[1] K, Akin, D. A, Buchsbaum, and J, Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), 207–278.
[2] G, Almkvist, The number of nonfree components in the decomposition ofsymmetric powers in characteristic p, Pacific J. Math. 77 (1978), 293–301.
[3] G, Almkvist, Reciprocity theorems for representations in characteristic p, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), Lecture Notes in Mathematics, vol. 795, Springer-Verlag, Berlin/New York, 1980, pp. 1–9.
[4] G, Almkvist, Representations of Z/pZ in characteristic p and reciprocitytheorems, J. Algebra 68 (1981), 1–27.
[5] G, Almkvist, Some formulas in invariant theory, J. Algebra 77 (1982), 338–359.
[6] G, Almkvist and R, Fossum, Decomposition of exterior and symmetric powers ofindecomposable Z/pZ-modules in characteristic p and relations to invariants, Séminaire d'Algèbre Paul Dubreil, 30ème année (Paris, 1976–1977), Lecture Notes in Mathematics, vol. 641, Springer-Verlag, Berlin/New York, 1978, pp. 1–111.
[7] J. L, Alperin and L, Evens, Representations, resolutions, and Quillen's dimensiontheorem, J. Pure & Applied Algebra 22 (1981), 1–9.
[8] J. L, Alperin and L, Evens, Varieties and elementary abelian subgroups, J. Pure & Applied Algebra 26 (1982), 221–227.
[9] V, Ancona and G, Ottaviani, Stability of special instanton bundles on P2n+1, Trans. Amer. Math. Soc. 341 (1994), 677–693.
[10] V, Ancona and G, Ottaviani, On moduli of instanton bundles on P2n+1, Pacific J. Math. 171 (1995), 343–351.
[11] V, Ancona and G, Ottaviani, The Horrocks bundles of rank three on P5, J. Reine & Angew. Math. 460 (1995), 69–92.
[12] A, Aramova, L. L, Avramov, and J, Herzog, Resolutions of monomial ideals andcohomology over exterior algebras, Trans. Amer. Math. Soc. 352
1999, no.2, 579–594.
[13] E, Arrondo, Schwarzenberger bundles of arbitrary rank on the projective space, J. London Math. Soc. 82 (2010), 697–716.
[14] M. F, Atiyah, On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307–317.
[15] M. F, Atiyah, V. G, Drinfeld, N. J, Hitchin and Yu. I., Manin, Construction ofinstantons, Phys. Lett. 65A (1978), 185–187. 312
[16] M. F, Atiyah and I. G, Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.
[17] M. F, Atiyah and E, Rees, Vector bundles on projective 3-space, Invent. Math. 35 (1976), 131–153.
[18] M. F, Atiyah and D. O, Tall, Group representations, λ-rings and theJ -homomorphism, Topology 8 (1969), 253–297.
[19] M. D, Atkinson and R, Westwick, Spaces of linear transformations of equalrank, Linear & Multilinear Algebra 13 (1983), 231–239.
[20] A. B, Aure, Surfaces on quintic threefolds associated to the Horrocks–Mumfordbundle, Arithmetic of complex manifolds (Erlangen, 1988), Lecture Notes in Mathematics, vol. 1399, Springer-Verlag, Berlin/New York, 1989, pp. 1–9.
[21] M, Auslander and R.-O., Buchweitz, The homological theory of maximal Cohen–Macaulay approximations, Mém. Soc. Math. France (N.S.) 38 (1989), 5–37.
[22] L. L, Avramov, R.-O., Buchweitz, S. B., Iyengar, and C, Miller, Homology ofperfect complexes, Adv. in Math. 223 (2010), 1731–1781.
[23] L. L, Avramov, V, Gasharov, and I, Peeva, Complete intersection dimension, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 67–114.
[24] G. S, Avrunin and L. L, Scott, Quillen stratification for modules, Invent. Math. 66 (1982), 277–286.
[25] S, Baland, Modules of constant Jordan type with two non-projective blocks, J. Algebra 346 (2011), 343–350.
[26] S, Baland, On the generic kernel filtration for modules of constant Jordan type, Arch. Math. (Basel) 99 (2012), 305–314.
[27] E, Ballico, Uniform vector bundles of rank (n + 1) on Pn, Tsukuba J. Math. 7
1983, 215–226.
[28] E, Ballico, Vector spaces of matrices of low rank and vector bundles onprojective spaces, Beiträge Algebra Geom. 36 (1995), 119–122.
[29] V, Baranovsky and J, Pecharich, On equivalences of derived and singularcategories, Cent. Eur. J. Math. 8
2010, no.1, 1–14.
[30] M. J. J., Barry, Decomposing tensor products and exterior and symmetricsquares, J. Group Theory 14 (2011), 59–82.
[31] M. J. J., Barry, Generators for decompositions of tensor products of modules, Arch. Math. (Basel) 97 (2011), 503–512.
[32] W, Barth, Moduli of vector bundles on the projective plane, Invent. Math. 42
1977, 63–91.
[33] W, Barth, Kummer surfaces associated with the Horrocks–Mumford bundle, Journées de Géométrie Algébrique d'Angers, juillet 1979 (A. Beauville, ed.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, pp. 29–48.
[34] W, Barth, Irreducibility of the space of mathematical instanton bundles withrank 2 and c2 = 4, Math. Ann. 258 (1981), 81–106.
[35] W, Barth, K, Hulek, and R, Moore, Shioda's modular surface S(5) and theHorrocks–Mumford bundle, Vector bundles on algebraic varieties (Bombay 1984) (M. F. Atiyah et al., ed.), Oxford University Press, 1987, pp. 35–106.
[36] W, Barth and R, Moore, Geometry in the space of Horrocks–Mumford surfaces, Topology 28 (1989), 231–245.
[37] L. B, Beasley, Spaces of matrices of equal rank, Linear Algebra Appl. 38 (1981), 227–237.
[38] A. A, Beilinson, Coherent sheaves on Pn and problems of linear algebra, Funct. Anal. Appl. 12 (1978), 214–216.
[39] D. J, Benson, Representations and cohomology I: Basic representation theory offinite groups and associative algebras, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, 1991, reprinted in paperback, 1998.
[40] D. J, Benson, Representations and cohomology II: Cohomology of groups andmodules, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, 1991, reprinted in paperback, 1998.
[41] D. J, Benson, Modules for elementary abelian p-groups, Proceedings of the ICM (Hyderabad 2010), vol. II, 2010, pp. 113–124.
[42] D. J, Benson, Modules of constant Jordan type with one non-projective block, Algebras and Representation Theory 13 (2010), 315–318.
[43] D. J, Benson, Modules of constant Jordan type with small non-projective part, Algebras and Representation Theory 16 (2013), 29–33.
[44] D. J, Benson, Modules of constant Jordan type and a conjecture of Rickard, J. Algebra 398 (2014), 343–349.
[45] D. J, Benson, Modules for elementary abelian groups and hypersurface singularities, Commutative Algebra and Noncommutative Algebraic Geometry II, MSRI Publications, vol. 68, Cambridge University Press, 2015, pp. 19–42.
[46] D. J, Benson and J. F, Carlson, Diagrammatic methods for modular representationsand cohomology, Commun. in Algebra 15 (1987), 53–121.
[47] D. J, Benson and J. F, Carlson, Projective resolutions and Poincaré dualitycomplexes, Trans. Amer. Math. Soc. 132 (1994), 447–488.
[48] D. J, Benson, J. F, Carlson, and J, Rickard, Complexity and varieties for infinitelygenerated modules, II, Math. Proc. Camb. Phil. Soc. 120 (1996), 597–615.
[49] D. J, Benson, J. F, Carlson, and J, Rickard, Thick subcategories of the stablemodule category, Fundamenta Mathematicae 153 (1997), 59–80.
[50] D. J, Benson and E, Green, Nonprincipal blocks with one simple module, Quarterly Journal of Math (Oxford) 55 (2004), 1–11.
[51] D. J, Benson, S. B, Iyengar, and H, Krause, Stratifying modular representationsof finite groups, Ann. of Math. 174 (2011), 1643–1684.
[52] D. J, Benson and R, Kessar, Blocks inequivalent to their Frobenius twists, J. Algebra 315 (2007), 588–599.
[53] D. J, Benson and J, Pevtsova, A realization theorem for modules of constantJordan type and vector bundles, Trans. Amer. Math. Soc. 364 (2012), 6459–6478.
[54] D. J, Benson and F, Reid, Modules with small Loewy length, J. Algebra 414
2014, 288–299.
[55] I. N, Bernstein, I. M, Gelfand, and S. I, Gelfand, Algebraic vector bundles on Pn and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12
1978, no.3, 66–67.
[56] A. I, Bondal and M. M, Kapranov, Homogeneous bundles, Helices and Vector Bundles, London Math. Soc. Lecture Note Series, vol. 148, Cambridge University Press, 1990, pp. 45–55.
[57] V. M, Bondarenko and Y. A, Drozd, Representation type of finite groups, (transl. from Russian) J. Soviet Math. 20 (1982), 2515–2528.
[58] V. M, Bondarenko and I. V, Lytvynchuk, The representation type of elementaryabelian p-groups with respect to the modules of constant Jordan type, Algebra and Discrete Mathematics 14
2012, no.1, 29–36.
[59] A, Boralevi, The Horrocks–Mumford bundle restricted to planes, Collect. Math. 58 (2007), 101–117.
[60] A, Boralevi, D, Faenzi, and E, Mezzetti, Linear spaces of matrices of constantrank and instanton bundles, Adv. in Math. 248 (2013), 895–920.
[61] C, Borcea, On desingularizated Horrocks–Mumford quintics, J. Reine & Angew. Math. 421 (1991), 23–41.
[62] A, Borel and J.-P., Serre, Le théorème de Riemann–Roch, Bull. Soc. Math. France 86 (1958), 97–136.
[63] W, Bosma, J, Cannon, and C, Playoust, The Magma algebra system, I. The userlanguage, J. Symbolic Comput. 24 (1997), 235–265.
[64] R, Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203–248.
[65] R. M, Bryant and M, Johnson, Adams operations on the Green ring of a cyclicgroup of prime-power order, J. Algebra 323 (2010), 2818–2833.
[66] R.-O, Buchweitz, Maximal Cohen–Macaulay modules and Tate cohomologyover Gorenstein rings, Unpublished preprint, 1986.
[67] R.-O, Buchweitz, G.-M., Greuel, and F.-O., Schreyer, Cohen–Macaulay moduleson hypersurface singularities II, Invent. Math. 88 (1987), 165–182.
[68] T, Bühler, Exact categories, Expo. Math. 28 (2010), 1–69.
[69] J, Burke and G, Stevenson, The derived category of a graded Gorenstein ring, Commutative Algebra and Noncommutative Algebraic Geometry II, MSRI Publications, vol. 68, Cambridge University Press, 2015, pp. 93–123.
[70] J, Burke and M. E, Walker, Matrix factorizations in higher codimension, Trans. Amer. Math. Soc. 367
2015, no.5, 3323–3370.
[71] J. F, Carlson, The modular representation ring of a cyclic 2-group, J. London Math. Soc. 11 (1975), 91–92.
[72] J. F, Carlson, Complexity and Krull dimension, Representations of Algebras, Puebla,Mexico, 1980, Lecture Notes in Mathematics, vol. 903, Springer-Verlag, Berlin/New York, 1981, pp. 62–67.
[73] J. F, Carlson, The complexity and varieties of modules, Integral representations and their applications, Oberwolfach, 1980, Lecture Notes in Mathematics, vol. 882, Springer-Verlag, Berlin/New York, 1981, pp. 415–422.
[74] J. F, Carlson, The varieties and the cohomology ring of a module, J. Algebra 85
1983, 104–143.
[75] J. F, Carlson, The variety of an indecomposable module is connected, Invent. Math. 77 (1984), 291–299.
[76] J. F, Carlson, The cohomology ring of a module, J. Pure & Applied Algebra 36
1985, 105–121.
[77] J. F, Carlson, Varieties for modules, The Arcata Conference on Representations of Finite Groups (Arcata, California, 1986), Proc. Symp. Pure Math., vol. 47, American Math. Society, 1987, pp. 37–44.
[78] J. F, Carlson, Varieties and modules of small dimension, Arch.Math. (Basel) 60
1993, 425–430.
[79] J. F, Carlson, Cohomology and induction from elementary abelian subgroups, Quarterly Journal of Math (Oxford) 51 (2000), 169–181.
[80] J. F, Carlson and E. M, Friedlander, Exact category of modules of constant Jordantype, Algebra, arithmetic and geometry: Manin Festschrift, Progr. in Math., vol. 269, Birkhäuser Verlag, Basel, 2009, pp. 259–281.
[81] J. F, Carlson, E. M, Friedlander, and J, Pevtsova, Modules of constant Jordantype, J. Reine & Angew. Math. 614 (2008), 191–234.
[82] J. F, Carlson, E. M, Friedlander, and A. A, Suslin, Modules for Z/p × Z/p, Comment. Math. Helvetici 86 (2011), 609–657.
[83] H, Cartan and S, Eilenberg, Homological algebra, Princeton Mathematical Series, no. 19, Princeton Univ. Press, 1956.
[84] P, Cascini, Weighted Tango bundles on Pn and their moduli spaces, Forum Math. 13 (2001), 251–260.
[85] A, Causa, R, Re, and T, Teodorescu, Some remarks on linear spaces of nilpotentmatrices, Le Matematiche
53(Suppl.) (1998), 23–32.
[86] C.-Y. J., Chan, A correspondence between Hilbert polynomials and Chernpolynomials over projective spaces, Illinois J. Math. 48 (2004), no.2, 451–462.
[87] X.-W., Chen, Unifying two results of Orlov on singularity categories, Abh. Math. Sem. Univ. Hamburg 80 (2010), no.2, 207–212.
[88] X.-W., Chen, The singularity category of an algebra with radical square zero, Doc. Math. 16 (2011), 921–936.
[89] L, Chouinard, Projectivity and relative projectivity over group rings, J. Pure & Applied Algebra 7 (1976), 278–302.
[90] W.-L., Chow, On equivalence classes of cycles in an algebraic variety, Ann. of Math. 64 (1956), 450–479.
[91] I, Coanda, On the Bernstein–Gel'fand–Gel'fand correspondence and a result of Eisenbud, Fløystad, and Schreyer, J. Math. Kyoto Univ. 43 (2003), 429–439.
[92] I, Coanda, Infinitely stably extendable vector bundles on projective space, Arch. Math. (Basel) 94 (2010), 539–545.
[93] I, Coanda and G, Trautmann, The splitting criterion of Kempf and the Babyloniantower theorem, Commun. in Algebra 34 (2006), 2485–2488.
[94] L, Costa and G, Ottaviani, Group actions on instanton bundles over P3, Math. Nachr. 246–247 (2002), 31–46.
[95] L, Costa and G, Ottaviani, Nondegenerate multidimensional matrices andinstanton bundles, Trans. Amer. Math. Soc. 355 (2003), 49–55.
[96] W.W, Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451–483.
[97] E. C, Dade, Endo-permutation modules over p-groups, I, Ann. of Math. 107
1978, 459–494.
[98] E. C, Dade, Endo-permutation modules over p-groups, II, Ann. of Math. 108
1978, 317–346.
[99] W, Decker, Das Horrocks–Mumford-Bündel und das Modul-Schema für stabile 2-Vektorbündel über P4 mit c1 = -1, c2 = 4, Math. Zeit. 188 (1984), 101–110.
[100] W, Decker, Stable rank 2 vector bundles with Chern-classes c1 = -1, c2 = 4, Math. Ann. 275 (1986), 481–500.
[101] W, Decker, N, Manolache, and F.-O., Schreyer, Geometry of the Horrocks bundleon P5, Complex projective geometry (G. Elligsrud et al., ed.), London Math. Soc. Lecture Note Series, vol. 179, Cambridge University Press, 1992, pp. 128–148.
[102] W, Decker and F.-O, Schreyer, On the uniqueness of the Horrocks–Mumfordbundle, Math. Ann. 273 (1986), 415–443.
[103] W, Decker and F.-O, Schreyer, Pullbacks of the Horrocks–Mumford bundle, J. Reine & Angew. Math. 382 (1987), 215–220.
[104] I, Dolgachev and M, Kapranov, Arrangements of hyperplanes and vectorbundles on Pn, Duke Math. J. 71 (1993), 633–664.
[105] S. R, Doty, The submodule structure of certain Weyl modules for groups of typeAn, J. Algebra 95 (1985), 373–383.
[106] P, Dowbor and H, Meltzer, Classical vector bundles and representations ofquivers, Bol. Soc. Mat. Mexicana 11
2005, no.2, 205–220.
[107] Y. A, Drozd, Tame and wild matrix problems, Representation Theory II, Lecture Notes in Mathematics, vol. 832, Springer-Verlag, Berlin/New York, 1980, pp. 242–258.
[108] L, Ein, Stable vector bundles on projective spaces in Char p > 0, Math. Ann. 254 (1980), 53–72.
[109] L, Ein, Some stable vector bundles on P4 and P5, J. Reine & Angew. Math. 337 (1982), 142–153.
[110] D, Eisenbud, Homological algebra on a complete intersection, with an applicationto group representations, Trans. Amer. Math. Soc. 260 (1980), 35–64.
[111] D, Eisenbud, G, Fløystad, and F.-O. Schreyer, Sheaf cohomology and free resolutionsover exterior algebras, Trans. Amer. Math. Soc. 355 (2003), 4397–4426.
[112] D, Eisenbud and J, Harris, Vector spaces of matrices of low rank, Adv. in Math. 70 (1988), 135–155.
[113] P, Ellia, Sur les fibrés uniformes de rang (n+1) sur Pn, Mém. Soc. Math. France (N.S.), vol. 7, Gauthier–Villars, 1982.
[114] G, Ellingsrud and A, Strømme, Stable rank-2 vector bundles on P3 with c1 = 0 and c2 = 3, Math. Ann. 255 (1981), 123–135.
[115] L, Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101
1961, 224–239.
[116] D, Faenzi, A geometric construction of Tango bundle on P5, Kodai Math. J. 27 (2004), 1–6.
[117] M. L, Fania and E, Mezzetti, Vector spaces of skew-symmetric matrices ofconstant rank, Linear Algebra Appl. 434 (2011), 2383–2403.
[118] R, Farnsteiner, Jordan types for indecomposable modules of finite groupschemes, J. Eur. Math. Soc. 16 (2014), 925–989.
[119] W, Feit, The representation theory of finite groups, North Holland, Amsterdam, 1982.
[120] G, Fløystad, Monads on projective spaces, Commun. in Algebra 28
2000, no.12, 5503–5516.
[121] G, Fløystad, Describing coherent sheaves on projective space, arXiv:math/0012263, 2001.
[122] R. M, Fossum, Invariants and Schur functors in characteristic p > 0, Young tableaux and Schur functors in algebra and geometry (Torun, 1980), Astérisque, vol. 87, Soc. Math. France, 1981, pp. 85–95.
[123] R. M, Fossum, Decompositions revisited, Séminaire d'Algèbre Paul Dubreil and Marie-Paule Malliavin, 34ème Année (Paris, 1981), Lecture Notes in Mathematics, vol. 924, Springer-Verlag, Berlin/New York, 1982, pp. 260–295.
[124] E. M, Friedlander and J, Pevtsova, Representation theoretic support spaces forfinite group schemes, Amer. J. Math. 127 (2005), 379–420, correction: AJM 128
2006, 1067–1068.
[125] E. M, Friedlander and J, Pevtsova, !-supports for modules for finite groupsschemes, Duke Math. J. 139 (2007), 317–368.
[126] E. M, Friedlander and J, Pevtsova, Generalized support varieties for finite groupschemes, Documenta Math. Extra Volume Suslin (2010), 197–222.
[127] E. M, Friedlander and J, Pevtsova, Constructions for infinitesimal groupschemes, Trans. Amer. Math. Soc. 363 (2011), 6007–6061.
[128] E. M, Friedlander, J, Pevtsova, and A, Suslin, Generic and maximal Jordantypes, Invent. Math. 168 (2007), 485–522.
[129] W, Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, Band 2, Springer-Verlag, Berlin/New York, 1984.
[130] M, Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices I, Amer. J. Math. 80 (1958), 614–622.
[131] M, Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices III, Ann. of Math. 70 (1959), 167–205.
[132] M, Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices II, Duke Math. J. 27 (1960), 21–31.
[133] M, Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961), 324–348.
[134] M, Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices IV, Ann. of Math. 75 (1962), 382–418.
[135] S. P, Glasby, C. E, Praeger, and B, Xia, Decomposing modular tensor products:'Jordan partitions', their parts and p-parts, Israel J. Math. 209 (2015), 215–233.
[136] E. S, Golod, The cohomology ring of a finite p-group, Dokl. Akad. Nauk. SSSR 125 (1959), 703–706, (Russian).
[137] A. L, Gorodentsev and A. N, Rudakov, Exceptional vector bundles on projectivespaces, Duke Math. J. 54 (1987), 115–130.
[138] J. A, Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607–619.
[139] J. P. C, Greenlees, Commutative algebra in group cohomology, J. Pure & Applied Algebra 98 (1995), 151–162.
[140] A, Grothendieck, Sur la classification des fibrés holomorphes sur la sphère deRiemann, Amer. J. Math. 79 (1957), 121–138.
[141] A, Grothendieck, Éléments de géométrie algébrique I, Publ.Math. IHES (1960), no.4, 1–228.
[142] A, Grothendieck, Éléments de géométrie algébrique II, Publ. Math. IHES (1961), no.8, 1–222.
[143] T. A, Hannula, T. G, Ralley, and I, Reiner, Modular representation algebras, Bull. Amer. Math. Soc. 73 (1967), 100–101.
[144] D, Happel, Triangulated categories in the representation theory of finite dimensionalalgebras, London Math. Soc. Lecture Note Series, vol. 119, Cambridge University Press, 1988.
[145] R, Hartshorne, Complete intersections and connectedness, Amer. J. Math. 84
1962, 497–508.
[146] R, Hartshorne, Residues and duality, Lecture Notes in Mathematics, vol. 20, Springer-Verlag, Berlin/New York, 1966.
[147] R, Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, Berlin/New York, 1977.
[148] R, Hartshorne, Stable vector bundles and instantons, Comm. Math. Phys. 59
1978, 1–15.
[149] R, Hartshorne, Stable vector bundles of rank 2 on P3, Math. Ann. 238 (1978), 229–280.
[150] R, Hartshorne, Algebraic vector bundles on projective spaces: a problem list, Topology 18 (1979), 117–128.
[151] J, Herzog and D, Popescu, Thom–Sebastiani problems for maximal Cohen–Macaulay modules, Math. Ann. 309 (1997), 677–700.
[152] J, Herzog, B, Ulrich, and J, Backelin, Linear maximal Cohen–Macaulay modulesover strict complete intersections, J. Pure & Applied Algebra 71 (1991), 187–202.
[153] W, Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1–32.
[154] L, Hille, Homogeneous vector bundles and Koszul algebras, Math. Nachr. 191
1998, 189–195.
[155] F, Himstedt and P, Symonds, Exterior and symmetric powers of modules forcyclic 2-groups, J. Algebra 410 (2014), 393–420.
[156] F, Hirzebruch, Topological methods in algebraic geometry, Grundlehren der mathematischen Wissenschaften, vol. 131, Springer-Verlag, Berlin/New York, 1978.
[157] N, Hoffmann, Independent parameters for special instanton bundles on P2 n+1, Journal of Geometry and Physics 61 (2011), 2321–2330.
[158] M, Holloway and R, Kessar, Quantum complete rings and blocks with onesimple module, Quarterly Journal of Math (Oxford) 56 (2005), 209–221.
[159] G, Horrocks, A construction of locally free sheaves, Topology 7 (1968), 117– 120.
[160] G, Horrocks, Examples of rank three vector bundles on five dimensionalprojective space, J. London Math. Soc. 18 (1978), 15–27.
[161] G, Horrocks and D, Mumford, A rank 2 vector bundle on P4 with 15, 000 symmetries, Topology 12 (1973), 63–81.
[162] I, Hughes and G, Kemper, Symmetric powers of modular representations,Hilbert series and degree bounds, Commun. in Algebra 28 (2000), 2059–2088.
[163] K, Hulek, Geometry of the Horrocks–Mumford bundle, Algebraic geometry (Bowdoin 1985) (S. J. Bloch, ed.), Proc. Symp. Pure Math., vol. 46, Part II, American Math. Society, 1987, pp. 69–85.
[164] K, Hulek, The Horrocks–Mumford bundle, Vector bundles in algebraic geometry (Durham 1993), London Math. Soc. Lecture Note Series, vol. 208, Cambridge University Press, 1995, pp. 139–177.
[165] K, Hulek and A. Van de Ven, The Horrocks–Mumford bundle and the Ferrandconstruction, Manuscripta Math. 50 (1985), 313–335.
[166] B, Ilic and J. M, Landsberg, On symmetric degeneracy loci, spaces of symmetricmatrices of constant rank and dual varieties, Math. Ann. 314 (1999), 159–174.
[167] S., Iyengar (ed.), Twenty-four hours of local cohomology, Graduate Studies in Mathematics, American Math. Society, 2008.
[168] S, Iyengar and R, Takahashi, Annihilation of cohomology and strong generationof module categories, Int. Math. Res. Not. 2016
2016, no.2, 499–535.
[169] S, Jackowski and J. E, McClure, Homotopy decomposition of classifying spacesvia elementary abelian subgroups, Topology 31 (1992), 113–132.
[170] K, Jaczewski, M, Szurek, and J, Wisniewski, Geometry of the Tango bundle, Proceedings of the conference on algebraic geometry (Berlin, 1985) (Leipzig), Teubner-Texte Math., vol. 92, Teubner, 1986, pp. 177–185.
[171] G. D, James and A, Kerber, The representation theory of the symmetric group, Cambridge University Press, 1981.
[172] H, Kaji, Example of σ-transition matrices defining the Horrocks–Mumfordbundle, Tokyo J. Math. 12 (1989), 21–32.
[173] S. O, Kaptanoglu, Structure and detection theorems for k[C2 × C2]-modules, Rend. Sem. Mat. Univ. Padova 123 (2010), 169–189.
[174] S. O, Kaptanoglu, p-power points and modules of constant p-power Jordantype, Commun. in Algebra 39 (2011), 3781–3800.
[175] B, Keller, Chain complexes and stable categories,Manuscripta Math. 67 (1990), 379–417.
[176] B, Keller and D, Vossieck, Sous les catégories dérivées, Comptes Rendus Acad. Sci. Paris, Série I 305 (1987), 225–228.
[177] G, Kempf, A criterion for the splitting of a vector bundle, Forum Math. 2 (1990), 477–480.
[178] H, Knörrer, Cohen–Macaulay modules on hypersurface singularities I, Invent. Math. 80 (1987), 153–164.
[179] F. M, Kouwenhoven, The λ-structure of the Green ring of cyclic p-groups, The Arcata Conference on the Representation Theory of Finite Groups (P. Fong, ed.), Proc. Symp. Pure Math., vol. 47, 1987, pp. 451–466.
[180] D, Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431– 449.
[181] O, Kroll, Complexity and elementary abelian p-groups, J. Algebra 88 (1984), 155–172.
[182] N. M, Kumar, Construction of rank two victor bundles on P4 in positivecharacteristic, Invent. Math. 130 (1997), 277–286.
[183] N. M, Kumar, C, Peterson, and A. P., Rao, Construction of low rank vectorbundles on P4 and P5, J. Alg. Geometry
11 (2002), 203–217.
[184] N. M, Kumar, C, Peterson, and A. P., Rao, Degenerating families of rank twobundles, Proc. Amer. Math. Soc. 131 (2003), 3681–3688.
[185] N. M, Kumar, C, Peterson, and A. P., Rao, Monads on projective spaces, Manuscripta Math. 112 (2003), 183–189.
[186] E, Lee, A modular quintic Calabi–Yau threefold of level 55, Canadian J. Math. 63 (2011), 616–633.
[187] K. J, Lim, The varieties for some Specht modules, J. Algebra
321 (2009), 2287– 2301.
[188] M, Linckelmann, Quillen stratification for block varieties, J. Pure & Applied Algebra 172 (2002), 257–270.
[189] I. G, Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1995, 2ed.
[190] S., Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, Berlin/New York, 1971.
[191] L, Manivel and E, Mezzetti, On linear spaces of skew-symmetric matrices ofconstant rank, Manuscripta Math. 117 (2005), 319–331.
[192] J. D, McFall, How to compute the elementary divisors of the tensor product oftwo matrices, Linear & Multilinear Algebra 7
1979, no.3, 193–201.
[193] J. D, McFall, On elementary divisors of the tensor product of two matrices, Linear Algebra Appl. 33 (1980), 67–86.
[194] R. M, Miro-Roig and J. A, Orus-Lacort, On the smoothness of the moduli spaceof mathematical instanton bundles, Compositio Math. 105 (1997), 109–119.
[195] T, Muir and W. H, Metzler, A treatise on the theory of determinants, 2ed, Dover, 1960.
[196] S.-Y., Nam and Y.-T., Oh, λ-ring structure of the Green ring of a cyclic p-group, J. Algebra 338 (2011), 92–113.
[197] S.-Y., Nam and Y.-T., Oh, Symmetric powers of the p + 1-dimensional indecomposablemodule of a cyclic p-group and the λ-structure of its Green ring, J. Algebra 368 (2012), 75–91.
[198] A, Neeman, Algebraic and analytic geometry, Cambridge University Press, 2007.
[199] C. W, Norman, On the Jordan form of the tensor product over fields of primecharacteristic, Linear & Multilinear Algebra 38 (1995), 351–371.
[200] C. W, Norman, On Jordan bases for the tensor product and Kronecker sumand their elementary divisors over fields of prime characteristic, Linear & Multilinear Algebra 56 (2008), 415–451.
[201] J, O'Halloran, A simple proof of the Gerstenhaber–Hesselink theorem fornilpotent matrices, Commun. in Algebra 15 (1987), 2017–2023.
[202] C, Okonek, M, Schneider, and H, Spindler, Vector bundles on complex projectivespaces, Birkhäuser Verlag, Basel, 1980; 3ed. 2011.
[203] C, Okonek and H, Spindler, Mathematical instanton bundles on P2n+1, J. Reine & Angew. Math. 364 (1986), 35–50.
[204] D. O, Orlov, Triangulated categories of singularities and equivalences betweenLandau–Ginzburg models, Sbornik Math 197 (2006), 1827–1840.
[205] G, Ottaviani and E, Rubei, Quivers and the cohomology of homogeneous vectorbundles, Duke Math. J. 132 (2006), 459–508.
[206] D. G, Quillen, The spectrum of an equivariant cohomology ring, I, Ann. of Math. 94 (1971), 549–572.
[207] D. G, Quillen, The spectrum of an equivariant cohomology ring, II, Ann. of Math. 94 (1971), 573–602.
[208] D. G, Quillen, Higher algebraic K-theory I, Algebraic K-theory I: Higher K-theories (H. Bass, ed.), Lecture Notes in Mathematics, vol. 341, Springer- Verlag, Berlin/New York, 1973, pp. 85–147.
[209] D. G, Quillen, Projective modules over polynomial rings, Invent. Math. 36
1976, 167–171.
[210] D. G, Quillen and B. B, Venkov, Cohomology of finite groups and elementaryabelian subgroups, Topology 11 (1972), 317–318.
[211] T, Ralley, Decomposition of products of modular representations, J. London Math. Soc. 44 (1969), 480–484.
[212] A. P, Rao, A note on cohomology modules of rank two bundles, J. Algebra 86
1984, 23–34.
[213] A. P, Rao, Mathematical instantons in characteristic two, Compositio Math. 119
1999, 169–184.
[214] F, Reid, Varieties for modules of small dimension, Ph.D. thesis, University of Aberdeen, 2014.
[215] J.-C, Renaud, The characters and structure of a class of modular representationalgebras of cyclic p-groups, J. Austral. Math. Soc. 26 (1978), 410–418.
[216] J.-C, Renaud, The decomposition of products in the modular representation ringof a cyclic group of prime power order, J. Algebra 58 (1979), 1–11.
[217] J.-C, Renaud, On modular representation algebras and a class of matrixalgebras, J. Austral. Math. Soc. 33 (1982), 351–355.
[218] J.-C, Renaud, Recurrence relations in a modular representation algebra, Bull. Austral. Math. Soc. 26 (1982), 215–219.
[219] J, Rickard, Derived categories and stable equivalence, J. Pure & Applied Algebra 61 (1989), 303–317.
[220] C. M, Ringel, The representation type of local algebras, Representations of Algebras, Lecture Notes in Mathematics, vol. 488, Springer-Verlag, Berlin/New York, 1974.
[221] A. N, Rudakov, The Markov numbers and exceptional bundles on P2, Izvestiya
32 (1989), 99–112.
[222] E, Sato, On the decomposability of infinitely extendable vector bundles onprojective spaces and Grassmann varieties, J. Math. Kyoto Univ. 17 (1977), 127–150.
[223] H, Schoutens, Projective dimension and the singular locus, Commun. in Algebra 31
2003, no.1, 217–239.
[224] J.-P., Serre, Faisceaux algébriques cohérents, Ann. of Math. 61
1955, no.2, 197–278.
[225] J.-P., Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955–1956), 1–42.
[226] J.-P., Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot (1958), Fasc. 2, Exp. 23.
[227] I. R, Shafarevich, Basic algebraic geometry, Springer-Verlag, Berlin/New York, 1977.
[228] B, Srinivasan, The modular representation ring of a cyclic p-group, Proc. London Math. Soc. 14 (1964), 677–688.
[229] Robert, Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain, 1962, pp. 113–127.
[230] A. A, Suslin, Projective modules over polynomial rings are free (Russian), Dokl. Akad. Nauk SSSR 229 (1976), 1063–1066.
[231] J, Sylvester, On the dimension of spaces of linear transformations satisfyingrank conditions, Linear Algebra Appl. 78 (1986), 1–10.
[232] P, Symonds, The complexity of a module and elementary abelian subgroups: ageometric approach, Proc. Amer. Math. Soc. 113 (1991), 27–29.
[233] P, Symonds, Cyclic group actions on polynomial rings, Bull. London Math. Soc. 39 (2007), 181–188.
[234] H, Tango, An example of indecomposable vector bundle of rank n - 1 on Pn, J. Math. Kyoto Univ. 16 (1976), 137–141.
[235] H, Tango, On morphisms from projective space Pn to the Grassmann variety Gr(n, d), J. Math. Kyoto Univ. 16 (1976), 201–207.
[236] H, Tango, On vector bundles on Pn which have σ-transition matrices, Tokyo J. Math. 16 (1993), 1–29.
[237] J, Tate, Homology of Noetherian rings and local rings, Illinois J.Math. 1 (1957), 14–27.
[238] A. N, Tyurin, Finite dimensional vector bundles over infinite varieties, Math. USSR Izv. 10 (1976), 1187–1204.
[239] A. N, Tyurin, Collected works I: Vector bundles, Universitätsverlag Göttingen, 2008, F. Bogomolov et al., eds.
[240] V. K, Vedernikov, A family of rank-2 mathematical instanton bundles on P3, Publ. RIMS, Kyoto Univ. 33 (1997), 573–598.
[241] A. Van de, Ven, On uniform vector bundles, Math. Ann. 195 (1972), 245–248.
[242] B. B, Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk. SSSR 127 (1959), 943–944.
[243] P. J, Webb, Bounding the ranks of ZG-modules by their restrictions to elementaryabelian subgroups, J. Pure & Applied Algebra 23 (1982), 311–318.
[244] D. L, Wehlau, Invariants for the modular cyclic group of prime order viaclassical invariant theory, J. Eur. Math. Soc. 15 (2013), 775–803.
[245] R, Westwick, Spaces of linear transformations of equal rank, Linear Algebra Appl. 5 (1972), 49–64.
[246] R, Westwick, Spaces of matrices of fixed rank, Linear & Multilinear Algebra 20
1987, 171–174.
[247] R, Westwick, Examples of constant rank spaces, Linear & Multilinear Algebra 28 (1990), 155–174.
[248] R, Westwick, Spaces of matrices of fixed rank II, Linear Algebra Appl. 235
1996, 163–169.
[249] K, Wolffhardt, The Hochschild homology of complete intersections, Trans. Amer. Math. Soc. 171 (1972), 51–66.
[250] J, Worch, Categories of modules for elementary abelian p-groups and generalizedBeilinson algebras, J. London Math. Soc. 88 (2013), 649–668.
[251] Y, Yoshino, Cohen–Macaulay modules over Cohen–Macaulay rings, London Math. Soc. Lecture Note Series, vol. 146, Cambridge University Press, 1990.