Skip to main content Accessibility help
×
  • Cited by 60
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9781139505727

Book description

Bernard Helffer's graduate-level introduction to the basic tools in spectral analysis is illustrated by numerous examples from the Schrödinger operator theory and various branches of physics: statistical mechanics, superconductivity, fluid mechanics and kinetic theory. The later chapters also introduce non self-adjoint operator theory with an emphasis on the role of the pseudospectra. The author's focus on applications, along with exercises and examples, enables readers to connect theory with practice so that they develop a good understanding of how the abstract spectral theory can be applied. The final chapter provides various problems that have been the subject of active research in recent years and will challenge the reader's understanding of the material covered.

Reviews

"It is written in a way well suited for a graduate course."
Pavel V. Exner, Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Arendt, W., Batty, C., Hieber, M., and Neubrander, F. 2001. Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser.
Abramowitz, M. and Stegun, I. A. 1964. Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55. National Bureau of Standards.
Agmon, S. 1982. Lecture on Exponential Decay of Solutions of Second Order Elliptic Equations, Mathematical Notes, Vol. 29. Princeton University Press.
Almog, Y., Helffer, B., and Pan, X. 2010. Superconductivity near the normal state under the action of electric currents and induced magnetic field in ℝ2. Commun. Math. Phys., 300 (1), 147–184.
Almog, Y., Helffer, B., and Pan, X. 2011. Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field. To appear in Trans. Am. Math. Soc.
Avron, J., Herbst, I., and Simon, B. 1978. Schrödinger operators with magnetic fields I. Duke Math. J., 45, 847–883.
Akhiezer, N. I. and Glazman, I. M. 1981. Theory of Linear Operators in Hilbert Space. Pitman.
Almog, Y. 2008. The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal., 40(2), 824–850.
Aslayan, A. and Davies, E. B. 2000. Spectral instability for some Schrödinger operators. Numer. Math., 85, 525–552.
Bernoff, A. and Sternberg, P. 1998. Onset of superconductivity in decreasing fields for general domains. J. Math. Phys., 39, 1272–1284.
Berger, M., Gauduchon, P., and Mazet, E. 1971. Spectre d’une Variété Riemannienne, Lecture Notes in Mathematics, Vol. 194. Springer.
Benguria, R., Levitin, M., and Parnovski, L. 2009. Fourier transform, null variety, and Laplacian’s eigenvalues. J. Funct. Anal., 257(7), 2088–2123.
Bordeaux-Montrieux, W. 2010. Estimation de résolvante et construction de quasi-modes près du bord du pseudospectre. Preprint.
Borisov, D. and Krejcirik, D. 2012. The effective Hamiltonian for thin layers with non-hermitian Robin-type boundary. Asymptot. Anal., 76, 49–59.
Boulton, L. S. 2002. Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra. J. Oper. Theory, 47(2), 413–429.
Brézis, H.. 2005. Analyse Fonctionnelle. Editions Masson.
Blanchard, P. and Stubbe, J. 1996. Bound states for Schrödinger Hamiltonians. Phase space methods and applications. Rev. Math. Phys., 35, 504–547.
Cherfils-Clerouin, C., Lafitte, O., and Raviart, P. -A. 2001. Asymptotics results for the linear stage of the Rayleigh–Taylor instability. In Neustupa, J. and Penel, P. (eds.), Mathematical Fluid Mechanics: Recent Results and Open Questions, Advances in Mathematical Fluid Mechanics, pp. 47–71. Birkhäuser.
Colin de Verdière, Y. 1998. Spectres de graphes, Cours Spécialisé, 4. Société Mathématique de France.
Cycon, H. L., Froese, R., Kirsch, W., and Simon, B. 1987. Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics. Springer.
Courant, R. and Hilbert, D. 1953. Methods of Mathematical Physics. Wiley- Interscience.
Cherfils, C. and Lafitte, O. 2000. Analytic solutions of the Rayleigh equation for linear density profiles. Phys. Rev. E, 62(2), 2967–2970.
Combes, J. -M. and Thomas, L. 1973. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys., 34, 251–270.
Dauge, M. and Helffer, B. 1993. Eigenvalues variation I, Neumann problem for Sturm–Liouville operators. J. Differ. Equ., 104(2), 243–262.
Dautray, R. and Lions, J. -L.. 1988–1995. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson.
Davies, E. B. 1996. Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, Vol. 42. Cambridge University Press.
Davies, E. B. 1999. Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys., 200, 35–41.
Davies, E. B. 1999. Pseudospectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. Ser. A, 455, 585–599.
Davies, E. B. 2000. Wild spectral behaviour of anharmonic oscillators. Bull. Lond. Math. Soc., 32, 432–438.
Davies, E. B. 2002. Non-self-adjoint differential operators. Bull. Lond. Math. Soc., 34, 513–532.
Davies, E. B. 2005. Semigroup growth bounds. J. Oper. Theory, 53(2), 225–249.
Davies, E. B. 2007. Linear Operators and Their Spectra, Cambridge Studies in Advanced Mathematics, Vol. 106. Cambridge University Press.
Dieudonné, J.. 1980. Calcul Infinitésimal. Hermann.
Dimassi, M. and Sjöstrand, J.. 1999. Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, Vol. 268. Cambridge University Press.
Dencker, N., Sjöstrand, J., and Zworski, M. 2004. Pseudospectra of semi-classical (pseudo)differential operators. Commun. Pure Appl. Math., 57(3), 384–415.
Deng, W. 2012. Etude du pseudo-spectre d’opérateurs non auto-adjoints liés à la mécanique des fluides. Thèse de doctorat, Université Pierre et Marie Curie.
Eckmann, J. -p., Pillet, C. A., and Rey-Bellet, L. 1999. Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys., 208(2), 275–281.
Engel, K. J. and Nagel, R. 2000. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194. Springer.
Engel, K. J. and Nagel, R. 2005. A Short Course on Operator Semi-Groups, Unitext. Springer.
Fournais, S. and Helffer, B. 2010. Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and Their Applications, Vol. 77. Birkhäuser.
Gearhart, L. 1978. Spectral theory for contraction semigroups on Hilbert spaces. Trans. Am. Math. Soc., 236, 385–394.
Gallagher, I., Gallay, T., and Nier, F. 2009. Spectral asymptotics for large skewsymmetric perturbations of the harmonic oscillator. Int. Math. Res. Not., 12(12), 2147–2199.
Gilbarg, D. and Trudinger, N. S. 1998. Elliptic Partial Differential Equations of Second Order. Springer.
Glimm, J. and Jaffe, A. 1987. Quantum Physics: A Functional Integral Point of View, 2nd edition. Springer.
Grigis, A. and Sjöstrand, J. 1994. Microlocal Analysis for Differential Operators: An Introduction, London Mathematical Society Lecture Note Series, Vol. 196. Cambridge University Press.
Hager, M. 2006. Instabilité spectrale semi-classique pour des opérateurs non-autoadjoints I: un modèle. Ann. Fac. Sci. Toulouse Math. (6), 15(2), 243–280.
Hardy, G. H. 1920. Note on a theorem of Hilbert. Math. Z., 6, 314–317.
Helffer, B. 1984. Théorie Spectrale pour des Opérateurs Globalement Elliptiques, Astérisque, Vol. 112. Société Mathématique de France.
Helffer, B. 1988. Semiclassical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, Vol. 1336. Springer.
Helffer, B. 1995. Semiclassical Analysis for Schrödinger Operators, Laplace Integrals and Transfer Operators in Large Dimension: An Introduction, Cours de DEA. Paris Onze Edition.
Helffer, B. 2002. Semiclassical Analysis, Witten Laplacians and Statistical Mechanics, Series on Partial Differential Equations and Applications, Vol. 1. World Scientific.
Helffer, B. 2011. On pseudo-spectral problems related to a time dependent model in superconductivity with electric current. Confluentes Math., 3(2), 237–251.
Helffer, B. and Lafitte, O. 2003. Asymptotics methods for the eigenvalues of the Rayleigh equation. Asymptot. Anal., 23(3–4), 189–236.
Helffer, B. and Nier, F. 2004. Hypoelliptic Estimates and Spectral Theory for Fokker– Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, Vol. 1862. Springer.
Helffer, B. and Nourrigat, J. 1985. Hypoellipticité Maximale pour des Opérateurs Polynômes de Champs de Vecteurs, Progress in Mathematics, Vol. 58. Birkhäuser.
Henry, R. 2010. Master’s thesis, UniversitéParis-Sud11.
Helffer, B. and Sjöstrand, J. 1984. Multiple wells in the semiclassical limit I. Commun. Partial Differ. Equ., 9(4), 337–408.
Helffer, B. and Sjöstrand, J. 2010. From resolvent bounds to semigroup bounds. Preprint, .
Herbst, I. 1979. Dilation analyticity in constant electric field I. The two body problem. Commun. Math. Phys., 64, 279–298.
Hérau, F. and Nier, F. 2004. Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal., 171(2), 151–218.
Hérau, F., Sjöstrand, J., and Stolk, C. 2005. Semi-classical analysis for the Kramers–Fokker–Planck equation. Commun. Partial Differ Equ., 30(5–6), 689–760.
Huang, F. L. 1985. Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ., 1, 43–56.
Hérau, F., Hitrik, M., and Sjöstrand, J. 2008. Tunnel effect for Kramers–Fokker–Planck type operators. Ann. Henri Poincaré, 9(2), 209–274.
Hérau, F., Hitrik, M., and Sjöstrand, J. 2008. Kramers–Fokker–Planck type operators: return to equilibrium and applications. Int. Math. Res. Not., Article ID rnn057, 48 pp.
Hislop, P. D. and Sigal, I. M. 1995. Introduction to Spectral Theory: With Applications to Schrödinger Operators, Applied Mathematical Sciences, Vol. 113. Springer.
Hörmander, L. 1967. Hypoelliptic second order differential equations. Acta Math, 119, 147–171.
Hörmander, L. 1985. The Analysis of Linear Partial Differential Operators. Springer.
Huet, D. 1976. Décomposition Spectrale et Opérateurs. Presses universitaires de France.
Kato, T. 1966. Perturbation Theory for Linear Operators. Springer.
Lafitte, O. 2001. Sur la phase linéaire de l’instabilité de Rayleigh-Taylor. Séminaire EDP de l’Ecole Polytechnique. .
Langer, H. and Tretter, C. 1997. Spectral properties of the Orr–Sommerfeld problem. Proc. R. Soc. Edinb. Sect. A, 127, 1245–1261.
Laptev, A. 1997. Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal., 151(2), 531–545.
Lévy-Bruhl, P. 2003. Introduction à la Théorie Spectrale. Editions Dunod.
Lieb, E. and Loss, M. 1996. Analysis, Graduate Studies in Mathematics, Vol. 14. American Mathematical Society.
Lions, J. -L. and Magenes, E. 1968. Problèmes aux Limites Non-homogènes. Tome 1. Editions Dunod.
Lions, J. -L. 1957. Lecture on Elliptic Partial Differential Equations. Tata Institute of Fundamental Research, Bombay.
Lions, J. -L. 1962. Problèmes aux limites dans les EDP. Séminaire de Mathématiques supérieures de l’université de Montréal.
Li, P. and Yau, S. T. 1983. On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys., 88(3), 309–318.
Martinet, J. 2009. Sur les propriétés spectrales d’opérateurs non-autoadjoints provenant de la mécanique des fluides. Thèse de doctorat, Université Paris-Sud 11.
Pazy, A. 1983. Semigroups of Linear Operators and Applications to Partial Differential Operators, Applied Mathematical Sciences, Vol. 44. Springer.
Prüss, J. 1984. On the spectrum of C0-semigroups. Trans. Am. Math. Soc., 284, 847– 857.
Pravda-Starov, K. 2006. A complete study of the pseudo-spectrum for the rotated harmonic oscillator. J. Lond. Math. Soc., 73(3), 745–761.
Risken, H. 1989. The Fokker–Planck Equation: Methods of Solution and Applications, 2nd edition. Springer.
Robert, D. 1987. Autour de l’Approximation Semi-classique, Progress in Mathematics, Vol. 68. Birkhäuser.
Roch, S. and Silbermann, B. 1996. C*-algebras techniques in numerical analysis. J. Oper. Theory, 35, 241–280.
Reed, M. and Simon, B. 1972. Methods of Modern Mathematical Physics, Vol. I: Functional Analysis. Academic Press.
Reed, M. and Simon, B. 1975. Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness. Academic Press.
Reed, M. and Simon, B. 1976. Methods of Modern Mathematical Physics, Vol. III: Scattering Theory. Academic Press.
Reed, M. and Simon, B. 1978. Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators. Academic Press.
Rubinstein, J., Sternberg, P., and Zumbrun, K. 2010. The resistive state in a superconducting wire: bifurcation from the normal state. Arch. ation. Mech. Anal R., 195(1), 117–158.
Rudin, W. 1974. Real and Complex Analysis. McGraw-Hill.
Rudin, W. 1997. Analyse Fonctionnelle. Ediscience International.
Simon, B. 1979. Functional Integration and Quantum Physics, Pure and Applied Mathematics, Vol. 86. Academic Press.
Simon, B. 2005. Trace Ideals and Their Applications, 2nd edition, Mathematical Surveys and Monographs, Vol. 120. American Mathematical Society.
Sibuya, Y. 1975. Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient. North-Holland.
Simader, C. G. 1978. Essential self-adjointness of Schrödinger operators bounded from below. Math. Z., 159, 47–50.
Sjöstrand, J. 2003. Pseudospectrum for differential operators. Séminaire à l’Ecole Polytechnique, Exp. No. XVI, Séminaire Equations aux Dérivées Partielles, Ecole Polytechnique, Palaiseau.
Sjöstrand, J. 2009. Spectral properties for non self-adjoint differential operators. In Proceedings ofColloque sur les équations aux Dérivées Partielles. évian.
Sjöstrand, J. 2010. Resolvent estimates for non-selfadjoint operators via semigroups. In Laptev, A. (ed.), Around the Research of Vladimir Maz’ya III, International Mathematical Series, Vol. 13, pp. 359–384. Springer/Tamara Rozhkovskaya.
Sjöstrand, J. and Zworski, M. 2007. Elementary linear algebra for advanced spectral problems. Ann. Inst. Fourier, 57(7), 2095–2141.
Staffans, O. 2005. Well-Posed Linear Systems. Cambridge University Press.
Trefethen, L. N. 1997. Pseudospectra of linear operators. SIAM Rev., 39, 383–400.
Trefethen, L. N. 2000. Spectral Methods in MATLAB. SIAM.
Trefethen, L. N. and Embree, M. 2005. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.
Villani, C. 2009. Hypocoercivity, Memoirs of the AMS, Vol. 202, No. 950. AmericanMathematical Society.
Yosida, K. 1980. Functional Analysis, Grundlehren der mathematischen Wissenschaften, Vol. 123. Springer.
Zuily, C. 2000. Eléments de Distributions et d’équations aux Dérivées Partielles, Collection Sciences Sup. Editions Dunod.
Zworski, M. 2001. A remark on a paper by E. B. Davies. Proc. Am. Math. Soc., 129, 2955–2957.
Zworski, M. 2012. Semiclassical Analysis, Graduate Studies in Mathematics, Vol. 138. AmericanMathematical Society.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.