ReferencesAmit, Y. 2002. 2D Object Detection and Recognition: Models, Algorithms and Networks. Lecture Notes in Biomathematic, MIT Press, Cambridge, MA.
Anderson, C.R. 1997. Object recognition using statistical shape analysis. Ph.D. Thesis,University of Leeds.
Babu, G. J. and Singh, K. 1984. On one term Edgeworth correction by Efron's bootstrap. Sankhya Ser. A, 46, 219–232.
Bandulasiri, A. and Patrangenaru, V. 2005. Algorithms for nonparametric inference on shape manifolds. Proc. JSM 2005, Minneapolis, pp. 1617–1622.
Bandulasiri, A., Bhattacharya, R. N., and Patrangenaru, V. 2009. Nonparametric inference on shape manifolds with applications in medical imaging. J. Multivariate Analysis, 100, 1867–1882.
Barron, A. R., Schervish, M., and Wasserman, L. 1999. The consistency of posterior distribution in nonparametric problems. Ann. Statist., 27, 536–561.
Barron, A. R. 1989. Uniformly powerful goodness of fit tests. Ann. Statist., 17, 107–124.
Beran, R. J. 1968. Testing for uniformity on a compact homogeneous space. J. Appl.Probability, 5, 177–195.
Beran, R. J. 1987. Prepivoting to reduce level error of confidence sets. Biometrica, 74, 457–468.
Beran, R. J. and Fisher, N. I. 1998. Nonparametric comparison of mean axes. Ann.Statist., 26, 472–493.
Berthilsson, R. and Astrom, K. 1999. Extension of affine shape. J. Math. Imaging Vision, 11, 119–136.
Berthilsson, R. and Heyden, A. 1999. Recognition of planar objects using the density of affine shape. Computer Vision and Image Understanding, 76, 135–145.
Bhattacharya, A. 2008a. Nonparametric statistics on manifolds with applications toshape spaces. Ph.D. Thesis, University of Arizona.
Bhattacharya, A. 2008b. Statistical analysis on manifolds: a nonparametric approach for inference on shape spaces. Sankhya, 70-A, part 2, 223–266.
Bhattacharya, A. and Bhattacharya, R. N. 2008a. Nonparametric statistics on manifolds with application to shape spaces. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of J.K. Ghosh. IMS Collections, 3, 282–301.
Bhattacharya, A. and Bhattacharya, R. N. 2008b. Statistical on Riemannian manifolds: asymptotic distribution and curvature. Proceedings of the American Mathematical Society, 136, 2957–2967.
Bhattacharya, A. and Bhattacharya, R. N. 2009. Statistical on manifolds with application to shape spaces. In Perspectives in Mathematical Sciences I: Probability and Mathematics, edited by N. S., Narasimha Sastry, T. S. S. R. K., Rao, M., Delampady and B., Rajeev. Indian Statistical Institute, Bangalore, 41–70.
Bhattacharya, A. and Dunson, D. 2010a. Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. Biometrika, 97, 851–865.
Bhattacharya, A. and Dunson, D. 2010b. Nonparametric Bayes classification and testing on manifolds with applications on hypersphere. Discussion paper, Department of Statistical Science, Duke University.
Bhattacharya, A. and Dunson, D. 2011. Strong consistency of nonparametric Bayes density estimation on compact metric spaces. Ann. Institute of Statistical Mathematics, 63.
Bhattacharya, R. N. and Ghosh, J.K. 1978. On the validity of the formal Edgeworth expansion. Ann. Statist., 6, 434–451.
Bhattacharya, R. N. and Patrangenaru, V. 2003. Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Statist., 31, 1–29.
Bhattacharya, R. N. and Patrangenaru, V. 2005. Large sample theory of intrinsic and extrinsic sample means on manifolds—II. Ann. Statist., 33, 1225–1259.
Bhattacharya, R. N. and Patrangenaru, V. 2012. A Course in Mathematical Statisticsand Large Sample Theory. Springer Series in Statistics. To appear.
Bhattacharya, R. N. and Qumsiyeh, M. 1989. Second order and Lp-comparisons between the bootstrap and empirical Edgeworth expansion methodologies. Ann.Statist., 17, 160–169.
Bhattacharya, R. N. and Waymire, E. 2007. A Basic Course in Probability Theory. Universitext, Springer, New York.
Bhattacharya, R. N. 1977. Refinements of the multidimensional central limit theorem and applications. Ann. Probability, 5, 1–27.
Bhattacharya, R. N. 1987. Some aspects of Edgeworth expansions in statistics and probability. In New Perspectives in Theoretical and Applied Statistics, edited by M., Puri, J., Villaplana, and W., Wertz. Wiley, New York.
Bhattacharya, R. N. 2007. On the uniqueness of intrinsic mean. Unpublished manuscript.
Bhattacharya, R. N. and Denker, M. 1990. Asymptotic Statistics. Vol. 14. DMV Seminar, Birkhauser, Berlin.
Bhattacharya, R. N. and Ranga Rao, R. 2010. Normal Approximation and Asymptotic Expansions. SIAM, Philadelphia.
Bickel, P. J. and Doksum, K. A. 2001. Mathematical Statistics, 2nd ed. Prentice Hall, Upper Saddle River, NJ.
Bingham, C. 1974. An antipodally symmetric distribution on the sphere. Ann. Statist., 2, 1201–1225.
Bookstein, F. 1978. The Measurement of Biological Shape and Shape Change. Lecture Notes in Biomathematics, Springer, Berlin.
Bookstein, F. L. 1986. Size and shape spaces of landmark data (with discussion). Statistical Science, 1, 181–242.
Bookstein, F. L. 1989. Principal warps: thin plate splines and the decomposition of deformations. Pattern Analysis and Machine Intelligence, 11, 567–585.
Bookstein, F. L. 1991. Morphometric Tools for Landmark data: Geometry and Biology. Cambridge University Press, Cambridge.
Boothby, W. M. 1986. An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed. Academic Press, New York.
Burgoyne, C. F., Thompson, H.W., Mercante, D. E., and Amin, R. E. 2000. Basic issues in the sensitive and specific detection in optic nerve head surface change within longitudinal LDT TopSS image: Introduction to the LSU experimental glaucoma (LEG) study. In The Shape of Glaucoma, Quantitative Neural Imaging Techniques, edited by H. G., Lemij and J. S., Shuman, 1–37. Kugler Publications, The Hague, The Netherlands.
Casella, G. and Berger, R. L. 2001. Statistical Inference. Duxbury Press, Pacific Grove, CA.
Chandra, T. and Ghosh, J. K. 1979. Valid asymptotic expansion for the likelihood ratio statistics and other pertubed chi-square variables. Sankhya, Ser. A., 41, 22–47.
Chikuse, Y. 2003. Statistics on Special Manifolds. Springer, New York.
Diaconis, P., Holmes, S. and Shakshahani, M. 2012. Sampling from a manifold. To appear.
Dieudonné, J. 1970. Treatise on Analysis. Vol. 2. Academic Press, New York.
Dimitric, I. 1996. A note on equivariant embeddings of Grassmannians. Publ. Inst. Math (Beograd) (N.S.), 59, 131–137.
Dimroth, E. 1963. Fortschritte der Gefugestatistik. Neues Jahrbuch der Mineralogie, Montashefte 13, 186–192.
Do Carmo, M. 1992. Riemannian Geometry. Birkhäuser, Boston.
Dryden, I. L. and Mardia, K. V. 1992. Size and shape analysis of landmark data. Biometrica, 79, 57–68.
Dryden, I. L. and Mardia, K. V. 1998. Statistical Shape Analysis. Wiley, New York.
Dryden, I. L., Faghihi, M. R., and Taylor, C. C. 1997. Procrustes shape analysis of spatial point patterns. J. Roy. Statist. Soc. Ser. B, 59, 353–374.
Dryden, I. L., Kume, A., Le, H., and Wood, A. T. A. 2008. A multi-dimensional scaling approach to shape analysis. Biometrika, 95(4), 779–798.
Dunford, N. and Schwartz, J. 1958. Linear Operators—I. Wiley, New York.
Dunson, D. B. and Bhattacharya, A. 2010. Nonparametric Bayes regression and classification through mixtures of product kernels. Bayesian Statistics, 9, 145–164.
Efron, B. 1979. Bootstrap methods: another look at jackknife. Ann. Statist., 1, 1–26.
Ellingson, L., Ruymgaart, F. H., and Patrangenaru, V. 2011. Nonparametric estimation for extrinsic mean shapes of planar contours. To appear.
Embleton, B. J. J. and McDonnell, K. L. 1980. Magnetostratigraphy in the Sydney Basin, SouthEastern Australia. J. Geomag. Geoelectr., 32, 304.
Escobar, M. D. and West, M. 1995. Bayesian density-estimation and inference using mixtures. J. Am. Statist. Assoc., 90, 577–588.
Ferguson, T. S. 1973. A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209–230.
Ferguson, T. S. 1974. Prior distributions on spaces of probability measures. Ann. Statist., 2, 615–629.
Ferguson, T. S. 1996. A Course in Large Sample Theory. Texts in Statistical ScienceSeries. Chapman & Hall, London.
Fisher, N. I., Hall, P., Jing, B., and Wood, A. T. A. 1996. Improved pivotal methods for constructing confidence regions with directional data. J. Amer. Statist. Assoc, 91, 1062–1070.
Fisher, N. I. 1993. Statistical Analysis of Circular Data. Cambridge University Press, Cambridge.
Fisher, N. I., Lewis, T., and Embleton, B. J. J. 1987. Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge.
Fisher, R. A. 1953. Dispersion on a sphere. Proc. Roy. Soc. London Ser. A, 217, 295–305.
Fréchet, M. 1948. Lés élements aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré, 10, 215–310.
Gallot, S., Hulin, D., and Lafontaine, J. 1990. Riemannian Geometry. Universitext, Springer, Berlin.
Ghosh, J. K. and Ramamoorthi, R. 2003. Bayesian Nonparametrics. Springer, New York.
Goodall, C. R. 1991. Procrustes methods in the statistical analysis of shape (with discussion). J. Roy. Statist, Ser. B, 53, 285–339.
Hall, P. 1992. The Bootstrap and Edgeworth Expansion. Springer, New York.
Hendriks, H. and Landsman, Z. 1996. Asymptotic tests for mean location on manifolds. C.R. Acad. Sci. Paris Sr. I Math., 322, 773–778.
Hendriks, H. and Landsman, Z. 1998. Mean location and sample mean location on manifolds: asymptotics, tests, confidence regions. J. Multivariate Anal., 67, 227–243.
Hjort, N., Holmes, C., Muller, P., and Walker, S. G. 2010. Bayesian Nonparametrics. Cambridge University Press. Cambridge.
Hopf, H., and Rinow, W. 1931. Über den Begriff der vollständigen differentialgeometrischen Flache. Comment. Math. Helv., 3, 209–225.
Hopkins, J. W. 1966. Some considerations in multivariate allometry. Biometrics, 22, 747–760.
Huckemann, S., Hotz, T., and Munk, A. 2010. Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions (with discussions). Statist. Sinica, 20, 1–100.
Irving, E. 1963. Paleomagnetism of the Narrabeen Chocolate Shale and the Tasmanian Dolerite. J. Geophys. Res., 68, 2282–2287.
Irving, E. 1964. Paleomagnetism and Its Application to Geological and Geographical Problems. Wiley, New York.
Ishwaran, H. and Zarepour, M. 2002. Dirichlet prior sieves in finite normal mixtures. Statistica Sinica, 12, 941–963.
Johnson, R. A. and Wehrly, T. 1977. Measures and models for angular correlation and angular-linear correlation. J. Royal Stat. Soc. B, 39, 222–229.
Karcher, H. 1977. Riemannian center of mas and mollifier smoothing. Comm. Pure Appl. Math., 30, 509–554.
Kendall, D. G. 1977. The diffusion of shape. Adv. Appl. Probab., 9, 428–430.
Kendall, D. G. 1984. Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc., 16, 81–121.
Kendall, D. G. 1989. A survey of the statistical theory of shape. Statist. Sci., 4, 87–120.
Kendall, D. G., Barden, D., Carne, T. K., and Le, H. 1999. Shape and Shape Theory. Wiley, New York.
Kendall, W. S. 1990. Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. London Math. Soc, 61, 371–406.
Kent, J. T. 1992. New directions in shape analysis. In The Art of Statistical Science, edited by K. V., Mardia. Wiley, Chichester.
Kent, J. T. 1994. The complex Bingham distribution and shape analysis. J. Roy. Statist. Soc. Ser. B, 56, 285–299.
Kent, J. T. and Mardia, K. V. 1997. Consistency of Procustes estimators. J. Roy. Statist. Soc. Ser. B, 59, 281–290.
Krim, H. and Yezzi, A., eds. 2006. Statistics and Analysis of Shapes. Birkhauser, Boston.
Lahiri, S. N. 1994. Two term Edgeworth expansion and bootstrap approximation for multivariate studentized M-estimators. Sankhya Ser. A., 56, 201–226.
Le, H. 2001. Locating Fréchet means with application to shape spaces. Adv. Appl.Prob., 33, 324–338.
LeCam, L. 1973. Convergence of estimates under dimensionality restrictions. Ann. Statist., 1, 38–53.
Lee, J. and Ruymgaart, F. H. 1996. Nonparametric curve estimation on Stiefel manifolds. J. Nonparametri. Statist., 6, 57–68.
Lee, J. M. 1997. Riemannian Manifolds: An Introduction to Curvature. Springer, New York.
Lele, S. 1991. Some comments on coordinate free and scale invariant methods in morphometrics. Amer. J. Physi. Anthropology, 85, 407–418.
Lele, S. 1993. Euclidean distance matrix analysis (EDMA): estimation of mean form and mean form difference. Math. Geology, 25, 573–602.
Lele, S. and Cole, T. M. 1995. Euclidean distance matrix analysis: a statistical review. In Current Issues in Statistical Shape Analysis, edited by K. V., Mardia and C. A., Gill. University of Leeds Press, Leeds, 49–53.
Lewis, J. L., Lew, W. D., and Zimmerman, J. R. 1980. A non-homogeneous anthropometric scaling method based on finite element principles. J. Biomech., 13, 815–824.
Lo, A. Y. 1984. On a class of Bayesian nonparametric estimates. 1. Density estimates.Ann. Statist., 12, 351–357.
Mardia, K. V. and Jupp, P. E. 2000. Directional Statistics. Wiley, New York.
Mardia, K. V. and Patrangenaru, V. 2005. Directions and projective shapes. Ann. Statist., 33, 1666–1699.
Micheas, A. C., Dey, D. K., and Mardia, K. V. 2006. Complex elliptic distributions with applications to shape analysis. J. Statist. Plan. and Inf., 136, 2961–2982.
Millman, R. and Parker, G. 1977. Elements of Differential Geometry. Prentice-Hall, Upper Saddle River, NJ.
NOAA National Geophysical Data Center Volcano Location Database, 1994. http:// www.ngdc.noaa.gov/nndc/struts/results?
Oller, J. M. and Corcuear, J. M. 1995. Intrinsic analysis of statistical estimation. Ann. Statist., 23, 1562–1581.
Parthasarathy, K. R. 1967. Probability Measures on Metric Spaces. Academic Press. New York.
Patrangenaru, V. 1998. Asymptotic statistics on manifolds and their applications. Ph.D. Thesis, Indiana University, Bloomington.
Patrangenaru, V., Liu, X., and Sagathadasa, S. 2010. A nonparametric approach to 3D shape analysis from digital camera images-I. J. Multivariate Analysis, 101, 11–31.
Prentice, M. J. 1984. A distribution-free method of interval estimation for unsigned directional data. Biometrica, 71, 147–154.
Prentice, M. J. and Mardia, K. V. 1995. Shape changes in the plane for landmark data. Ann. Statist., 23, 1960–1974.
Schwartz, L. 1965. On Bayes procedures. Z. Wahrsch. Verw. Gebiete, 4, 10–26.
Sepiashvili, D., Moura, J. M. F., and Ha, V. H. S. 2003. Affine-permutation symmetry: invariance and shape space. Proceedings of the 2003 Workshop on Statistical Signal Processing, St. Louis, MO, 293–296.
Sethuraman, J. 1994. A constructive definition of Dirichlet priors. Statist. Sinica, 4, 639–50.
Singh, K. 1981. On the asymptotic accuracy of Efron's bootstrap. Ann. Statist., 9, 1187–1195.
Small, C. G. 1996. The Statistical Theory of Shape. Springer, New York.
Sparr, G. 1992. Depth-computations from polihedral images. In Proc. 2nd European Conf. on Computer Vision, edited by G., Sandimi. Springer, New York, 378–386. Also in Image and Vision Computing, 10, 683–688.
Sprent, P. 1972. The mathematics of size and shape. Biometrics., 28, 23–37.
Stoyan, D. 1990. Estimation of distances and variances in Bookstein's landmark model. Biometrical J., 32, 843–849.
Sugathadasa, S. 2006. Affine and projective shape analysis with applications. Ph.D. dissertation, Texas Tech University.
von Mises, R. 1918. Uber die “Ganzzaligkeit” der atomgewichte und verwandte fragen. Phys. Z., 19, 490–500.
Watson, G. S. 1965. Equatorial distributions on a sphere. Biometrica, 52, 193–201.
Watson, G. S. 1983. Statistics on Spheres. Vol. 6. University Arkansas Lecture Notes in the Mathematical Sciences, Wiley, New York.
Wu, Y. and Ghosal, S. 2008. Kullback–Liebler property of kernel mixture priors in Bayesian density estimation. Electronic J. of Statist., 2, 298–331.
Wu, Y. and Ghosal, S. 2010. The L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation on Bayes procedures. J. Mutivar. Analysis, 101, 2411–2419.
Yau, C., Papaspiliopoulos, O., Roberts, G. O., and Holmes, C. 2011. Nonparametric Hidden Markov Models with application to the analysis of copy-number-variation in mammalian genomes. J. Roy. Statist. Soc. B, 73, 37–57.
Ziezold, H. 1977. On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. Transactions of the Seventh Prague Conference on Information Theory, Statistical Functions, Random Processes and of the Eighth European Meeting of Statisticians, A, 591–602. Tech. Univ. Prague, Prague.