Skip to main content Accessibility help
×
  • Cited by 3
Publisher:
Cambridge University Press
Online publication date:
November 2017
Print publication year:
2017
Online ISBN:
9781316650394

Book description

This original text develops a deep, conceptual understanding of thermal physics, highlighting the important links between thermodynamics and statistical physics, and examining how thermal physics fits within physics as a whole, from an empirical perspective. The first part of the book is devoted to elementary, mesoscopic topics such as Brownian motion, which leads to intuitive uses of large deviation theory, one of the pillars of modern probability theory. The book then introduces the key concepts behind statistical thermodynamics, and the final part describes more advanced and applied topics from thermal physics such as phase transitions and critical phenomena. This important subject is presented from a fresh perspective and in a highly pedagogical manner, with numerous worked examples and relevant cultural side notes throughout, making it ideal as either a textbook for advanced thermal physics courses or for self-study by undergraduate and graduate students in physics and engineering.

Reviews

'This is a delightful book quite different from most textbooks. It will be enjoyed by teachers, students and researchers.'

Joel Lebowitz - Rutgers University

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


Bibliography
Gallavotti, G. (1999). Statistical Mechanics: A Short Treatise. Berlin Google Scholar: Springer.
Kubo, R., Ichimura, H., and Hashitsume, N. (1961). Thermodynamics and Statistical Mechanics. Tokyo Google Scholar: Shokabo.
Landau, L. D. and Lifshitz, E. M. (2013). Statistical Physics. Part 1. 3rd edition. Oxford Google Scholar: Butterworth-Heinemann.
Nakano, H. and Kimura, H. (1988). Statistical Thermodynamics of Phase Transitions. Tokyo Google Scholar: Asakura Shoten.
Peliti, L. (2011). Statistical Mechanics in a Nutshell. Princeton Google Scholar: Princeton University Press.
Tasaki, H. (2000). Thermodynamics. Tokyo Google Scholar: Baifukan.
Tasaki, H. (2008). Statistical Mechanics I. Tokyo Google Scholar: Baifukan.
Tasaki, H. (2008). Statistical Mechanics II. Tokyo Google Scholar: Baifukan.
Tasaki, H. and Hara, T. (2015). Mathematics of Phase Transitions and Critical Phenomena. Tokyo Google Scholar: Kyoritsu Publ.
Shimizu, A. (2007). Principles of Thermodynamics. Tokyo Google Scholar: University of Tokyo Press.
Akhiezer, N. I. and Glazman, I. M. (2013). Theory of Linear Operators in Hilbert Space. Dover Books on Mathematics. Mineola, NY Google Scholar: Dover Publications.
Anderson, P. W. (1984). Basic Notions of Condensed Matter Physics. Boulder Google Scholar: Westview Press.
Andreas, B., Azuma, Y., Bartl, G. et al. (2011). Determination of the Avogadro constant by counting the atoms in a Si crystal, Physics Review Letters, 106 Google Scholar (3): 030801.
Berryman, S. (2011 Google Scholar). Ancient Atomism. In The Stanford Encyclopedia of Philosophy. (Winter 2011 Edition). ed. E. N. Zalta, available online at http://plato.stanford.edu/ archives/win2011/entries/atomism-ancient/Bionumbers (the database of useful biological numbers) available online at http://bionumbers.hms.harvard.edu/default.aspx.
Boltzmann, L. (1877). Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechinung respective den Sätzen über Wärmegleichgewicht, Wiener Berichte, 76 Google Scholar, 373–435.
Borovkov, A. A., Golovanov, P. P., and Ya Kozlov, V. et al. (1969). Ivan Nikolaevich Sanov (Obituary), Russian Mathematical Surveys, 24 Google Scholar, 4, 159.
Braun, K. F. (1888). Über einen allgemeinen qualitativen Satz für Zustandsanderumgen nebst einigen sick anschliessenden Bemerkungen. insbesondere über nicht eindeutige Systeme, Annalen der Physik, 269 Google Scholar, 337–353.
Broda, E. (1955). Ludwig Boltzmann. Mensch, Physiker, Philosoph. Wien Google Scholar: F. Deuticke.
Brown, P. C., Roediger III, H. L. and McDaniel, M. A. (2014). Make it Stick: The Science of Successful Learning. Cambridge (MA) CrossRef | Google Scholar: The Belknap Press.
Browne, J. (1995). Charles Darwin: Voyaging. New York Google Scholar: Knopf.
Browne, J. (2002). Charles Darwin: The Power of Place. New York Google Scholar: Knopf.
Brush, S. G. (1968a). On Mach's atomism, Synthese. 18 Google Scholar, 192–215.
Brush, S. G. (1968b). A history of random processes: I Brownian movement from Brown to Perrin, Archive of History of Exact Science, 5 Google Scholar, 1–36.
Brush, S. G. (1983). Statistical Physics and the Atomic Theory of Matter: From Boyle and Newton to Landau and Onsager. Princeton Google Scholar: Princeton University Press.
Cercignani, C. (2001). The rise of statistical mechanics, in Chance in Physics. Lecture Notes in Physics, 574, eds, J. Bricmont, D. Dürr, M. C. Gallavotti, G. C. Ghirardi, F. Petruccione, and N. Zanghi. Berlin Google Scholar: Springer. pp. 25–38.
Chaikin, P. M. and Lubensky, T. C. (1995). Principles of Condensed Matter Physics. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Cover, T. M. and King, R. C. (1978). A convergent gambling estimate of the entropy of English, IEEE Transactions Information Theory, 24 Google Scholar, 413–421.
Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. New York CrossRef | Google Scholar: Wiley.
Daussy, C. et al. (2007). Direct determination of the Boltzmann constant by an optical method, Physical Review Letters, 98 Google Scholar, 250801.
de Heer, J. (1957). The principle of le Chatelier and Braun, Journal of Chemical Education, 34 Google Scholar, 375–380.
Deng, Y. and Blöte, H. W. J. (2003). Simultaneous analysis of several models in the threedimensional Ising universality class, Physical Review E, 68 Google Scholar, 036125 (9 pages).
Dirac, P. A. M. (1982). The Principles of Quantum Mechanics. Oxford Google Scholar: Clarendon Press.
Durrett, R. (1991). Probability: Theory and Examples. Pacific Grove Google Scholar: Wadsworth & Brooks/Cole.
Ebbinghaus, H.-D. (2007). Ernst Zermelo: An Approach to his Life and Work. Berlin Google Scholar: Springer.
Einstein, A. (1903). Eine Theorie der Grundlagen der Thermodynamik, Annalen der Physik, 316 Google Scholar, 170–187.
Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Warme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, 17 Google Scholar, 549–560.
Einstein, A. (1910). Theorie der Opaleszenz von homogenen Flüssigkeitsgemischen in der Nähe des kritischen Zustandes, Annalen der Physik, 33 Google Scholar, 1275–1298.
Einstein, A. (1917). Zur Quantentheorie der Strahlung, Physikalisches Zeitschrift, 18 Google Scholar, 121–128.
Essam, J.W. and Sykes, M. F. (1963). The crystal statistics of the diamond lattice, Physica, 29 Google Scholar, 378–388.
Feller, W. (1957). An Introduction to Probability Theory and its Applications. Volume 1. New York Google Scholar: Wiley.
Feller, W. (1971). An Introduction to Probability Theory and its Applications. Volume 2. New York Google Scholar: Wiley.
Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics. New Haven Google Scholar: Yale University Press.
Girardeau, M. D. and Mazo, R. M. (1973). Variational methods in statistical mechanics, in Advances in Chemical Physics. vol. 24, eds, I. Prigogine and S. A. Rice, New York Google Scholar: Academic Press, pp. 187–255.
Golomb, S. W., Berlekamp, E. R., Cover, T. M. et al. (2002). Claude Elwood Shannon (1916–2002). Notices of American Mathematical Society, 49 Google Scholar, 8–16.
Graham, J. B. Aguilar, N., Dudley, R., and Gans, C. (1995). Implication of the late Paleozoic oxygen pulse for physiology and evolution. Nature, 375 CrossRef | Google Scholar, 117–120.
Guggenheim, E. A. (1945). The principle of corresponding states, Journal of Chemical Physics, 13 Google Scholar, 254–261.
Haag, R. (1996). Local Quantum Physics: Fields, Particles, Algebras. Second revised and enlarged edition, Berlin CrossRef | Google Scholar: Springer.
Havil, J. (2003). Gamma: Exploring Euler's Constant. Princeton Google Scholar: Princeton University Press.
Israel, R. B. (1979). Convexity in the Theory of Lattice Gases. Princeton Google Scholar: Princeton University Press.
Jarzynski, C. (1997). Nonequilibrium equality for free energy differences, Physical Review Letters, 78 Google Scholar, 2690–2693.
Jarzynski, C. (2004). Nonequilibrium work theorem for a system strongly coupled to a thermal environment, Journal of Statistical Mechanics, 2004 Google Scholar. P09005.
Jeans, J. (1952). An Introduction to the Kinetic Theory of Gases. Cambridge Google Scholar: Cambridge University Press.
Kadanoff, L. P. (1966). Scaling Laws for Ising Models near Tc. Physics, 2 Google Scholar, 263–272.
Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. (2011). Bose–Einstein condensation of photons in an optical microcavity, Nature, 468 Google Scholar, 545–548.
Kolmogorov, A. N. (2004; reprint of a book chapter in 1956). The theory of probability, Theory of Probability and its Applications, 48 Google Scholar, 191–200.
Konvalina., J. (2000). A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients. American Mathematical Monthly, 107 CrossRef | Google Scholar, 901– 910.
Körner, T. W. (1988). Fourier Analysis. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Landau, L. D. and Lifshitz, E. M. (1982). Classical Mechanics. 3rd edition. Oxford Google Scholar: Butterworth-Heinemann.
Landau, L. D. and Lifshitz, E. M. (1987). Fluid Mechanics. 2nd edition. Oxford Google Scholar: Butterworth-Heinemann.
Landsberg, P. T. (1972). The fourth law of thermodynamics, Nature, 238 Google Scholar, 229–231.
Langevin, P. (1908). Sur la théorie du mouvement brownien, Comptes Rendus de l'Académie des Sciences, 146 Google Scholar, 530–533.
Le Chatelier, H. L. (1884). Sur un énoncé général des lois des équilibres chimiques. Comptes Rendus de l'Académie des Sciences, 99 Google Scholar, 786–789.
Lemons, D. S. and Gythiel, A. (1997). Paul Langevin's 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien.” Comptes Rendus de l'Académie des Sciences. 146, 530–533 (1908], American Journal of Physics, 65 Google Scholar, 1079– 1081.
Lenard, A. (1978). Thermodynamical proof of the Gibbs formula for elementary quantum systems, Journal of Statistical Physics, 19 Google Scholar, 575–586.
Lenker, T. D. (1979). Caratheodory's concept of temperature, Synthese, 42, 167–171 (1979 Google Scholar).
Lieb, E. H. and Seiringer, R. (2010). The Stability of Matter in Quantum Mechanics. Cambridge Google Scholar: Cambridge University Press.
Lindley, D. (2001). Boltzmann's Atom: The Great Debate that Launched a Revolution in Physics. New York Google Scholar: The Free Press.
Longuet-Higgins, C. and Fisher, M. E. (1995). Lars Onsager: November 27. 1903-October 5. 1976, Journal of Statistical Physics, 78 Google Scholar, 605–640.
Maxwell, J. C. (1860). Illustrations of the dynamical theory of gases, Philosophical Magazine. 19 19–32; 20 Google Scholar, 21–37.
McKean, H. (2014). Probability: The Classical Limit Theorems. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Mendelssohn, K. (1973). The World of Walther Nernst: The Rise and Fall of German Science. CrossRef | Google Scholar 1864–1941 (ebook form from Plunket Lake Press, 2015).
Meulders, M. (2010). Helmholtz from Enlightenment to Neuroscience. Boston Google Scholar: MIT Press.
Mortici, C. (2011). On Gosper's formula for the gamma function, Journal of Mathematical Inequalities, 5 Google Scholar, 611–614.
Mukamel, S. (2003). Quantum extension of the Jarzynski relation: Analogy with stochastic dephasing, Physical Review Letters, 90 Google Scholar, 170604.
Niemeijer, Th. and van Leeuwen, J. M. J. (1973). Wilson theory for spin systems on a triangular lattice, Physical Review Letters, 31 Google Scholar, 1411–1414.
Oono, Y. (1989). Large deviation and statistical physics, Progress of Theoretical Physics Supplement, 99 Google Scholar, 165–205.
Oono, Y. (2013). The Nonlinear World. Tokyo CrossRef | Google Scholar: Springer.
Perrin, J. (1916). Atoms. London Google Scholar: Constable. translated by D. L. Hammick. Available online at: https://archive.org/details/atomsper00perruoft.
Priestley, H. A. (1990). Introduction to Complex Analysis. Oxford Google Scholar: Oxford University Press.
Rao, M. and Stetker, H. (1991). Complex Analysis: An Invitation. Singapore CrossRef | Google Scholar: World Scientific.
Rockafellar, R. R. (1970). Convex Analysis. Princeton CrossRef | Google Scholar: Princeton University Press.(since 1997 in the series Princeton Landmarks in Mathematics).
Rosenhouse, J. (2009). The Monty Hall Problem. Oxford Google Scholar: Oxford University Press.
Ruelle, D. (1999). Statistical Mechanics. Singapore CrossRef | Google Scholar: World Scientific (original 1969).
Ruelle, D. (2004). Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge CrossRef | Google Scholar: Cambridge University Press.(Cambridge Mathematical Library).
Russell, B. (1945). A History of Western Philosophy. London Google Scholar: Simon and Schuster.
Sagawa, T. (2013). Thermodynamics of Information Processing in Small Systems. Tokyo CrossRef | Google Scholar: Springer.
Sagawa, T. and Ueda, M. (2008). Second law of thermodynamics with discrete quantum feedback control, Physical Review Letters, 100 Google Scholar, 080403.
Sagawa, T. and Ueda, M. (2009). Minimal energy cost for thermodynamic information processing: Measurement and information erasure, Physical Review Letters, 102 Google Scholar, 250602.
Saito, N. (1967). Polymer Physics. Tokyo Google Scholar: Shokabo.
Sanov, I. N. (1957). On the probability of large deviations of random variables. Matematicheskii Sbornik, 42 Google Scholar, 11–44.
Schlosshauser, M. and Fine, A. (2005). On Zurek's derivation of the Born rule, Foundation of Physics, 35 Google Scholar, 197–213.
Seneta, E. (2013). Nonnegative Matrices and Markov Chains. 2nd edition Berlin Google Scholar: Springer.
Sender, R., Fuchs, S., and Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans, Cell, 164 Google Scholar, 337–340.
Simon, B. (2015). A Comprehensive Course in Analysis, Part I Real Analysis. Providence Google Scholar: AMS, p. 384.
Sinai, Ya. G. (1982). Theory of Phase Transitions: Rigorous Results. Oxford Google Scholar: Pergamon Press.
Slovej, J. P. (2011). The stability of matter in quantum mechanics, by Elliott H. Lieb and Robert Seiringer, Book review Bulletin of American Mathematical Society, 50 Google Scholar, 169–174.
Suksombat, S. Khafizov, R., Kozlov, A. et al. (2015). Structural dynamics of E. coli singlestranded DNA binding protein reveal DNA wrapping and unwrapping pathways, Elife, 25 CrossRef | Google Scholar: 4, 1–53, doi: 10.7554/eLife.08193.
Tasaki, H. (1998). From quantum dynamics to the canonical distribution: general picture and a rigorous example, Physical Review Letters, 80 Google Scholar, 1373–1376.
Theobald, D. L. (2011). On universal common ancestry: Sequence similarity, and phylogenetic structure: the sins of P-values and the virtues of Bayesian evidence. Biology Direct, 6 CrossRef | Google Scholar, 60 (25 pages).
Tombari, E., Ferrari, C., Salvetti, G. B., and Johari, G. (2005). Endothermic freezing on heating and exothermic melting on cooling, Journal of Chemical Physics, 123 Google Scholar, 051104.
Tourchette, H. (2009). The large deviation approach to statistical mechanics, Physics Report, 478 Google Scholar, 1–69.
Widom, B. (1965). Equation of state in the neighborhood of the critical point. Journal of Chemical Physics, 43 CrossRef | Google Scholar, 3898.
Williams, R. (2009 Google Scholar). September, 1911, the Sackur-Tetrode equation: how entropy met quantum mechanics, APS News: This Month in Physics History. September.
Yamamoto, Y. (2007–8). Historical Development of Thoughts of Heat Theory. Tokyo Google Scholar: Chikuma Shobo.
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical, Review of Modern Physics, 75 Google Scholar, 715–775.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 15605 *
Loading metrics...

Book summary page views

Total views: 8910 *
Loading metrics...

* Views captured on Cambridge Core between 24th November 2017 - 27th April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.