[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–58, 2008.
[2] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions. Dover, New York, 1972.
[3] A., Aitken. On Bernoulli's numerical solution of algebraic equations. Proc. Roy. Soc. Edinburgh, 46:289–305, 1926.
[4] A., Arce, J., Martinez-Argeitos, and A., Soto. VLE for water + ethanol + 1-octanol mixtures. Experimental measurements and correlations. Fluid Phase Equil., 122:117–129, 1996.
[5] L., Bairstow. Applied Aerodynamics. Longmans, Green, and Co., New York, 2nd edition, 1939.
[6] F., Bashforth and J. C., Adams. An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid. Cambridge University Press, 1883.
[7] H., Bateman. On a set of Kernels whose determinants form a Sturmian sequence. Bull. Am. Math. Soc., 18(4):175–179, 1912.
[8] F. L., Bauer. Optimally scaled matrices. Numer. Math., 5:73–87, 1963.
[9] F. L., Bauer. Computational graphs and rounding error. SIAM J. Num. Anal., 11(1):87–96, 1974.
[10] G. H., Behforooz. A comparison of the E(3) and not-a-knot cubic splines. Appl. Math. Comput., 72:219–223, 1995.
[11] G. H., Behforooz and N., Papamichael. End conditions for cubic spline interpolation. J. Inst. Maths. Applics., 23:355–366, 1979.
[12] E., Beltrami. On bilinear functions. Giornale di Matematiche, 11, 1893. English translation by D. Boley, 1995, published in 3rd International Workshop on SVD and Signal Processing, Aug. 96, Leuven, Belgium, Elsevier, 1996.
[13] C., Benoit. Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un systéme d'équations linéaires en nombre inférieur à celui des inconnues. Application de la méthode à la résolution d'un system déflni d'équations linéaires (procédé du Commandant Cholesky). Bull. Geodesique, 2:67–77, 1924.
[14] N., Berglund and B., Gentz. Beyond the Fokker-Planck equation: pathwise control of noisy bistable systems. J. Phys. A: Math. Gen., 35:2057–2091, 2002.
[15] J.-P., Berrut and L.N., Trefethen. Barycentric Lagrange interpolation. SIAM Rev., 46(31):501–517, 2004.
[16] M., Bhatti and P., Bracken. The calculation of integrals involving B-splines by means of recursion relations. Appl. Math. Comput., 172:91–100, 2006.
[17] A., Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
[18] F., Black and M., Scholes. The pricing of options and corporate liabilities. J. Pol. Econ., 81:637–654, 1973.
[19] G., Boole. A Treatise on the Calculus of Finite Differences. Macmillan and Co., London, 3rd edition, 1880.
[20] J., Boothroyd. Algorithm 27: Rearrange the elements of an array section according to a permutation of the subscripts. Comp. J., 10(2):310, 1967.
[21] M., Born and R., Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Phys., 84(20):457–484, 1927.
[22] G. E. P., Box and M. E., Muller. A note on the generation of random normal deviates. Ann. Math. Stat., 29(2):610–611, 1958.
[23] S. F., Boys. Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proc. Roy. Soc. London., 200A(1063):542–554, 1950.
[24] A., Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution of boundary-value problems. In H., Cabannes and R., Temam, editors, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Paris, 1972. Lecture notes in Physics 18, pages 82–89. Springer, New York, 1973.
[25] A., Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp., 31(138):333–390, 1977.
[26] W. L., Briggs, V. E., Henson, and S. F., McCormick. A Multigrid Tutorial. SIAM, 2nd edition, 2000.
[27] R., Brown. A brief account of microscopical observations made in the months of June, July, and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Magazine, 4(21):161–173, 1828.
[28] C. G., Broyden. The convergence of a class of double-rank minimization algorithms 1. General considerations. J. Inst. Math. Applics., 6:76–90, 1970.
[29] R., Bulirsch. Bemerkungen zur Romberg-integration. Numer. Math., 6:6–16, 1964.
[30] R., Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwert-problemen und Aufgaben der optimalen Steuerung. Report of the Carl-Cranz-Gesellschaft, Oberpfaffenhofen, Germany, 1971.
[31] R., Bulirsch and J., Stoer. Fehleräbschatzungen und extrapolation mit rationalen funktionen bie verfahren vom Richardsontypus. Numer. Math., 6:413–427, 1964.
[32] C. A., Cantrell. Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos. Chem. Phys., 8:5477–5487, 2008.
[33] G., Cardan. Artis Magnae, Sive de Regulis Algebraicis Liber Unus. J. Petreius, Nuremberg, 1545.
[34] A. L., Cauchy. Cours d'analyse de l'école royale polytechnique, 1821. In Œuvres Complètes d'Augustin Cauchy. series 2, Vol. 3. Gauthier-Villars, Paris, 1897.
[35] A. L., Cauchy. Résumé des leçons données a l'école royale polytechnique sur le calcul infinitésimal. In Œuvres Complétes d'Augustin Cauchy series. 2, Vol. 4. Gauthier-Villars, Paris, 1899.
[36] P., Chebyshev. Théorie des mécanismes connus sous le nom parallelogrammes. Mémoires des Savants Étrangers Présentes à l'Academie de Saint-Pétersbourg, 7:539–586, 1854.
[37] A. J., Chorin. Hermite expansions in Monte-Carlo computation. J. Comput. Phys., 8:472–482, 1971.
[38] E. B., Christoffel. Sur une classe particulière de fonctions entières et de fractions continues. Ann. Mat. Pura Appi., 8(2):1–10, 1877.
[39] C. W., Clenshaw. Chebyshev series for mathematical functions. In National Physical Laboratory Mathematical Tables, Vol. 5. Her Majesty's Stationery Office, London, 1962.
[40] P., Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAMJ. Sci. Stat. Comput., 6(1):104–117, 1985.
[41] E. U., Condon. The theory of complex spectra. Phys. Rev., 36(7):1121–1133, 1930.
[42] J. W., Cooley and J. W., Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19(90):297–301, 1965.
[43] R., Cotes. Harmonia Mensurarum. Cambridge, 1722.
[44] A. J., Cox and N. J., Higham. Stability of Householder QR factorization for weighted least squares problems. In D. F., Griffiths, D. J., Higham, and G. A., Watson, editors, Numerical Analysis 1977, Proceedings of the 17th Dundee Biennial Conference, pages 57–73. Addison Wesley Longman, Harlow, 1998.
[45] H., Cramer. On some classes of series used in mathematical statistics. In Sixth Scandinavian Mathematical Congress, pages 399–425. Copenhagen, 1925.
[46] J. H., Curry, L., Garnett, and D., Sullivan. On the iteration of a rational function: Computer experiments with Newton's method. Comm. Math. Phys., 91(2):267–277, 1983.
[47] C. F., Curtiss and J. O., Hirschfelder. Integration of stiff equations. Proc. Natl. Acad. Sci., 38:235–243, 1952.
[48] G., Dahlquist. Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4:33–53, 1956.
[49] G. B., Dantzig. Programming of interdependent activities: II mathematical model. Econometrica, 17(3/4):200–211, 1949.
[50] G. B., Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963.
[51] W. C., Davidon. Variable metric method for minimization. Technical report, Argonne National Laboratory, 1959. report ANL-5990 (reprinted as SIAMJ. Opt., 1(1):1–17,1991).
[52] C. H., Davis. Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections: A Translation of Gauss's “Theoria Motus”. Little, Brown and Co., Boston, 1857.
[53] C., de Boor. On calculating with B-splines. J. Approx. Theory, 6:50–62, 1972.
[54] C., de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 1978.
[55] C., de Boor. Convergence of the cubic spline interpolation problem with the not-a-knot condition. Technical report, Mathematics Research Center, University of Wisconsin, Madison, 1984. Technical Summary Report #2876.
[56] J., Demmel, M., Gu, S., Eisenstat, I., Slapnicar, K., Verelic, and Z., Drmac. Computing the singular value decomposition with high relative accuracy. Linear Alg. Appl., 299(1):21–80, 1999.
[57] J., Demmel and K., Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204–1245, 1992.
[58] C., Eckart and G., Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211–218, 1936.
[59] L., Euler. Methodus generalis summandi progressiones. Comment. Acad. Sci. Imp. Petrop., 6:68–97, 1738.
[60] L., Euler. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti. Marc-Michel Bousquet, Lausanne & Geneva, 1744.
[61] R. P., Fedorenko. A relaxation method for solving elliptic difference equations. USSR Comp. Math. and Math. Phys., 1(4):1092–1096, 1962. First published in Russian in Zh. Vych. Mat. 1(5):922–927, 1961.
[62] R. P., Fedorenko. The speed of convergence of one iterative process. USSR Comp. Math. and Math. Phys., 4(3):227–235, 1964. First published in Russian in Zh. Vych. Mat. 4(3):559–564, 1964.
[63] L., Feigenbaum. Brook Taylor and the method of increments. Arch. Hist. Ex. Sci., 34(1-2):1–140, 1985.
[64] N., Ferguson. Wall Street lays another egg. Vanity Fair, page 190, December 2008.
[65] R., Fletcher. A new approach to variable metric algorithms. Comput. J., 13(3):317–322, 1970.
[66] R., Fletcher and M. J. D., Powell. A rapidly convergent descent method for minimization. Comput. J., 6(2):163–168, 1963.
[67] V., Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeit. Phys. A, 61(1-2):126–148, 1930.
[68] G. E., Forsythe. Gauss to Gerling on relaxation. Math. Tables Aids Comput., 5(35):255–258, 1951.
[69] G. E., Forsythe and C. B., Moler. Computer Solution of Linear Algebraic Systems. Prentice-Hall, Englewood Cliffs, NJ, 1967.
[70] J. B. J., Fourier. Solution d'une question particuliere au calcul des inégalités, second extrait. Histoire de l'Académie des Sciences pour 1824, pages xlvii–lv. Reprinted in Œuvres de Fourier, ed. G. Darboux, Vol. 2, pp. 325-328. Gauthier-Villars, Paris, 1890.
[71] L., Fox. Romberg integration for a class of singular integrands. Comput. J., 10(1):87–93, 1967.
[72] J. G. F., Francis. The QR transformation: a unitary analogue to the LR transformation - Part 1. Comput. J., 4(3):265–271, 1961.
[73] J. G. F., Francis. The QR transformation – Part 2. Comput. J., 4(4):332–345, 1962.
[74] C. G., Fraser. Isoperimetric problems in the variational calculus of Euler and Lagrange. Historia Mathematica, 19:4–23, 1992.
[75] D. C., Fraser. Newton's Interpolation Formulas. C. & E. Layton, London, 1927.
[76] A., Galantai and C.J., Hegedus. Hyman's method revisited. J. Comp. Appl. Math., 226(2):246–258, 2009.
[77] W., Gander and W., Gautschi. Adaptive quadrature – revisited. BIT, 40(1):84–101, 2000.
[78] C. F., Gauss. Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. Regiae Sci. Gottingensis Recentiores, 3:39–76, 1814. reprinted in Werke, vol 3, pp. 163-196.
[79] C. F., Gauss. Briefwechsel zwischen Carl Friedrich Gauss und Christian Ludwig Gerling. Otto Elsner, Berlin, 1927.
[80] W., Gautschi. Construction of Gauss–Christoffel quadrature formulas. Math. Comp., 22(102):251–270, 1968.
[81] W., Gautschi. On the construction of Gaussian quadrature rules from modified moments. Math. Comp., 24(110):245–260, 1970.
[82] H., Geiringer. On the solution of linear equations by certain iteration methods. In Staff of the Department of Aeronautical Engineering and Applied Mechanics of the Polytechnic Institute of Brooklyn, editor, Reissner Anniversary Volume. Contributions to Applied Mechanics. Edwards Brothers, Ann Arbor, Michigan, 1949.
[83] W. M., Gentleman and G., Sande. Fast Fourier transforms: for fun and profit. In AIEE-IRE Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, pages 563–578, 1966.
[84] S., Gerschgorin. Über die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk. SSSR Otd. Fiz.-Mat. Nauk., 7:749–754, 1931.
[85] W., Givens. Computation of plane unitary rotations transforming a general matrix to triangular form. J. SIAM, 6(1):26–50, 1958.
[86] S. K., Godunov. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik, 47(3):271–306, 1959. Translated from Russian by I. Bohachevsky.
[87] D., Goldfarb. A family of variable-metric methods derived by variational means. Math. Comp., 24(109):23–26, 1970.
[88] D., Goldfarb and A., Idnani. Dual and primal-dual methods for solving strictly convex quadratic programs. In J., Hennart, editor, Numerical Analysis: Proceedings of the Third IIMAS Workshop held at Cocoyoc, Mexico, Jan. 19-23, 1981, pages 226–239. Springer-Verlag, New York, 1982.
[89] D., Goldfarb and A., Idnani. A numerically stable dual method for solving strictly convex quadratic programs. Math. Programming, 27:1–33, 1983.
[90] G., Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7(3):206–216, 1965.
[91] G., Golub and W., Kahan. Calculating the singular values and pseudoinverse of a matrix. J. SIAMB, Num. Anal., 2(2):205–224, 1965.
[92] G. H., Golub and C., Reinsch. Singular value decomposition and least squares solution. Numer. Math., 14(5):403–420, 1970.
[93] G. H., Golub and C.F., van Loan. Matrix Computations. John's Hopkins University Press, Baltimore, 1983.
[94] G. H., Golub and J. H., Welsch. Calculation of Gauss quadrature rules. Math. Comp., 23(106):221–221, 1969.
[95] J. P., Gram. Ueber die entwickelung reeller functionen in reihen mittelst der methode der kleinsten quadrate. J. Reine Angew. Math., 94:41–73, 1883.
[96] F. J., Harris. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66:51–83, 1978.
[97] H.L., Harter. Method of least-squares and some alternatives. Int. Stat. Rev., 42(2):147–174, 1974. continued in 42(3):235-264, 1974; 43(1):1-44, 1975; 43(2):125-190, 1975; 43(3):269-278, 1975; and 44(1):113-159, 1976.
[98] D. R., Hayes and L., Rubin. A proof of the Newton–Cotes quadratures formulas with error term. Amer. Math. Mon., 77(10):1065–1072, 1970.
[99] W. J., Hehre, R. F., Stewart, and J. A., Pople. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., 51(6):2657–2664, 1969.
[100] M. T., Heideman, D. H., Johnson, and C. S., Burrus. Gauss and the history of the Fast Fourier Transform. Arch. Hist. Exact Sci., 34(3):265–277, 1985.
[101] C., Hermite. Sur la formulè d'interpolation de Lagrange. J. Reine Angew. Math., 84:70–79, 1878.
[102] G., Herzberg. The dissociation energy of the hydrogen molecule. J. Molec. Spectry., 33(1):147–168, 1970.
[103] M. R., Hestenes and E., Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards, 49(6):409–436, 1952.
[104] N. J., Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2nd edition, 2002.
[105] N.J., Higham. The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal., 24(4):547–556, 2004.
[106] N. J., Higham and D. J., Higham. Large growth factors in Gaussian elimination with pivoting. SIAM J. Matrix Anal. Appl., 10(2):155–164, 1989.
[107] E., Hille. A class of reciprocal functions. Ann. Math., 27(4):427–464, 1926.
[108] F. S., Hillier and G. J., Lieberman. Operations Research. Holden-Day, San Francisco, 2nd edition, 1974.
[109] C. A. R., Hoare. Algorithm 64: Quicksort. Comm. ACM, 4(7):321, 1961.
[110] C. A. R., Hoare. Quicksort. Comp. J., 5(1):10–15, 1962.
[111] W. G., Horner. A new method of solving numerical equations of all orders, by continuous approximation. Phil. Trans. Roy. Soc. London, 109:308–335, 1819.
[112] A. S., Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM, 5(4):339–342, 1958.
[113] R. E., Howitt. Agricultural and environmental policy models: calibration, estimation, and optimization. online at http://agecon.ucdavis.edu/people/faculty/richard-howitt/docs/master.pdf, 2005.
[114] J., Hubbard, D., Schleicher, and S., Sutherland. How to find all roots of complex polynomials by Newton's method. Invent. Math., 146:1–33, 2001.
[115] T. E., Hull, T. F., Fairgrieve, and P.-T. P., Tang. Implementing complex elementary functions using exception handling. ACM Trans. Math. Softw., 20(2):215–244, 1994.
[116] M. A., Hyman. Eigenvalues and eigenvectors of general matrices. In 12th National Meeting of the Association for Computing Machinery, Houston, Texas, 1957. (presentation).
[117] K., Itô. On stochastic differential equations. Memoirs Amer. Math. Soc., 4:1–51, 1951.
[118] C. G. J., Jacobi. Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden lineären Gleichungen. Astron. Nach., 22(20):297–306, 1845. Translated by G. W. Stewart, On a new way of solving the linear equations that arise in the method of least squares, IMA Preprint Series #951, 1992.
[119] C. G. J., Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen verommenden Gleichungen numerisch aufzolösen. J. Reine Angew. Math., pages 51–94, 1846.
[120] M., Jankowski and H., Woźniakowski. Iterative refinement implies numerical stability. BIT, 17(3):303–311, 1977.
[121] C., Jordan. Mémoire sur la réduction et la transformation des systèmes quadratiques. J. Math. Pure. Appl., 19:397–422, 1874.
[122] W., Kahan. Interval arithmetic options in the proposed IEEE floating point arithmetic standard. In K. L. E., Nickel, editor, Interval Mathematics 1980, pages 99–128. Academic Press, New York, 1980.
[123] W., Kahan. Mathematics written in sand. Proceedings of the Joint Statistical Meeting of the American Statistical Association, pages 12–26, 1983. Version 22 is available online as http://www.cs.berkeley.edu/~wkahan/MathSand.pdf.
[124] B., Kallemov and G. H., Miller. A second-order strong method for the Langevin equations with holonomic constraints. SIAM J. Sci. Comput., 33(2):653–676, 2011.
[125] L. V., Kantorovich. On an efficient method of solving some classes of extremal problems. Dokl. Akad. Nauk SSSR, 28:212–215, 1940.
[126] L. V., Kantorovich. Functional analysis and applied mathematics. Usp. Mat. Nauk, 3(6):89–185, 1948. (in Russian). Translated by C. D. Benster as National Bureau of Standards report 1509, 1952.
[127] W., Karush. Minima of functions of several variables with inequalities as side conditions. Master's thesis, The University of Chicago, 1939.
[128] A., Khintchine. Korrelationstheorie der stationaren stochsachen Prozesse. Math. Ann., 109(1):604–615, 1934.
[129] J., Kiefer. Sequential mimimax search for a maximum. Proc. Amer. Math. Soc., 4(3):502–506, 1953.
[130] H. F., King and M., Dupuis. Numerical integration using Rys polynomials. J. Comp. Phys., 21(2):144–165, 1976.
[131] P. E., Kloeden and E., Platen. Numerical Solution of Stochastic Differential Equations. Springer, New York, 3rd edition, 1999.
[132] T., Kojima. On the limits of the roots of an algebraic equation. Tohoku Math J., 11:119–127, 1917.
[133] W., Kolos and L., Wolniewicz. Improved theoretical ground-state energy of the hydrogen molecule. J. Chem. Phys., 49(1):404–410, 1968.
[134] D., König. Vonalrendszerek és determinánsok. Math. és Term. tud. Ért., 33:433–444, 1915.
[135] H. W., Kuhn and A. W., Tucker. Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematics, Statistics, and Probability, pages 481–492. University of California Press, 1981.
[136] R., Kupferman, G. A., Pavliotis, and A. M., Stuart. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E, 70(037120):1–9, 2004.
[137] W., Kutta. Beitrag zur naherungsweisen Integration totaler Differentialgleichungen. Z. Math. und Phys., 46:435–453, 1901.
[138] J. L., Lagrange. Lecon sur le calcul des fonctions, 1806. In J.-A., Serret, editor, Œuvres de Lagrange, Vol. 10. Gauthier-Villars, Paris, 1867.
[139] J. L., Lagrange. Théorie des fonctions analytiques, contenant les principles du calcul différentiel, degagés de tout considération d'infiniment petits, d'évanouissans, de limites et de fluxions, et réduits à l'analyse algébrique des quantités finies, 1797. In J.-A., Serret, editor, Œuvres de Lagrange, Vol. 9 Gauthier-Villars, Paris, 1867.
[140] J. L., Lagrange. Leçons élémentaires sur les mathématiques données a l'École Normale, 1795. In J.-A., Serret, editor, Œuvres de Lagrange, Vol. 7. Gauthier-Villars, Paris, 1877.
[141] P., Langevin. Sur la théorie du mouvement Brownien. C. R. Hebdomadaires des Séances de l'Académie des Sciences, 146:530–533, 1908.
[142] P., Lauchli. Jordan-Elimination und Ausgleichung nach kleinsten Quadraten. Numer. Math., 3:226–240, 1961.
[143] C. L., Lawson and R. J., Hanson. Solving Least Squares Problems. SIAM, Philadelphia, 1995.
[144] G. W., Leibniz. Mathematische Schriften, Vol. 2. Georg Olms Verlag, Hildesheim, Germany, 1849. reprinted in 1962. Letter to the Marquis de l'Hôpital dated April 28, 1693, pages 236–241.
[145] F., Leja. Sur certaines suites liées aux ensembles plans et leur application à la représentatton conforme. Ann. Polon. Math., 4:8–13, 1957.
[146] R. J., LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.
[147] P., Levy. Wiener's random function, and other Laplacian random functions. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages 171–187. University of California Press, 1951.
[148] R., Lipschitz. De explicatione per series trigonometricas instituenda functionum unius vari-ablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maxi-morum et minimorum numerum habent infintum disquisitio. Z. Angew. Math., 63:296–308, 1864.
[149] P.-O., Löwdin. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys., 18(3), 1950.
[150] J. N., Lyness. Notes on the adaptive Simpson quadrature routine. J. ACM, 16(3):483–495, 1969.
[151] J. K. L., MacDonald. Successive approximations by the Rayleigh–Ritz variation method. Phys. Rev., 43(10):830–833, 1933.
[152] H., Maehly. Zur iterativen Auflösung algebraischer Gleichungen. Z. Agnew. Math. Physik, 5:260–263, 1954.
[153] P. C., Mahalanobis. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India, 2:49–55, 1936.
[154] G., Marsaglia and T. A., Bray. A convenient method for generating normal variables. SIAM Rev., 6(3):260–264, 1964.
[155] S. F., McCormick. An algebraic interpretation of multigrid methods. SIAMJ. Num. Anal., 19(3):558–560, 1982.
[156] W. M., McKeeman. Algorithm 145: Adaptive numerical integration by Simpson's rule. Comm. ACM, 5(12):604, 1962.
[157] W. M., McKeeman. Certification of algorithm 145 adaptive numerical integration by Simpson's rule. Comm. ACM, 6(4):167–168, 1963.
[158] L. E., McMurchie and E. R., Davidson. One- and two-electron integrals over Cartesian Gaussian functions. J. Comp. Phys., 26(2):218–231, 1978.
[159] D., McQuarrie. Quantum Chemistry. University Science Books, Mill Valley, California, 1983.
[160] E., Meijering. A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE, 90(3), 2002.
[161] A., Melman. Modified Gershgorin disks for companion matrices. SIAM Rev., 54:355–373, 2012.
[162] A., Miele, E. E., Cragg, R. R., Iyer, and A. V., Levy. Use of the augmented penalty function in mathematical programming problems, part1. J. Opt. Theory. Appl., 8(2):115–130, 1971.
[163] G. N., Mil'shtein. A theorem on the order of convergence of mean-square approximations of solutions of system of stochastic differential equations. TheoryProb. Appl., 32:738–741, 1988.
[164] G. N., Milstein and M. V., Tretyakov. Stochastic Numerics for Mathematical Physics. Springer, New York, 2004.
[165] E. H., Moore. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26(9):394–395, 1920.
[166] G. E., Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–117, 1965.
[167] D. D., Morrison, J. D., Riley, and J. F., Zancarano. Multiple shooting method for two-point boundary value problems. Comm. ACM, 5(12):613–614, 1962.
[168] F. R., Moulton. New Methods in Exterior Ballistics. The University of Chicago Press, Chicago, 1926.
[169] P., Munz, I., Hudea, J., Imad, and R. J., Smith. When zombies attack! Mathematical modeling of an outbreak of zombie infection. In T. M., Tchuenche and C., Chiyaka, editors, Infectious Disease Modelling Research Progress, pages 133–150. Nova Science, Hauppauge, NY, 2010.
[170] L., Neal and G., Poole. A geometric analysis of Gaussian elimination. II. Linear Alg. Appl., 173:239–264, 1992.
[171] E. H., Neville. Iterative interpolation. J. Indian Math. Soc., 20:87–120, 1933.
[172] S. S., Oren. Self-scaling variable metric (SSVM) algorithms. Part II: Implementation and experiments. Management Sci., 20(5):863–874, 1974.
[173] S. S., Oren and D. G., Luenberger. Self-scaling variable metric (SSVM) algorithms. Part I: Criteria and sufficient conditions for scaling a class of algorithms. Management Sci., 20(5):845–862, 1974.
[174] S. S., Oren and E., Spedicato. Optimal conditioning of self-scaling variable metric algorithms. Math. Programming, 10:70–90, 1976.
[175] E. E., Osborne. On the least squares solutions of linear equations. J. ACM, 8(4):628–636, 1961.
[176] Paramésvara. Siddhāntadīpikā. ca. 1380/1460. Reprinted in T. S. Kuppanna, Sastri, Mahābhāskarīya of Bhāskarācārya with the Bhāsya of Godindasvāmin and the supercommentary Siddhāntadipikā of Parameśvara, Government Oriental Library, Madras, 1957.
[177] W., Pauli. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeit. Phys., 31(1):765–783, 1925.
[178] G., Peano. Residuo in formulas de quadratura. Mathesis, Quatrième Série, 4:5–10, 1914.
[179] K., Pearson. On lines and planes of closest fit to systems of points in space. Phil. Mag. Series 6, 2:559–572, 1901.
[180] R., Penrose. A generalized inverse for matrices. Math. Proc. Cambridge Phil. Soc., 51(3):406–413, 1955.
[181] G., Peters and J.H., Wilkinson. Practical problems arising in the solution of polynomial equations. J. Inst. Math. Applies., 8(1):16–35, 1971.
[182] E., Platen and W., Wagner. On a Taylor formula for a class of Ito processes. Prob. Math. Stat., 3(1):37–51, 1982.
[183] K., Plofker. The secant method of iterative approximation in a fifteenth-century Sanskrit text. Historia Mathematica, 23:246–256, 1996.
[184] G., Poole and L., Neal. A geometric analysis of Gaussian elimination. I. Linear Alg. Appl., 149:249–272, 1991.
[185] G., Poole and L., Neal. The rook's pivoting strategy. J. Comp. Appl. Math., 123:353–369, 2000.
[186] M. J. D., Powell and J. K., Reid. On applying Householder transformations to linear least squares problems. Technical report, Mathematics Branch, Theoretical Physics Division, Atomic Energy Research Establishment, Hartwell, 1968. T.P. 322.
[187] J., Raphson. Analysis Æquationum Universalis, seu, Ad Æquationes Algebraicas Resol-vendas Methodus Generalis, et Expedita: ex Nova Infinitarum Serierum Doctrina Deducta ac Demonstrata. Abel Swale, London, 1690.
[188] L., Rayleigh. On the calculation of Chladni's figures for a square plate. Phil. Mag. Series 6, 22(128):225–229, 1911.
[189] H. H., Reamer, R. H., Olds, B. H., Sage, and W. N., Lacey. Phase equilibria in hydrocarbon systems: methane-carbon dioxide system in the gaseous region. Ind. Eng. Chem., 36:88–90, 1944.
[190] L., Reichel. Newton interpolation at Leja points. BIT, 30:332–346, 1990.
[191] L. F., Richardson. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Phil. Trans. Roy. Soc. London, 210:307–357, 1911.
[192] L. F., Richardson. The deferred approach to the limit. Part I – Single lattice. Phil. Trans. Roy. Soc. London A, 226:299–349, 1927.
[193] W., Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math., 135(1):1–61, 1909.
[194] J. J., Rodriguez. An improved bit-reversal algorithm for the fast Fourier transform. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 1988, Vol. 3, pages 1407–1410, 1988.
[195] M., Rolle. Démonstration d'une Méthode Pour Résoudre les Égalités de Tous les Degrés, Suivies de Deux Autres Méthodes, Dont la Premiére Donne les Moyens de Résoudre ces Mêmes Égalités par la Géométrie, et al Second pour Résoudre Plusieurs Questions de Diophante qui n'ont point été Résolues. Paris, 1691.
[196] W., Romberg. Vereinfachte numerische Integration. Det Kongelige Norske Videnskabers Selskab Forhandlinger (Trondheim), 28(7):30–37, 1955.
[197] C. C. J., Roothaan. New developments in molecular orbital theory. Rev. Mod. Phys., 23(2):69–89, 1951.
[198] C. C. J., Roothaan and P. S., Bagus. Atomic self-consistent field calculations by the expan-sion method. In B., Alder, S., Fernbach, and M., Rotenberg, editors, Methods in Computational Physics, Vol. 2, pages 47–94. Academic Press, New York, 1963.
[199] B. J., Rosenberg, W. C., Ermler, and I., Shavitt. Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces. J. Chem. Phys., 65(10):4072–4080, 1976.
[200] B. J., Rosenberg and I., Shavitt. Ab initio SCF and CI studies on the ground state of the water molecule. I. Comparison of the CGTO and STO basis sets near the Hartree-Fock limit. J. Chem. Phys., 63(5):2162–2174, 1975.
[201] H. H., Rosenbrock. An automatic method for finding the greatest or least value of a function. Comput. J., 3(3):175–184, 1960.
[202] E., Rouché. Mémoire sur la série de Lagrange. J. de l'École Polytechnique, Paris, 39:217–219, 1862.
[203] C., Runge. Über die numerische AufLösung von Differentialgleichungen. Math. Ann., 46(2):167–178, 1895.
[204] C., Runge. Über empirische Funktionen und die Interpolation zwischen aquidistanten Ordinaten. Z. Math. Phys., 46:224–243, 1901.
[205] T. W. F., Russell and M. M., Denn. Introduction to Chemical Engineering Analysis. Wiley, New York, 1972.
[206] H., Rutishauser. Solution of eigenvalue problems with the LR-transformation. Nat. Bur. Standards Appl. Math. Ser., 49:47–81, 1958.
[207] J., Rys, M., Dupuis, and H. F., King. Computation of electron repulsion integrals using the Rys quadrature method. J. Comp. Chem., 4(2):154–157, 1983.
[208] R. A., Sack and A. F., Donovan. An algorithm for Gaussian quadrature given modified moments. Numer. Math., 18(5):465–478, 1972.
[209] H. B., Schlegel and J. J. W., McDouall. Do you have SCF stability and convergence problems? In C., Ögretir and I. G., Csizmadia, editors, Computational Advances in Organic Chemistry, pages 167–185. Kluwer Academic, Netherlands, 1991.
[210] E., Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann., 63:433–476, 1907.
[211] H., Schnieder. The concepts of irreducibility and full indecomposability of a matrix in the works of Frobenius, Konig and Markov. Linear Alg. Appl., 18(2):139–162, 1977.
[212] I. J., Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math., 4:45–99, 112-141, 1946.
[213] E., Schrodinger. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev., 28(6):1029–1070, 1926.
[214] L., Seidel. Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineare Gleichungen uberhaupt, durch successive Annäherung aufzulösen. Abh. Math.-Phys. Cl. Kön. Bayr. Akad. Wiss., 11(3):81–108, 1873.
[215] D. F., Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comp., 24(111):647–656, 1970.
[216] I., Shavitt. The Gaussian function in calculations of statistical mechanics and quantum mechanics. In B., Alder, S., Fernbach, and M., Rotenberg, editors, Methods in Computational Physics, Vol. 2, pages 1–45. Academic Press, New York, 1963.
[217] T., Simpson. Mathematical Dissertations on a Variety of Physical and Analytical Subjects. T. Woodward, London, 1743.
[218] J.C., Slater. The theory of complex spectra. Phys. Rev., 34(10):1293–1322, 1929.
[219] J. C., Slater. Atomic shielding constants. Phys. Rev., 36(1):57–64, 1930.
[220] S., Smale. Newton's method estimates from data at one point. In R., Ewing, K., Gross, and C., Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pages 185–196. Springer-Verlag, New York, 1986.
[221] D. E., Smith. A Source Book in Mathematics. Dover, New York, 1959.
[222] P., Stein and R. L., Rosenberg. On the solution of linear simultaneous equations by iteration. J. London Math. Soc., 1(2):111–118, 1948.
[223] G. W., Stewart. On the early history of the singular value decomposition. SIAM Rev., 35(4):551–566, 1993.
[224] T. J., Stieltjes. Quelques recherches sur la théorie des quadratures dites méchaniques. Ann. Sci. École Norm. Paris Sér. 3, 1:409–426, 1884. Reprinted in Oeuvres, vol I, pp. 377-396.
[225] J., Stoer and R., Bulirsch. Introduction to Numerical Analysis. Springer, New York, 2nd edition, 1993.
[226] C., Störmer. Methode d'intégration numerique des équations différentielles ordinaires. Comptes Rendus du Congres International des Mathématiciens, Strasbourg, 22-30 Step. 1920, pages 243–257, 1921.
[227] G., Strang. Linear Algebra and its Applications. Academic Press, New York, 2nd edition, 1980.
[228] H., Taketa, S., Huzinaga, and K., O-Ohata. Gaussian-expansion method for molecular integrals. J. Phys. Soc. Japan, 21(11):2313–2324, 1966.
[229] D., Talay and L., Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509, 1990.
[230] B., Taylor. Methodus Incrementorum Directa et Inversa. London, 1715.
[231] R. S., Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.
[232] S., Venit. The convergence of Jacobi and Gauss-Seidel iteration. Math. Mag., 48(3):163–167, 1975.
[233] L., Verlet. Computer “experiments” on classical fluids. I. Thermodynamic properties of Lennard-Jones molecules. Phys. Rev., 159(1):98–103, 1967.
[234] R., von Mises and H., Pollaczek-Geiringer. Praktische Verfahren der GleichungsaufLösung. Z. Angew. Math. Mech., 9(1&2):58-77, 152–164, 1929.
[235] W., Wagner and E., Platen. Approximation of Ito integral equations. Preprint ZIMM, Akad. Wissenschaften, DDR, Berlin, 1978.
[236] E., Waring. Problems concerning interpolations. Phil. Trans. Roy. Soc. London, 69:59–67, 1779.
[237] T., Weddle. On a new and simple rule for approximating to the area of a figure by means of seven equidistant ordinates. Cambridge and Dublin Math. J., 9:79–80, 1854.
[238] H., Wielandt. Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben. Math. Z., 50(1), 1944.
[239] N., Wiener. Generalized harmonic analysis. ActaMath., 55(1):117–258, 1930.
[240] N., Wiener. The homogeneous chaos. Am. J. Math., 60(4):897–936, 1938.
[241] H. S., Wilf. Finite Sections of Some Classical Inequalities. Springer-Verlag, New York, 1970.
[242] J. H., Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, NJ, 1963.
[243] J. H., Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.
[244] J. H., Wilkinson. The perfidious polynomial. In G. H., Golub, editor, Studies in Numerical Analysis, Vol. 24. Mathematics Association of America, Washington, DC, 1984.
[245] E. B., Wilson, J. C., Decius, and P. C., Cross. Molecular Vibrations: the Theory ofInfrared and Raman Vibrational Spectra. McGraw-Hill, New York, 1955.
[246] D., York. Least-squares fitting of a straight line. Can. J. Phys., 44:1079–1086, 1966.
[247] T. J., Ypma. Historical development of the Newton-Raphson method. SIAM Rev., 37:531–551, 1995.