford Google Scholar: Clarendon Press.
Planck, M. K. E. L. 1900a. Über eine Verbesserung der Wienschen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2 Google Scholar, 202.
Planck, M. K. E. L. 1900b. Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2 Google Scholar, 237.
Planck, M. K. E. L. 1917 Google Scholar. Über einen Satz der statischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungberichte der Preussischen Akadademie der Wissenschaften, 324.
Polyakov, A.M. 1968. Microscopic description of critical phenomena. Zh. Eksp. Teor. Fiz., 55 Google Scholar, 1026 (Sov. Phys. JETP, 28, 533 (1969)).
Polyakov, A.M. 1969. Properties of long and short range correlations in the critical region. Zh. Eksp. Teor. Fiz., 57 Google Scholar, 271 (Sov. Phys. JETP, 30, 151 (1970)).
Punnoose, A. and Finkel'stein, A. M. 2002. Dilute electron gas near the metal–insulator transition: role of valleys in silicon inversion layers. Phys. Rev. Lett., 88 Google Scholar | PubMed, 016802.
Qian, Z., Vignale, G. and Marinescu, D. C. 2004. Spin mass of an electron liquid. Phys. Rev. Lett., 93 CrossRef | Google Scholar | PubMed, 106601.
Raffa, F., Ohno, T., Mali, M., et al. 1998. Isotope dependence of the spin gap in YBa2Cu4O8 as determined by Cu NQR relaxation. Phys. Rev. Lett., 81 CrossRef | Google Scholar, 5912.
Rammer, J. 2007. Quantum Field Theory of Non-equilibrium States. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Randeria, M. and Trivedi, N. 1998. Pairing correlations above Tc and pseudogaps in underdoped cuprates. J. Phys. Chem. Solids, 59 CrossRef | Google Scholar, 1754.
Rayfield, G. W. and Reif, F. 1964. Quantized vortex rings in superfluid helium. Phys. Rev., 136 CrossRef | Google Scholar, A1194.
Richards, P. L. and Anderson, P. W. 1965. Observation of the analog of the AC Josephson effect in superfluid helium. Phys. Rev. Lett., 14 CrossRef | Google Scholar, 540.
Riedel, E. K. and Wegner, F. J. 1974. Effective critical and tricritical exponents. Phys. Rev. B, 9 CrossRef | Google Scholar, 294.
Rohde, M. and Micklitz, H. 1987. Indication of universal behavior of Hall conductivity near the metal–insulator transition in disordered systems. Phys. Rev. B, 36 CrossRef | Google Scholar | PubMed, 7572.
Rosenbaum, T. F., Andres, K., Thomas, G. A. and Bhatt, R. N. 1980. Sharp metal–insulator transition in a random solid. Phys. Rev. Lett., 45 CrossRef | Google Scholar, 1723.
Rosenbaum, T. F., Milligan, R. F., Paalanen, M. A., Thomas, G. A., Bhatt, R. N. and Lin, W. 1983. Metal–insulator transition in a doped semiconductor. Phys. Rev. B, 27 CrossRef | Google Scholar, 7509.
Rubio Temprano, D., Mesot, J., Janssen, S., et al. 2000. Large isotope effect on the pseudogap in the high-temperature superconductor HoBa2Cu4O8. Phys. Rev. Lett., 84 CrossRef | Google Scholar | PubMed, 1990.
Schreck, F., Khaykovich, L., Corwin, K. L., et al. 2001. QuasipureBose–Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett., 87 CrossRef | Google Scholar, 080403.
Schrieffer, J. R. 1999. Theory of Superconductivity. Reading, Mass. Google Scholar: Pegasus Books.
Schrödinger, E. 1968. Statistical Thermodynamics. Cambridge Google Scholar: Cambridge University Press.
Schroer, B. 1973. Theory of critical phenomena based on the normal-product formalism. Phys. Rev. B, 8 CrossRef | Google Scholar, 4200.
Sebastian, S. E., Harrison, N., Palm, E., et al. 2008. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature, 454 CrossRef | Google Scholar | PubMed, 200.
Seibold, G., Grilli, M. and Lorenzana, J. 2012. Stripes in cuprate superconductors: excitations and dynamic dichotomy. Physica C, 481 CrossRef | Google Scholar, 132.
Serin, B., Reynold, C.A. and Nesbitt, L. B. 1950. Mass dependence of the superconducting transition temperature of mercury. Phys. Rev., 80 CrossRef | Google Scholar, 761.
Shankar, R. 1994. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66 CrossRef | Google Scholar, 129.
Shapiro, S., Janus, A. R. and Holly, S. 1964. Effect of microwaves on Josephson currents in superconducting tunneling. Rev. Mod. Phys., 36 CrossRef | Google Scholar, 223.
Simon, M. E. and Varma, C. M. 2002. Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett., 89 CrossRef | Google Scholar, 247003.
Sólyom, J. 1979. The Fermi gas model of one-dimensional conductors. Adv. Phys., 28 Google Scholar, 201.
Stanley, H. E. 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford Google Scholar: Oxford University Press.
Stupp, H., Hornung, M., Lakner, M., Madel, O. and Löhneysen, H. V. 1993. Possible solution of the conductivity exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors. Phys. Rev. Lett., 71 Google Scholar, 2634.
Tallon, J. L. and Loram, J. W. 2001. The doping dependence of T * – what is the real high-Tc phase diagram?Physica C: Superconductivity, 349 CrossRef | Google Scholar, 53.
Thomas, G. A., Ootuka, Y., Kobayashi, S. and Sasaki, W. 1981. Comparison of the specific heat and conductivity of Si: P. Phys. Rev. B, 24 CrossRef | Google Scholar, 4886.
Thomas, G. A., Ootuka, Y., Katsumoto, S., Kobayashi, S. and Sasaki, W. 1982. Evidence for localization effects in compensated semiconductors. Phys. Rev. B, 25 CrossRef | Google Scholar, 4288.
Thompson, C. J. 1972. Mathematical Statistical Mechanics. Princeton Google Scholar: Princeton University Press.
Timusk, T. 2003. The mysterious pseudogap in high temperature superconductors: an infrared view. Solid State Comm., 127 CrossRef | Google Scholar(5), 337.
Timusk, T. and Statt, B. 1999. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys., 62 CrossRef | Google Scholar, 61.
Tinkham, M. 1975. Introduction to Superconductivity. New York Google Scholar: McGraw-Hill.
Tino, G. M., Cataliotti, F. S., Cornell, E. A., Fort, C., Inguscio, M. and Prevedelli, M. 1999. Towards quantum degeneracy of bosonic and fermionic potassium atoms. In Inguscio, M., Stringari, S. and Wieman, C. (eds.), Bose–Einstein Condensation in Atomic Gases, Amsterdam Google Scholar: IOP Press.
Tisza, L. 1938. Transport phenomena in helium II. Nature, 141 CrossRef | Google Scholar, 913.
Tomonaga, S. 1950. Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog. Theor. Phys., 5 CrossRef | Google Scholar, 544.
Tranquada, J. M. 2012. Cuprates get orders to charge. Science, 337 CrossRef | Google Scholar, 811.
Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. and Uchida, S. 1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 375 CrossRef | Google Scholar, 561.
Tranquada, J. M., Axe, J. D., Ichikawa, N., Nakamura, Y., Uchida, S. and Nachumi, B. 1996. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4. Phys. Rev. B, 54 CrossRef | Google Scholar | PubMed, 7489.
Tranquada, J. M., Axe, J. D., Ichikawa, N., Moodenbaugh, A. R., Nakamura, Y. and Uchida, S. 1997. Coexistence of and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett., 78 CrossRef | Google Scholar, 338.
Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. and Hulet, R. G. 2001. Observation of Fermi pressure in a gas of trapped atoms. Science, 291 CrossRef | Google Scholar, 2570.
Tsuei, C. C. and Kirtley, J. R. 2000. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys., 72 CrossRef | Google Scholar, 969.
Valatin, J. G. 1962. Superconducting electron and nucleon systems. In Lectures in Theoretical Physics, Boulder, Colorado (1961), vol. 4. New York Google Scholar: Interscience.
van der Waals, J. D. 1873. Over de Continuiteit van den Gasen Vloeistoftoestand. Leiden Google Scholar: A. W. Suthoff.
Van Hove, L. 1954. Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals. Phys. Rev., 95 CrossRef | Google Scholar, 1374.
Varma, C. M. 1993. Towards a theory of the marginal Fermi-liquid state. J. Phys. Chem. Solids, 54 CrossRef | Google Scholar, 1081.
Varma, C. M. 1999. Pseudogap phase and the quantum-critical point in copper-oxide metals. Phys. Rev. Lett., 83 CrossRef | Google Scholar, 3538.
Vojta, M. 2009. Lattice symmetry breaking in cuprate superconductors: stripes, nematics and superconductivity. Adv. Phys CrossRef | Google Scholar, 58, 699.
Vollhardt, D. 1998. Pair correlations in superfluid helium 3. In Kresin, V. (ed.), Pair Correlations in Many-Fermion Systems. New York Google Scholar: Plenum Press.
Wang, Y. and Chubukov, A. 2014. Charge-density-wave order with momentum (2Q, 0) and (0, 2Q) within the spin-fermion model: continuous and discrete symmetry breaking, preemptive composite order and relation to pseudogap in hole-doped cuprates. Phys. Rev. B, 90 Google Scholar, 035149.
Webb, R. A., Greytak, T. J., Johnson, R. T. and Wheatley, J. C. 1973. Observation of a second-order phase transition and its associated P − T phase diagram in liquid He3. Phys. Rev. Lett., 30 CrossRef | Google Scholar, 210.
Wegner, F. 1976. Electrons in disordered systems. Scaling near the mobility edge. Zeit. für Phys. B, 25 Google Scholar, 327.
Wegner, F. 1979. The mobility edge problem: continuous symmetry and a conjecture. Zeit. für Phys. B, 35 Google Scholar, 307.
Wegner, F. J. and Riedel, E.K. 1973. Logarithmic corrections to themolecular-field behavior of critical and tricritical systems. Phys. Rev. B, 7 CrossRef | Google Scholar, 248.
Wheatley, J. C. 1966. Quantum Fluids: Proceedings of the Sussex University Symposium 16–20 August 1965. Amsterdam Google Scholar: North-Holland.
Wheatley, J. C. 1975. Experimental properties of superfluid 3He. Rev. Mod. Phys., 47 CrossRef | Google Scholar, 415.
Widom, B. 1974. The critical point and scaling theory. Physica, 73 CrossRef | Google Scholar, 107–118.
Wigner, E. P. 1957. Relativistic invariance and quantum phenomena. Rev. Mod. Phys., 29 CrossRef | Google Scholar, 255.
Williams, G. V. M., Pringle, D. J. and Tallon, J. L. 2000. Contrasting oxygen and copper isotope effects in YBa2Cu4O8 superconducting and normal states. Phys. Rev. B, 61 CrossRef | Google Scholar, R9257.
Wilson, K. G. 1971a. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B, 4 CrossRef | Google Scholar, 3174.
Wilson, K. G. 1971b. Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B, 4 CrossRef | Google Scholar, 3184.
Wilson, K. G. 1972. Feynman-graph expansion for critical exponents. Phys. Rev. Lett., 28 CrossRef | Google Scholar, 548.
Wilson, K. G. and Fisher, M. E. 1972. Critical exponents in 3.99 dimensions. Phys. Rev. Lett., 28 CrossRef | Google Scholar, 240.
Wilson, K. G. and Kogut, J. 1974. The renormalization group and the ∈ expansion. Phys. Rep., 12 CrossRef | Google Scholar, 75.
Wu, M. K., Ashburn, J. R., Torng, C. J., et al. 1987. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58 CrossRef | Google Scholar, 908.
Wu, T., Mayaffre, H., Kramer, S., et al. 2011. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 477 CrossRef | Google Scholar | PubMed, 191.
Yamaguchi, M., Nishida, N., Furubayashi, T., Morigaki, K., Ishimoto, H. and Ono, K. 1983. Metal–nonmetal transition and superconductivity in amorphous Si1−x Aux System. Physica B+C, 117-118 CrossRef | Google Scholar, 694.
Yamase, H., Oganesyan, V. and Metzner, W. 2005. Mean-field theory for symmetry-breaking Fermi surface deformations on a square lattice. Phys. Rev. B, 72 CrossRef | Google Scholar, 035114.
Yang, C. N. 1962. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys., 34 CrossRef | Google Scholar, 694.
Yang, C.N. and Lee, T.D. 1952. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev., 87 CrossRef | Google Scholar, 404.
Zaanen, J. and Gunnarsson, O. 1989. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B, 40 CrossRef | Google Scholar | PubMed, 7391.
Zemansky, M. W. 1968. Heat and Thermodynamics. New York Google Scholar: MacGraw-Hill.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 13999 *
Loading metrics...

Book summary page views

Total views: 9950 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 3rd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.