[1] Todd, B. D. and Daivis, P. J.. Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simul., 33: 189, 2007.
[2] Evans, D. J. and Morriss, G. P.. Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge, 2nd edition, 2008.
[3] McQuarrie, D. A.
Statistical Mechanics. Harper Collins, New York, 1976.
[4] de Groot, S. R. and Mazur, P.. Non-Equilibrium Thermodynamics. Dover, New York, 1984.
[5] Allen, M. P. and Tildesley, D. J.. Computer Simulation of Liquids. Clarendon Press, Oxford, 1987.
[6] Rapaport, D.
The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 1995.
[7] Frenkel, D. and Smit, B.. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego, 2002.
[8] Sadus, R. J.
Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier, Amsterdam, 1999.
[9] Alder, B. J. and Wainwright, T. E.. Phase transition for a hard sphere system. J. Chem. Phys., 27: 1208, 1957.
[10] Rahman, A.
Correlations in the motion of atoms in liquid argon. Phys. Rev., 136: A105, 1964.
[11] Verlet, L.
Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159: 98, 1967.
[12] Alder, B. J., Gass, D. M., and Wainwright, T. E.. Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys., 53: 3813, 1970.
[13] Green, M. S.
Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22: 398, 1954.
[14] Kubo, R.
Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan, 12: 570, 1957.
[15] Lees, A. W. and Edwards, S. F.. The computer study of transport processes under extreme conditions. J. Phys. C, 5: 1921, 1972.
[16] Gosling, E. M., McDonald, I. R., and Singer, K.. On the calculation by molecular dynamics of the shear viscosity of a simple fluid. Mol. Phys., 26: 1475, 1973.
[17] Ashurst, W. T. and Hoover, W. G.
Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Phys. Rev. A, 11: 658, 1975.
[18] Hoover, W. G.
Atomistic nonequilibrium computer simulations. Physica, 118A: 111, 1983.
[19] Hoover, W. G.
Nonequilibrium molecular dynamics: the first 25 years. Physica A, 194: 450, 1993.
[20] Hoover, W. G., Evans, D. J., Hickman, R. B., Ladd, A. J. C., Ashurst, W. T., and Moran, B.. Lennard-Jones triple-point bulk and shear viscosities. Green–Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A, 22: 1690, 1980.
[21] Evans, D. J. and Morriss, G. P.
Nonlinear-response theory for steady planar Couette flow. Phys. Rev. A, 30(3): 1528, 1984.
[22] Ciccotti, G. and Jacucci, G.. Direct computation of dynamical response by molecular dynamics: The mobility of a charged Lennard-Jones particle. Phys. Rev. Lett., 35: 789, 1975.
[23] Evans, D. J. and Morriss, G. P.
Transient-time-correlation functions and the rheology of fluids. Phys. Rev. A, 38: 4142, 1988.
[24] Müller-Plathe, F.. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Phys. Rev. E, 59: 4894, 1999.
[25] Hafskjold, B., Ikeshoji, T., and Kjelstrup Ratkje, S.. On the molecular mechanism of thermal diffusion in liquids. Mol. Phys., 80: 1389, 1993.
[26] Jou, D., Lebon, G., and Casas-Vázquez, J.. Extended Irreversible Thermodynamics. Springer, 4th edition, 2010.
[27] Öttinger, H. C.. Beyond Equilibrium Thermodynamics. John Wiley & Sons, Hoboken, New Jersey, 2005.
[28] Bird, R. B., Armstrong, R. C., and Hassager, O.. Dynamics of Polymeric Liquids, Volume 1 Fluid Mechanics. John Wiley & Sons, New York, 2nd edition, 1987.
[29] Bird, R. B.
Curtiss, C. F.
Armstrong, R. C. and Hassager, O.
Dynamics of Polymeric Liquids, Volume 2 Kinetic Theory. John Wiley & Sons, New York, 2nd edition, 1987.
[30] Tanner, R. I.
Engineering Rheology. Oxford University Press, 2nd edition, 2000.
[31] Huilgol, R. R. and Phan-Thien, N.
Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.
[32] Truesdell, C. and Noll, W.
The Non-Linear Field Theories of Mechanics. Springer-Verlag, 3rd edition, 2004.
[33] Juretschke, H. J.
Crystal Physics. W. A. Benjamin Inc., 1974.
[34] de Gennes, P. G. and Prost, J.
The Physics of Liquid Crystals. Oxford University Press, 2nd edition, 1993.
[35] Snider, R. F. and Lewchuk, K. S.
Irreversible thermodynamics of a fluid system with spin. J. Chem. Phys., 46: 3163, 1967.
[36] Evans, D. J. and Streett, W. B.
Transport properties of homonuclear diatomics II. Dense fluids. Mol. Phys., 36: 161, 1978.
[37] McLennan, J. A.
Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, New Jersey, 1989.
[38] Eu, B. C.
Nonequilibrium Statistical Mechanics: Ensemble Method. Kluwer Academic, 1998.
[39] Zwanzig, R.
Nonequilibrium Statistical Mechanics. Oxford University Press, 2001.
[40] Zubarev, D. N.
Morozov, V. G. and Röpke, G.
Statistical Mechanics of Nonequilibrium Processes. Akademie Verlag, 1996.
[41] Gaspard, P.
Chaos, Scattering and Statistical Mechanics. Cambridge University Press, 1998.
[42] Goldstein, H.
Classical Mechanics. Addison-Wesley, Reading, MA, 1980.
[43] Tolman, R. C.
The Principles of Statistical Mechanics. Dover reprinting of the 1938 edition published by Oxford University Press, 1979.
[44] Williams, S. R. and Evans, D. J. Time-dependent response theory and nonequilibrium freeenergy relations. Phys. Rev. E, 78: 021119, 2008.
[45] Yamada, T. and Kawasaki, K.
Nonlinear effects in shear viscosity of critical mixtures. Prog. Theor. Phys., 38: 1031, 1967.
[46] Yamada, T. and Kawasaki, K.
Application of mode-coupling theory to nonlinear stress tensor in fluids. Prog. Theor. Phys., 53: 111, 1975.
[47] Kawasaki, K. and Gunton, J. D.
Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects. Phys. Rev. A, 8: 2048, 1973.
[48] Visscher, W. M.
Transport processes in solids and linear-response theory. Phys. Rev. A, 10: 2461, 1974.
[49] Dufty, J. W. and Lindenfeld, M. J.
Nonlinear transport in the Boltzmann limit. J. Stat. Phys., 20: 259, 1979.
[50] Cohen, D. E. G.
Kinetic theory of non-equilibrium fluids. Physica A, 118: 17, 1983.
[51] Morriss, G. P. and Evans, D. J.
Isothermal response theory. Mol. Phys., 54: 629, 1985.
[52] Morriss, G. P. and Evans, D. J.
Application of transient correlation-functions to shear-flow far from equilibrium. Phys. Rev. A, 35: 792, 1987.
[53] Todd, B. D.
Application of transient time correlation functions to nonequilibrium molecular dynamics simulations of elongational flow. Phys. Rev. E, 56: 6723–6728, 1997.
[54] Petravic, J. and Evans, D. J.
Nonlinear response for time-dependent external fields. Phys. Rev. Lett., 78: 1199, 1997.
[55] Petravic, J. and Evans, D. J.
Nonlinear response for nonautonomous systems. Phys. Rev. E, 56: 1207, 1997.
[56] Petravic, J. and Evans, D. J.
Approach to the non-equilibrium time-periodic state in a “steady” shear flow model. Mol. Phys., 95: 219, 1998.
[57] Petravic, J. and Evans, D. J.
Nonlinear response theory for time-dependent external fields: Shear flow and color conductivity. Int. J. Thermophys., 19: 1049, 1998.
[58] Petravic, J. and Evans, D. J.
Time dependent nonlinear response theory. Trends in Statistical Physics, 2: 85, 1998.
[59] Petravic, J. and Evans, D. J.
The Kawasaki distribution function for nonautonomous systems. Phys. Rev. E, 58: 2624, 1998.
[60] Todd, B. D.
Nonlinear response theory for time-periodic elongational flows. Phys. Rev. E, 58: 4587, 1998.
[61] Hansen, J. P. and McDonald, I. R.
Theory of Simple Liquids. Academic Press, New York, 1986.
[62] Heyes, D. M.
The Liquid State: Applications of Molecular Simulations. Wiley, Chichester, 1997.
[63] Daivis, P. J. and Evans, D. J.
Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane. J. Chem. Phys., 100: 541, 1994.
[64] Evans, D. J.
Cohen, E. G. D. and Morriss, G. P.
Probability of 2nd law violations in shearing steady-states. Phys. Rev. Lett., 71: 2401, 1993.
[65] Lorenz, E. N.
Deterministic nonperiodic flow. J. Atmos. Sci., 20: 130, 1963.
[66] Weeks, J. D.
Chandler, D. and Andersen, H. C.
Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 54: 5237, 1971.
[67] Evans, D. J. and Searles, D. J.
Equilibrium microstates which generate second law violating steady states. Phys. Rev. E, 50: 1645, 1994.
[68] Gallavotti, G. and Cohen, E. G. D.
Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74: 2694, 1995.
[69] Wang, G. M.
Sevick, E. M.
Mittag, E.
Searles, D. J. and Evans, D. J.
Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89: 050601, 2002.
[70] Maxwell, J. C.
Tait's “Thermodynamics” II. Nature, 17: 278, 1878.
[71] Evans, D. J. and Searles, D. J.
The fluctuation theorem. Advances in Physics, 51: 1529, 2002.
[72] Bustamante, C.
Liphardt, J. and Ritort, F.
The nonequilibrium thermodynamics of small systems. Physics Today, 58: 43, 2005.
[73] Evans, D. J.
Searles, D. J. and Williams, S. R.
Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems. Wiley, 2016.
[74] Evans, D. J.
Searles, D. J. and Rondoni, L.
Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium. Phys. Rev. E, 71: 056120, 2005.
[75] Evans, D. J.
Searles, D. J. and Williams, S. R.
On the fluctuation theorem for the dissipation function and its connection with response theory. J. Chem. Phys., 128: 014504, 2008.
[76] Jarzynski, C.
Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78: 2690, 1997.
[77] Jarzynski, C.
Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E, 56: 5018, 1997.
[78] Crooks, G. E.
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60: 2721, 1999.
[79] Crooks, G. E.
Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys., 90: 1481, 1998.
[80] Casas-Vázquez, J. and Jou, D.
Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys., 66: 1937, 2003.
[81] Jepps, O. G.
Ayton, G. and Evans, D. J.
Microscopic expressions for the thermodynamic temperature. Phys. Rev. E, 62: 4757, 2000.
[82] Rickayzen, G. and Powles, J.G.
Temperature in the classical microcanonical ensemble. J. Chem. Phys., 114: 4333, 2001.
[83] Rugh, H. H.
Dynamical approach to temperature. Phys. Rev. Lett., 78: 772, 1997.
[84] Baranyai, A.
Temperature of nonequilibrium steady-state systems. Phys. Rev. E, 62: 5989, 2000.
[85] Irving, J. H. and Kirkwood, J. G.
The statistical mechanical theory of transport processes. 4. The equations of hydrodynamics. J. Chem. Phys., 18: 817, 1950.
[86] Todd, B. D.
Evans, D. J. and Daivis, P. J.
Pressure tensor for inhomogeneous fluids. Phys. Rev. E, 52: 1627, 1995.
[87] Monaghan, D. R. J. and Morriss, G. P.
Microscopic study of steady convective flow in periodic systems. Phys. Rev. E, 56: 476, 1997.
[88] Todd, B. D.
Daivis, P. J. and Evans, D. J.
Heat flux vector in highly inhomogeneous nonequilibrium fluids. Phys. Rev. E, 51: 4362, 1995.
[89] Daivis, P. J.
Travis, K. P. and Todd, B.D.
A technique for the calculation of mass, energy and momentum densities at planes in molecular dynamics simulations. J. Chem. Phys., 104: 9651, 1996.
[90] Jepps, O.G. and Bhatia, S. K.
Method for determining the shear stress in cylindrical systems. Phys. Rev. E, 67: 041206, 2003.
[91] Heyes, D. M.
Smith, E. R.
Dini, D. and Zaki, T. A.
The method of planes pressure tensor for a spherical subvolume. J. Chem. Phys., 140: 054506, 2014.
[92] Heyes, D. M.
Smith, E. R.
Dini, D. and Zaki, T. A.
The equivalence between volume averaging and method of planes definitions of the pressure tensor. J. Chem. Phys., 135: 024512, 2011.
[93] Hardy, R. J.
Formulas for determining local properties in molecular-dynamics simulations: Shock waves. J. Chem. Phys., 76: 622, 1982.
[94] Cormier, J.
Rickman, J. M. and Delph, T. J.
Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys., 89: 99, 2001.
[95] Hartkamp, R.
Hunt, T. A. and Todd, B. D.
A method-of-planes approach for the calculation of position-dependent self-diffusion coefficients in confined fluids. Unpublished.
[96] Travis, K. P.
Todd, B. D. and Evans, D. J.
Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev. E, 55: 4288, 1997.
[97] Lee, S. H. and Cummings, P. T.
Shear viscosity of model mixtures by nonequilibrium molecular dynamics. I. Argon-krypton mixtures. J. Chem. Phys., 99: 3919, 1993.
[98] Lee, S. H. and Cummings, P. T.
Effect of three-body forces on the shear viscosity of liquid argon. J. Chem. Phys., 101: 6206, 1994.
[99] Marcelli, G.
Todd, B. D. and Sadus, R. J.
Analytic dependence of the pressure and energy of an atomic fluid under shear. Phys. Rev. E, 63: 021204, 2001.
[100] Zhang, J. and Todd, B. D.
Pressure tensor and heat flux vector for confined nonequilibrium fluids under the influence of three-body forces. Phys. Rev. E, 69: 031111, 2004.
[101] Barker, J. A.
Fisher, R. A. and Watts, R. O.
Liquid argon: Monte Carlo and molecular dynamics calculations. Mol. Phys., 21: 657, 1971.
[102] Axilrod, B. M. and Teller, E.
Interaction of the van der Waals’ type between three atoms. J. Chem. Phys., 11: 299, 1943.
[103] Torii, D.
Nakano, T. and Ohara, T.
Contribution of inter- and intramolecular energy transfers to heat conduction in liquids. J. Chem. Phys., 128: 044504, 2008.
[104] Lutsko, J. F.
Stress and elastic constants in anisotropic solids: Molecular dynamics techniques. J. Appl. Phys., 64: 1152, 1988.
[105] Smith, E. R.
Heyes, D. M.
Dini, D. and Zaki, T. A.
Control-volume representation of molecular dynamics. Phys. Rev. E, 85: 056705, 2012.
[106] Ewald, P. P.
The calculation of optical and electrostatic grid potential. Ann. Phys. (Leipzig), 64: 253, 1921.
[107] Lekner, J.
Summation of Coulomb fields in computer-simulated disordered systems. Physica A, 176: 485, 1991.
[108] Lekner, J.
Coulomb forces and potentials in systems with an orthorhombic unit cell. Molec. Simul., 20: 357, 1998.
[109] Wolf, D.
Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. Phys. Rev. Lett., 68: 3315, 1992.
[110] Wolf, D.
Keblinski, S. R.
Phillpot, S. R. and Eggebrecht, J.
Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation. J. Chem. Phys., 110: 8254, 1999.
[111] Onsager, L.
Electric moments of molecules in liquids. J. Am. Chem. Soc., 58: 1486, 1936.
[112] Barker, J. A. and Watts, R. O.
Monte-Carlo studies of dielectric properties of water-like models. Mol. Phys., 26: 789, 1973.
[113] Heyes, D. M.
Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys., 74: 1924, 1981.
[114] Wheeler, D. R.
Fuller, N. G. and Rowley, R. L.
Non-equilibrium molecular dynamics simulation of the shear viscosity of liquid methanol: Adaption of the Ewald sum to Lees-Edwards boundary conditions. Mol. Phys., 92: 55, 1997.
[115] Alejandre, J.
Tildesley, D. J. and Chapela, G. A.
Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys., 102: 4574, 1995.
[116] Heyes, D. M.
Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. Phys. Rev. B, 49: 755, 1994.
[117] Nosé, S. and Klein, M. L.
Constant pressure molecular dynamics for molecular systems. Molec. Phys., 50: 1055, 1983.
[118] Galamba, N.
de Castro, C. A. N., and Ely, J. F.
Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. J. Chem. Phys., 120: 8676, 2004.
[119] Petravic, J.
Thermal conductivity of ethanol. J. Chem. Phys., 123: 174503, 2005.
[120] Parry, D. E.
Electrostatic potential in surface region of an ionic-crystal. Surf. Sci., 49: 433, 1975.
[121] Parry, D. E.
Correction. Surf. Sci., 54: 195, 1976.
[122] Heyes, D. M.
Barber, M and Clarke, J. H. R.
Molecular-dynamics computer-simulation of surface properties of crystalline potassium-chloride. Faraday Trans. II, 73: 1485, 1977.
[123] Muscatello, J. and Bresme, F.
A comparison of Coulombic interaction methods in nonequilibrium studies of heat transfer in water. J. Chem. Phys., 135: 234111, 2011.
[124] Fennell, C. J. and Gezelter, J. D.
Is the Ewald summation still necessary? pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys., 124: 234104, 2006.
[125] Evans, D. J. and Morriss, G. P.
Non-Newtonian molecular dynamics. Comput. Phys. Rep., 1: 297, 1984.
[126] Hoover, W. G.
Hoover, C. G. and Petravic, J.
Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: Comparison of time-andspace-averaged stresses from homogeneous Doll's and Sllod shear algorithms with those from boundary-driven shear. Phys. Rev. E, 78: 046701, 2008.
[127] Ladd, C. A. J.
Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids. Mol. Phys., 53: 459, 1984.
[128] Daivis, P. J. and Todd, B. D.
A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalised homogeneous flows. J. Chem. Phys., 124: 194103, 2006.
[129] Kraynik, A. M. and Reinelt, D. A.
Extensional motions of spatially periodic lattices. Int. J. Multiphase Flow, 18: 1045, 1992.
[130] Todd, B. D. and Daivis, P. J.
Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Phys. Rev. Lett., 81: 1118, 1998.
[131] Todd, B. D. and Daivis, P. J.
A new algorithm for unrestricted duration molecular dynamics simulations of planar elongational flow. Computer Physics Communications, 117: 191, 1999.
[132] Todd, B. D. and Daivis, P. J.
The stability of nonequilibrium molecular dynamics simulations of elongational flows. J. Chem. Phys., 112: 40, 2000.
[133] Baranyai, A. and Cummings, P. T.
Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics. J. Chem. Phys., 110: 42, 1999.
[134] Hunt, T. A.
Bernardi, S. and Todd, B. D.
A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow. J. Chem. Phys., 133: 154116, 2010.
[135] Bernardi, S.
Brookes, S. J.
Searles, D. J. and Evans, D. J.
Response theory for confined systems. J. Chem. Phys., 137: 074114, 2012.
[136] Bernardi, S. and Searles, D. J.
Local response in nanopores. Molec. Simul., 42: 463, 2016.
[137] Baig, C.
Edwards, B. J.
Keffer, D. J. and Cochran, H. D.
A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow. J. Chem. Phys., 122: 114103, 2005.
[138] Edwards, B. J.
Baig, C. and Keffer, D. J.
An examination of the validity of nonequilibrium molecular-dynamics simulation algorithms for arbitrary steady-state flows. J. Chem. Phys., 123: 114106, 2005.
[139] Edwards, B. J.
Baig, C. and Keffer, D. J.
A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys., 124: 194104, 2006.
[140] Edwards, B. J. and Dressler, M.
A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution equations for non-equilibrium molecular dynamics simulations. J. Non-Newtonian Fluid Mech., 96: 163, 2001.
[141] Borzsák, I.
Cummings, P. T. and Evans, D. J.
Shear viscosity of a simple fluid over a wide range of strain rates. Mol. Phys., 100: 2735, 2002.
[142] Hunt, T. A. and Todd, B. D.
On the Arnold cat map and periodic boundary conditions for planar elongational flow. Mol. Phys., 101: 3445, 2003.
[143] Todd, B. D.
Cats, maps and nanoflows: Some recent developments in nonequilibrium nanofluidics. Mol. Simul., 31: 411, 2005.
[144] Frascoli, F.
Searles, D. J. and Todd, B. D.
Chaotic properties of planar elongational flows and planar shear flows: Lyapunov exponents, conjugate-pairing rule and phase space contraction. Phys. Rev. E, 73: 046206, 2006.
[145] Bhupathiraju, R.
Cummings, P. T. and Cochran, H. D.
An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. Mol. Phys., 88: 1665, 1996.
[146] Hansen, D. P. and Evans, D. J.
A parallel algorithm for nonequilibrium molecular dynamics simulation of shear flow on distributed memory machines. Mol. Simul., 13: 375, 1994.
[147] Todd, B. D. and Daivis, P. J.
Elongational viscosities from nonequilibrium molecular dynamics simulations of oscillatory elongational flow. J. Chem. Phys., 107: 1617, 1997.
[148] Baranyai, A. and Cummings, P. T.
Nonequilibrium molecular dynamics study of shear and shear-free flows in simple fluids. J. Chem. Phys., 103: 10217, 1995.
[149] Sprott, J. C.
Chaos and Time Series Analysis. Oxford University Press, Oxford, 2003.
[150] Katok, A. and Hasselblatt, B.
Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
[151] Frascoli, F.
Searles, D. J. and Todd, B. D.
Boundary condition independence of molecular dynamics simulations of planar elongational flow. Phys. Rev. E, 75: 066702, 2007.
[152] Frascoli, F.
Searles, D. J. and Todd, B. D.
Chaotic properties of isokinetic-isobaric atomic systems under planar shear and elongational flows. Phys. Rev. E, 77: 056217, 2008.
[153] Evans, D. J.
Hoover, W. G.
Failor, B. H.
Moran, B. and Ladd, A. J. C.
Nonequilibrium molecular dynamics via Gauss's principle of least constraint. Phys. Rev. A, 28: 1016, 1983.
[154] Nosé, S.
A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys., 81: 511, 1984.
[155] Nosé, S.
A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys., 52: 255, 1984.
[156] Hoover, W. G.
Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31: 1695, 1985.
[157] Butler, B. D.
Ayton, G.
Jepps, O. G. and Evans, D. J.
Configurational temperature: Verification of Monte Carlo simulations. J. Chem. Phys., 109: 6519, 1998.
[158] Lue, L. and Evans, D. J.
Configurational temperature for systems with constraints. Phys. Rev. E, 62: 4764, 2000.
[159] Delhommelle, J. and Evans, D. J.
Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine. Mol. Phys., 99: 1825, 2001.
[160] Lue, L.
Jepps, O. G.
Delhommelle, J. and Evans, D. J.
Configurational thermostats for molecular systems. Mol. Phys., 100: 2387, 2002.
[161] Delhommelle, J. and Evans, D. J.
Correspondence between configurational temperature and molecular kinetic temperature thermostats. J. Chem. Phys., 117: 6016, 2002.
[162] Braga, C. and Travis, K. P.
A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys., 123: 134101, 2005.
[163] Travis, K. P. and Braga, C.
Configurational temperature and pressure molecular dynamics: review of current methodology and applications to the shear flow of a simple fluid. Mol. Phys., 104: 3735, 2006.
[164] Travis, K. P. and Braga, C.
Configurational temperature control for atomic and molecular systems. J. Chem. Phys., 128: 014111, 2008.
[165] Evans, D. J. and Holian, B.L.
Shear viscosities away from the melting line a comparison of equilibrium and non-equilibrium molecular-dynamics. J. Chem. Phys., 78: 5147, 1983.
[166] Evans, D. J. and Holian, B. L.
The Nosé-Hoover thermostat. J. Chem. Phys., 83: 4069, 1985.
[167] Evans, D. J. and Sarman, S.
Equivalence of thermostatted nonlinear responses. Phys. Rev. E, 48: 65, 1993.
[168] Liem, S. Y.
Brown, D. and Clarke, J. H. R.
Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys. Rev. A, 45: 3706, 1992.
[169] Padilla, P. and Toxvaerd, S.
Simulating shear flow. J. Chem. Phys., 104: 5956, 1996.
[170] Daivis, P. J.
Dalton, B. A. and Morishita, T.
Effect of kinetic and configurational thermostats on claculations of the first normal stress coefficient in nonequilibrium molecular dynamics simulations. Phys. Rev. E, 86: 056707, 2012.
[171] Petravic, J.
Time dependence of phase variables in a steady shear flow algorithm. Phys. Rev. E, 71: 011202, 2005.
[172] Daivis, P. J. and Todd, B. D.
Frequency dependent elongational viscosity by nonequilibrium molecular dynamics. Int. J. Thermophys., 19: 1063, 1998.
[173] Baranyai, A. and Evans, D. J.
New algorithm for constrained molecular-dynamics simulation of liquid benzene and naphthalene. Molec. Phys., 70(1): 53, 1990.
[174] Bright, J. N.
Evans, D. J. and Searles, D. J.
New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint. J. Chem. Phys., 122: 194106, 2005.
[175] Sarman, S.
Evans, D. J. and Baranyai, A.
Extremum properties of the Gaussian thermostat. Physica A, 208: 191, 1994.
[176] Evans, D. J.
Cohen, E. G. D. and Morriss, G. P.
Viscosity of a simple fluid from its maximal Lyanpunov exponents. Phys. Rev. A, 42: 5990, 1990.
[177] Sarman, S.
Evans, D. J. and Morriss, G. P.
Conjugate pairing rule and thermal-transport coefficients. Phys. Rev. A, 45: 2233–2242, 1992.
[178] Ditolla, F. D. and Ronchetti, M.
Applicability of Nosé isothermal reversible dynamics. Phys. Rev. E, 48: 1726, 1993.
[179] Holian, B. L.
Voter, A. F. and Ravelo, R.
Thermostatted molecular-dynamics – how to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys. Rev. E, 52: 2338, 1995.
[180] Toxvaerd, S. and Olsen, O. H.
Canonical molecular-dynamics of molecules with internal degrees of freedom. Ber. Bunsenges. Phys. Chem., 93: 274, 1990.
[181] Martyna, G. J.
Klein, M. L. and Tuckerman, M. E.
Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 97: 2635, 1992.
[182] Branka, A. C.
Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation. Phys. Rev. E, 61: 4769, 2000.
[183] Branka, A. C.
Kowalik, M. and Wojciechowski, K. W.
Generalization of the Nosé-Hoover approach. J. Chem. Phys., 119: 1929, 2003.
[184] Erpenbeck, J. J.
Shear viscosity of the hard-sphere fluid via nonequilibrium moleculardynamics. Phys. Rev. Lett., 52: 1333, 1984.
[185] Evans, D. J. and Morriss, G. P.
Shear thickening and turbulence in simple fluids. Phys. Rev. Lett., 56: 2172, 1986.
[186] Delhommelle, J.
Petravic, J. and Evans, D. J.
Reexamination of string phase and shear thickening in simple fluids. Phys. Rev. E, 68: 031201, 2003.
[187] Loose, W. and Hess, S.
Rheology of dense model fluids via nonequilibrium molecular dynamics – shear thinning and ordering transition. Rheol. Acta, 28: 91, 1989.
[188] Evans, D. J.
Cui, S. T.
Hanley, H. J. M. and Straty, G. C.
Conditions for the existence of a reentrant solid-phase in a sheared atomic fluid. Phys. Rev. A, 46: 6731, 1992.
[189] Delhommelle, J.
Petravic, J. and Evans, D. J.
On the effects of assuming flow profiles in nonequilibrium simulations. J. Chem. Phys., 119: 11005, 2003.
[190] Delhommelle, J. and Evans, D. J.
Comparison of thermostatting mechanisms in NVT and NPT simulations of decane under shear. J. Chem. Phys., 115: 43, 2001.
[191] Kusnezov, D.
Bulgac, A. and Bauer, W.
Canonical ensembles from chaos. Ann. Phys., 204: 155, 1990.
[192] Braga, C. and Travis, K. P.
Configurational constant pressure molecular dynamics. J. Chem. Phys., 124: 104102, 2006.
[193] Tuckerman, M. E.
Mundy, C. J.
Balasubramanian, S. and Klein, M. L.
Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys., 106: 5615, 1997.
[194] Evans, D. J. and Morriss, G. P.
Isothermal-isobaric molecular dynamics. Chem. Phys., 77: 63, 1983.
[195] Melchionna, S.
Ciccotti, G. and Holian, B. L.
Hoover NPT dynamics for systems varying in shape and size. Mol. Phys., 78: 533, 1993.
[196] Bernardi, S.
Private communication.
[197] Daivis, P. J.
Matin, M. L. and Todd, B. D.
Nonlinear shear and elongational rheology of model polymer melts by non-equilibrium molecular dynamics. J. Non-Newtonian Fluid Mech., 111: 1, 2003.
[198] Frascoli, F. and Todd, B. D.
Molecular dynamics simulation of planar elongational flow at constant pressure and constant temperature. J. Chem. Phys., 126: 044506, 2007.
[199] Perkins, T. T.
Smith, D. E.
Larson, R. G. and Chu, S.
Stretching of a single tethered polymer in a uniform flow. Science, 268: 83, 1995.
[200] Dobson, M.
Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows. J. Chem. Phys., 141: 184103, 2014.
[201] Hunt, T. A.
Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration. Molec. Simul., 42: 347, 2016.
[202] Cifre, H. J. G., Hess, S. and Kröger, M.
Linear viscoelastic behavior of unentangled polymer melts via non-equilibrium molecular dynamics. Macromol. Theory Simul., 13: 748, 2004.
[203] Barnes, H. A.
Hutton, J. F. and Walters, K.
An Introduction to Rheology. Elsevier, Amsterdam, 1989.
[204] Jain, A.
Sasmal, C.
Hartkamp, R.
Todd, B. D. and Prakash, J. R.
Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations. Chem. Eng. Sci., 121: 245, 2015.
[205] Adler, P. M. and Brenner, H.
Spatially periodic suspensions of convex particles in linear shear flows. 1. Description and kinematics. Int. J. Multiphase Flow, 11: 361, 1985.
[206] Adler, P. M.
Zuzovsky, M. and Brenner, H.
Spatially periodic suspensions of convex particles in linear shear flows. Int. J. Multiphase Flow, 11: 387, 1985.
[207] Ge, J.
Marcelli, G.
Todd, B. D. and Sadus, R. J.
Energy and pressure of fluids under shear at different state points. Phys. Rev. E, 64: 021201, 2001.
[208] Ge, J.
Marcelli, G.
Todd, B. D. and Sadus, R. J.
Erratum: Energy and pressure of fluids under shear at different state points. Phys. Rev. E, 65: 069901(E), 2002.
[209] Ge, J.
Todd, B. D.
Wu, G. and Sadus, R. J.
Scaling behaviour for the pressure and energy of shearing fluids. Phys. Rev. E, 67: 061201, 2003.
[210] Todd, B. D.
Power-law exponents for the shear viscosity of non-Newtonian simple fluids. Phys. Rev. E, 72: 041204, 2005.
[211] Desgranges, C. and Delhommelle, J.
Universal scaling law for energy and pressure in a shearing fluid. Phys. Rev. E, 79: 052201, 2009.
[212] Travis, K. P.
Searles, D. J. and Evans, D. J.
Strain rate dependent properties of a simple fluid. Mol. Phys., 95: 195, 1998.
[213] Ferrario, M.
Ciccotti, G.
Holian, B. L. and Ryckaert, J. P.
Shear-rate dependence of the viscosity of the Lennard-Jones liquid at the triple point. Phys. Rev. A, 44: 6936, 1991.
[214] Daivis, P. J.
Thermodynamic relationships for shearing linear viscoelastic fluids. J. Non-Newtonian Fluid Mech., 152: 120, 2008.
[215] Daivis, P. J. and Evans, D. J.
Thermal conductivity of a shearing fluid. Phys. Rev. E, 48: 1058, 1993.
[216] Spiegel, M. R.
Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill, Singapore, 1974.
[217] Daivis, P. J.
Matin, M. L. and Todd, B. D.
Nonlinear shear and elongational rheology of model polymer melts at low strain rates. J. Non-Newtonian Fluid Mech., 147: 35, 2007.
[218] Ge, J.
Wu, G.-W.
Todd, B. D. and Sadus, R. J.
Equilibrium and nonequilibrium molecular dynamics methods for detemining solid-liquid phase coexistence at equilibrium. J. Chem. Phys., 119(21): 11017, 2003.
[219] Matin, M. L.
Todd, B. D. and Daivis, P. J.
Various aspects of non-equilibrium molecular dynamics simulation of polymer rheology. Swinburne University Internal Report, 2003.
[220] Green, H. S.
The Molecular Theory of Fluids. North-Holland Interscience, New York, 1952.
[221] Pryde, J. A.
The Liquid State. Hutchinson University Library, London, 1966.
[222] Hanley, H. J. M. and Evans, D. J.
Equilibrium and non-equilibrium radial distribution functions in mixtures. Mol. Phys., 39: 1039, 1980.
[223] Hess, S.
Shear-flow-induced distortion of the pair-correlation function. Phys. Rev. A, 22: 2844, 1980.
[224] Hess, S.
Similarities and differences in the non-linear flow behavior of simple and molecular liquids. Physica A, 118: 79, 1983.
[225] Kalyuzhnyi, Y. V.
Cui, S. T.
Cummings, P. T. and Cochran, H. D.
Distribution functions of a simple fluid under shear: Low shear rates. Phys. Rev. E, 60: 1716, 1999.
[226] Gan, H. H. and Eu, B. C.
Theory of the nonequilibrium structure of dense simple fluids – effects of shearing. Phys. Rev. A, 45: 3670, 1992.
[227] Gan, H. H. and Eu, B. C.
Theory of the nonequilibrium structure of dense simple fluids – effects of shearing. 2. High-shear-rate effects. Phys. Rev. A, 46: 6344, 1992.
[228] Ge, J.
The State Point Dependence of Classical Fluids under Shear. PhD thesis, Swinburne University of Technology, 2004.
[229] Desgranges, C. and Delhommelle, J.
Rheology of liquid fcc metals: Equilibrium and transient-time correlation-function nonequilibrium molecular dynamics simulations. Phys. Rev. B, 78: 184202, 2008.
[230] Desgranges, C. and Delhommelle, J.
Shear viscosity of liquid copper at experimentally accessible shear rates: Application of the transient-time correlation function formalism. J. Chem. Phys., 128: 084506, 2008.
[231] Desgranges, C. and Delhommelle, J.
Molecular simulation of transport in nanopores: Application of the transient-time correlation function formalism. Phys. Rev. E, 77: 027701, 2008.
[232] Desgranges, C. and Delhommelle, J.
Estimating the conductivity of a nanoconfined liquid subjected to an experimentally accessible external field. Mol. Simul., 34: 177, 2008.
[233] Pan, G. and McCabe, C.
Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. J. Chem. Phys., 125: 194527, 2006.
[234] Hartkamp, R.
Bernardi, S. and Todd, B. D.
Transient-time correlation function applied to mixed shear and elongational flows. J. Chem. Phys., 136: 064105, 2012.
[235] Evans, D. J.
Homogeneous NEMD algorithm for thermal conductivity application of noncanonical linear response theory. Phys. Lett. A, 91: 457, 1982.
[236] Wood, W. W.
Long-time tails of the Green – Kubo integrands for a binary mixture. J. Stat. Phys., 57: 675, 1989.
[237] Evans, D. J. and Hanley, H. J. M.
Heat induced instability in a model liquid. Molec. Phys., 68: 97, 1989.
[238] Hansen, D. P. and Evans, D. J.
A generalized heat flow algorithm. Mol. Phys., 81: 767, 1994.
[239] Evans, D. J.
Thermal conductivity of the Lennard-Jones fluid. Phys. Rev. A, 34: 1449, 1986.
[240] Galamba, N.
de Castro, C. A. N. and Ely, J. F.
Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides. J. Chem. Phys., 126: 204511, 2007.
[241] Tyrrell, H. J. V. and Harris, K. R.
Diffusion in Liquids. Elsevier, 1984.
[242] MacGowan, D. and Evans, D. J.
Heat and matter transport in binary-liquid mixtures. Phys. Rev. A, 34: 2133, 1986.
[243] Sarman, S.
Evans, D. J. and Cummings, P. T.
Recent developments in non-Newtonian molecular dynamics. Phys. Rep., 305: 1, 1998.
[244] Sarman, S. and Evans, D. J.
Heat flow and mass diffusion in binary Lennard-Jones mixtures. Phys. Rev. A, 45: 2370, 1992.
[245] Sarman, S. and Evans, D. J.
Heat flow and mass diffusion in binary Lennard-Jones mixtures. II. Phys. Rev. A, 46: 1960, 1992.
[246] Maginn, E. J.
Bell, A. T. and Theodorou, D. N.
J. Phys. Chem., 97: 4173, 1993.
[247] Wheeler, D. R. and Newman, J.
Molecular dynamics simulations of multicomponent diffusion. 2. Nonequilibrium method. J. Phys. Chem. B, 108: 18362, 2004.
[248] MacGowan, D. and Evans, D. J.
A comparison of NEMD algorithms for thermal conductivity. Phys. Lett. A, 117: 414, 1986.
[249] MacGowan, D. and Evans, D. J.
Addendum to heat and matter transport in binary-liquid mixtures. Phys. Rev. A, 36: 948, 1987.
[250] Evans, D. J. and Cummings, P. T.
Non-equilibrium molecular dynamics algorithm for the calculation of thermal diffusion in simple fluid mixtures. Molec. Simul., 72: 893, 1991.
[251] Perronace, A.
Simon, J.-M.
Rousseau, B. and Ciccotti, G.
Flux expression and NEMD perturbations for models of semi-flexible molecules. Molec. Phys., 99(13): 1139, 2001.
[252] Mandadapu, K.
Jones, R. E. and Papadopoulos, P.
A homogeneous nonequilibrium molecular dynamics method for calculating the heat transport coefficient of mixtures and alloys. J. Chem. Phys., 133: 034122, 2010.
[253] Perronace, A.
Leppla, C.
Leroy, F.
Rousseau, B. and Wiegand, S.
Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane and n-decane mixtures. J. Chem. Phys., 116: 3718, 2002.
[254] Kirkwood, J. G. and Buff, F. P.
The statistical mechanical theory of solutions. I. J. Chem. Phys., 19: 774, 1951.
[255] Miller, N. A. T., Daivis, P. J.
Snook, I. K. and Todd, B. D.
Computation of thermodynamic and tranport properties to predict thermophoretic effects in an argon-krypton mixture. J. Chem. Phys., 139: 144504, 2013.
[256] Hansen, J.-P. and McDonald, I. R.
Theory of Simple Liquids. Academic Press, 3rd edition, 2006.
[257] Krüger, P.
Bedeaux, D.
Schnell, S. K.
Kjelstrup, S.
Vlugt, T. J. H. and Simon, J.-M.
Kirkwood-buff integrals for finite volumes. J. Phys. Chem. Lett., 4: 235, 2013.
[258] Nichols, J. W.
Moore, S. G. and Wheeler, D. R.
Improved implementation of Kirkwood-Buff solution theory in periodic molecular simulations. Phys. Rev. E, 80: 051203, 2009.
[259] Hannam, S. D. W.
Daivis, P. J. and Bryant, G.
Dynamics of a model colloidal suspension from dilute to freezing. Submitted, 2016.
[260] Zhou, Y. and Miller, G. H.
Green–Kubo formulas for mutual difusion coefficients in multicomponent systems. J. Phys. Chem., 100: 5516, 1996.
[261] Evans, D. J. and Murad, S.
Thermal conductivity in molecular fluids. Molec. Phys., 68(6): 1219, 1989.
[262] Daivis, P. J. and Evans, D. J.
Non-equilibrium molecular dynamics calculation of thermal conductivity of flexible molecules: butane. Mol. Phys., 81: 1289, 1994.
[263] Daivis, P. J. and Evans, D. J.
Temperature dependence of the thermal conductivity for two models of liquid butane. Chem. Phys., 198: 25, 1995.
[264] Marechal, G. and Ryckaert, J. P.
Atomic versus molecular description of transport properties in polyatomic fluids: n-butane as an illustration. Chem. Phys. Lett., 101: 548, 1983.
[265] Toxvaerd, S.
Molecular dynamics calculation of the equation of state of alkanes. J. Chem. Phys., 93(6): 4290, 1990.
[266] Reith, D.
Pütz, M. and Müller-Plathe, F.
Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem., 24: 1624, 2003.
[267] Shell, M. S.
The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys., 129: 144108, 2008.
[268] Potestio, R.
Peter, C. and Kremer, K.
Computer simulations of soft matter: Linking the scales. Entropy, 16: 4199, 2014.
[269] Raabe, G. and Sadus, R. J.
Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water. J. Chem. Phys., 137: 104512, 2012.
[270] Evans, D. J. and Murad, S.
Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Molec. Phys., 34(2): 327, 1977.
[271] Hess, S.
Rheological properties via nonequilibrium molecular dynamics: From simple towards polymeric liquids. J. Non-Newtonian Fluid Mech., 23: 305, 1987.
[272] Warner, H. R. Jr.
Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam., 11(3): 379, 1972.
[273] Grest, G. S. and Kremer, K.
Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A, 33(5): 3628, 1986.
[274] Kremer, K. and Grest, G. S.
Dynamics of entangled linear polymer melts – a moleculardynamics simulation. J. Chem. Phys., 92: 5057, 1990.
[275] Snook, I.
Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems. Elsevier, Amsterdam, 2007.
[276] Johnson, J. K.
Müller, E. A. and Gubbins, K. E.
Equation of state for Lennard-Jones chains. J. Phys. Chem., 98: 6413, 1994.
[277] Ryckaert, J.-P. and Bellemans, A.
Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett., 30(1): 123, 1975.
[278] Ryckaert, J.-P.
Ciccotti, G. and Berendsen, H. J. C.
Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 23: 327, 1977.
[279] Andersen, H. C.
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52: 24, 1983.
[280] Martyna, G. J.
Tuckerman, M. E.
Tobias, D. J. and Klein, M. L.
Explicit reversible integrators for extended systems dynamics. Molec. Phys., 87(5): 1117, 1996.
[281] Balasubramanian, S. C. J. Mundy, and M. L. Klein. Shear viscosity of polar fluids: Molecular dynamics calculations of water. J. Chem. Phys., 105(24): 11190, 1996.
[282] Edberg, R.
Evans, D. J. and Morriss, G. P.
Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm. J. Chem. Phys., 84: 6933, 1986.
[283] Baranyai, A. and Evans, D. J.
NEMD investigation of the rheology of oblate molecules: shear flow in liquid benzene. Molec. Phys., 71(4): 835, 1990.
[284] Ciccotti, G.
Ferrario, M. and Ryckaert, J.-P.
Molecular dynamics of rigid systems in cartesian coordinates: A general formulation. Molec. Phys., 47(6): 1253, 1982.
[285] Morriss, G. P. and Evans, D. J.
A constraint algorithm for the computer simulation of complex molecular liquids. Comput. Phys. Commun., 62: 267, 1991.
[286] Olmsted, R. D. and Snider, R. F.
Differences in fluid dynamics associated with an atomic versus a molecular description of the same system. J. Chem. Phys., 65: 3407, 1976.
[287] Yamakawa, H.
Modern Theory of Polymer Solutions. Harper & Row, New York, 1971.
[288] Allen, M. P.
Atomic and molecular representations of molecular hydrodynamic variables. Mol. Phys., 52: 705, 1984.
[289] Ciccotti, G. and Ryckaert, J. P.
Molecular dynamics simulation of rigid molecules. Computer Physics Reports, 4: 345, 1986.
[290] Edberg, R.
Evans, D. J. and Morriss, G. P.
On the nonlinear Born effect. Mol. Phys., 62: 1357, 1987.
[291] Cui, S. T.
Cummings, P. T. and Cochran, H. D.
The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors. Mol. Phys., 88: 1657, 1996.
[292] Evans, D. J.
Non-equilibrium molecular dynamics study of the rheological properties of diatomic liquids. Mol. Phys., 42: 1355, 1981.
[293] Travis, K. P.
Daivis, P. J. and Evans, D. J.
Computer simulation algorithms for molecules undergoing planar Couette flow: A nonequilibrium molecular dynamics study. J. Chem. Phys., 103: 1109, 1995.
[294] Travis, K. P.
Daivis, P. J. and Evans, D. J.
Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine. J. Chem. Phys., 103: 10638, 1995.
[295] Travis, K. P.
Daivis, P. J. and Evans, D. J.
Erratum: Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine. J. Chem. Phys., 105: 3893, 1996.
[296] Baranyai, A.
Evans, D. J. and Daivis, P. J.
Isothermal shear-induced heat flow. Phys. Rev. A, 46: 7593, 1992.
[297] Edberg, R.
Morriss, G. P. and Evans, D. J.
Rheology of n-alkanes by nonequilibrium molecular dynamics. J. Chem. Phys., 86: 4555, 1987.
[298] Cummings, P. T. and Evans, D. J.
Nonequilibrium molecular dynamics approaches to transport properties and non-newtonian fluid rheology. Ind. Eng. Chem. Res., 31: 1237, 1992.
[299] Reynolds, O.
On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Phil. Mag., 20(127): 469, 1885.
[300] Tildesley, D. J. and Madden, P. A.
Time correlation functions for a model of liquid carbon disulphide. Molec. Phys., 48(1): 129, 1983.
[301] Prathiraja, P.
Daivis, P. J. and Snook, I. K.
A molecular simulation study of shear viscosity and thermal conductivity of liquid carbon disulphide. J. Mol. Liq., 154: 6, 2010.
[302] Matin, M. L.
Daivis, P. J. and Todd, B. D.
Comparison of planar Couette flow and planar elongational flow for systems of small freely jointed chain molecules. J. Chem. Phys., 113: 9122, 2000.
[303] Matin, M. L.
Daivis, P. J. and Todd, B. D.
Erratum: “Comparison of planar Couette flow and planar elongational flow for systems of small freely jointed chain molecules” [J. Chem. Phys. 113, 9122 (2000)]. J. Chem. Phys., 115: 5338, 2001.
[304] Matin, M. L.
Daivis, P. J. and Todd, B. D.
Cell neighbour list method for planar elongational flow: rheology of a diatomic fluid. Comput. Phys. Commun., 151: 35, 2003.
[305] Müller-Plathe, F.
Coarse-graining in polymer simulation: From the atomic to the mesoscopic scale and back. ChemPhysChem, 3: 754, 2002.
[306] Padding, J. T. and Briels, W. J.
Coarse-grained molecular dynamics simulations of polymer melts in transient and steady shear flow. J. Chem. Phys., 118: 10276, 2003.
[307] Kröger, M.
Loose, W. and Hess, S.
Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics. J. Rheol., 37: 1057, 1993.
[308] Ferry, J. D.
Viscoelastic Properties of Polymers. Wiley, New York, 1980.
[309] Kröger, M. and Hess, S.
Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics. Phys. Rev. Lett., 85: 1128, 2000.
[310] Bosko, J. T.
Todd, B. D. and Sadus, R. J.
Viscoelastic properties of dendrimers in the melt by nonequilibrium molecular dynamics. J. Chem. Phys., 121: 12050, 2004.
[311] Hunt, T. A. and Todd, B. D.
A comparison of model linear chain molecules with constrained and flexible bond lengths under planar Couette and extensional flows. Mol. Simul., 35: 1153, 2009.
[312] Prud'homme, R. K. and Bird, R. B.
The dilational properties of suspensions of gas bubbles in incompressible Newtonian and non-Newtonian fluids. J. Non-Newtonian Fluid Mech., 3: 261, 1977/1978.
[313] Sarman, S.
Daivis, P. J. and Evans, D. J.
Self-diffusion of rodlike molecules in strong shear fields. J. Chem. Phys., 47: 1784, 1993.
[314] Hunt, T. A.
Diffusion of linear polymer melts in shear and extensional flows. J. Chem. Phys., 131: 054904, 2009.
[315] Stokes, G. G.
Mathematical and Physical Papers. Volume 1. Oxford Press, Oxford, 1880.
[316] Clarke, C. and Carswell, R.
Principles of Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge, 1995.
[317] Rubbert, G. and Saaris, G.
A general three-dimensional potential-flow method applied to V/STOL aerodynamics. SAE, 680304: 945, 1968.
[318] Tabeling, P.
Introduction to Microfluidics. Oxford University Press, New York, 2005.
[319] Bruus, H.
Theoretical Microfluidics. Oxford University Press, New York, 2008.
[320] Travis, K. P. and Gubbins, K. E.
Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J. Chem. Phys., 112: 1984, 2000.
[321] Alley, W. E. and Alder, B. J.
Generalised transport coefficients for hard spheres. Phys. Rev. A, 27: 3158, 1983.
[322] Todd, B. D.
Hansen, J. S. and Daivis, P. J.
Non-local shear stress for homogeneous fluids. Phys. Rev. Lett., 100: 195901, 2008.
[323] Hess, S.
Viscoelasticity of a simple liquid in the pre-freezing regime. Phys. Lett. A, 90: 293, 1982.
[324] Hansen, J. S.
Daivis, P. J.
Travis, K. P. and Todd, B. D.
Parameterisation of the nonlocal viscosity kernel for an atomic fluid. Phys. Rev. E, 76: 041121, 2007.
[325] Bertolini, D. and Tani, A.
Generalized hydrodynamics and the acoustic modes of water – theory and simulation results. Phys. Rev. E, 51: 1091, 1995.
[326] Bertolini, D. and Tani, A.
Stress tensor and viscosity of water – molecular-dynamics and generalized hydrodynamics results. Phys. Rev. E, 52: 1699, 1995.
[327] Puscasu, R. M.
Todd, B. D.
Daivis, P. J. and Hansen, J. S.
Viscosity kernel of molecular fluids: butane and polymer melts. Phys. Rev. E, 82: 011801, 2010.
[328] Puscasu, R. M.
Todd, B. D.
Daivis, P. J. and Hansen, J. S.
Non-local viscosity of polymer melts approaching their glassy state. J. Chem. Phys., 133: 144907, 2010.
[329] Travis, K. P.
Searles, D. J. and Evans, D. J.
On the wavevector dependent shear viscosity of a simple fluid. Mol. Phys., 97: 415, 1999.
[330] Todd, B. D. and Evans, D. J.
Temperature profile for Poiseuille flow. Phys. Rev. E, 55: 2800, 1997.
[331] Daivis, P. J. and Coelho, J. L. K.
Generalized Fourier law for heat flow in a fluid with a strong, nonuniform strain rate. Phys. Rev. E, 61: 6003, 2000.
[332] Cordero, P. and Risso, D.
Nonlinear transport laws for low density fluids. Physica A, 257: 36, 1998.
[333] Criado-Sancho, M.
Jou, D. and Casas-Vazquez, J.
Nonequilibrium kinetic temperatures in flowing gases. Phys. Lett. A, 350: 339, 2006.
[334] Casas-Vázquez, and Jou, D.
Nonequilibrium temperature versus local-equilibrium temperature. Phys. Rev. E, 49: 1040, 1994.
[335] Han, M. and Lee, J. S.
Method for calculating the heat and momentum fluxes of inhomogeneous fluids. Phys. Rev. E, 70: 061205, 2004.
[336] Ayton, G.
Jepps, O.G. and Evans, D. J.
On the validity of Fourier's law in systems with spatially varying strain rates. Mol. Phys., 96: 915, 1999.
[337] Todd, B. D. and Evans, D. J.
The heat flux vector for highly inhomogeneous nonequilibrium fluids in very narrow pores. J. Chem. Phys., 103: 9804, 1995.
[338] Hoang, H. and Galliero, G.
Shear viscosity of inhomogeneous fluids. J. Chem. Phys., 136: 124902, 2012.
[339] Dalton, B. A.
Glavatskiy, K. S.
Daivis, P. J.
Todd, B. D. and Snook, I. K.
Linear and nonlinear density response functions for a simple atomic fluid. J. Chem. Phys., 139: 044510, 2013.
[340] Dalton, B. A.
Daivis, P. J.
Hansen, J. S. and Todd, B. D.
Effects of nanoscale inhomogeneity on shearing fluids. Phys. Rev. E, 88: 052143, 2013.
[341] Glavatskiy, K. S.
Dalton, B. A.
Daivis, P. J. and Todd, B. D.
Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity. Phys. Rev. E, 91: 062132, 2015.
[342] Dalton, B. A.
Glavatskiy, K. S.
Daivis, P. J. and Todd, B. D.
Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity. Phys. Rev. E, 92: 012108, 2015.
[343] Hoang, H. and Galliero, G.
Local viscosity of a fluid confined in a narrow pore. Phys. Rev. E, 86: 021202, 2012.
[344] Hoang, H. and Galliero, G.
Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids. J. Phys.: Condens. Matter, 25: 485001, 2013.
[345] Todd, B. D. and Hansen, J. S.
Nonlocal viscous transport and the effect on fluid stress. Phys. Rev. E, 78: 051202, 2008.
[346] Todd, B. D.
Evans, D. J.
Travis, K. P. and Daivis, P. J.
Comment on: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar Couette flows. J. Chem. Phys., 111: 10730, 1999.
[347] Bernardi, S.
Todd, B. D. and Searles, D. J.
Thermostatting highly confined fluids. J. Chem. Phys., 132: 244706, 2010.
[348] De Luca, S.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
A new and effective method for thermostatting confined fluids. J. Chem. Phys.
140: 054502, 2014.
[349] Travis, K. P. and Evans, D. J.
Molecular spin in a fluid undergoing Poiseuille flow. Phys. Rev. E, 55: 1566, 1997.
[350] Couette code was developed byBernardi, S. based on the MD library of Hansen, J. S. (http://www.jshansen.dk/resources.html).
[351] Eringen, A. C.
Contributions to Mechanics. Pergamon, Oxford, 1969.
[352] Travis, K. P.
Todd, B. D. and Evans, D. J.
Poiseuille flow of molecular fluids. Physica A, 240: 315, 1997.
[353] Sarman, S. and Evans, D. J.
Statistical mechanics of viscous flow in nematic fluids. J. Chem. Phys., 99: 9021, 1993.
[354] Kröger, M.
Models for Polymeric and Anisotropic Liquids, volume 675 of Lecture Notes in Physics. Springer, New York, 2005.
[355] Zhang, J.
Hansen, J. S.
Todd, B. D. and Daivis, P. J.
Structural and dynamical properties for confined polymers undergoing planar Poiseuille flow. J. Chem. Phys., 126: 144907, 2007.
[356] Doi, M.
Introduction to Polymer Physics. Oxford, New York, 1996.
[357] Münstedt, H.
Schmidt, M., and Wassner, E.
Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-doppler velocimetry. J. Rheol., 44: 413, 2000.
[358] Robert, L.
Demay, Y. and Vergnes, B.
Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser doppler velocimetry. Rheol. Acta, 43: 89, 2004.
[359] Hansen, J. S.
Daivis, P. J. and Todd, B. D.
Viscous properties of isotropic fluids composed of linear molecules: Departure from the classical Navier-Stokes theory in nano-confined geometries. Phys. Rev. E, 80: 046322, 2009.
[360] Hansen, J. S.
Bruus, H.
Todd, B. D. and Daivis, P. J.
Rotational and spin viscosities of water: Application to nanofluidics. J. Chem. Phys., 133: 144906, 2010.
[361] Hansen, J. S.
Todd, B. D. and Daivis, P. J.
Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow: Effect of molecular rotation. Phys. Rev. E, 77: 066707, 2008.
[362] Hansen, J. S.
Daivis, P. J. and Todd, B. D.
Molecular spin in nano-confined fluidic flows. Microfluid. Nanfluid., 6: 785, 2009.
[363] Hansen, J. S.
Dyre, J. C.
Daivis, P. J.
Todd, B. D. and Bruus, H.
Nanoflow hydrodynamics. Phys. Rev. E, 84: 036311, 2011.
[364] Bonthuis, D. L.
Horinek, D.
Bocquet, L. and Netz, R. R.
Electrohydraulic power conversion in planar nanochannels. Phys. Rev. Lett., 103: 144503, 2009.
[365] Bonthuis, D. L.
Horinek, D.
Bocquet, L. and Netz, R. R.
Electrokinetics at aqueous interfaces without mobile charges. Langmuir, 26: 12614, 2010.
[366] De Luca, S.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
Electropumping of water with rotating electric fields. J. Chem. Phys., 138: 154712, 2013.
[367] De Luca, S.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions. Langmuir, 30: 3095, 2014.
[368] Menzel, A. In preparation, 2016.
[369] Akcasu, A. Z. and Daniels, E.
Fluctuation analysis in simple fluids. Phys. Rev. A, 2: 962, 1970.
[370] Ailawadi, N. K.
Berne, B. J. and Forster, D.
Hydrodynamics and collective angularmomentum fluctuations in molecular fluids. Phys. Rev. A, 3: 1462, 1971.
[371] Boon, J. P. and Yip, S.
Molecular Hydrodynamics. McGraw-Hill, New York, 1980.
[372] Eu, B. C.
Generalised Thermodynamics: The Thermodynamics of Irreversible Processes and Generalised Hydrodynamics. Kluwer, Dordrecht, 2002.
[373] Holian, B. L.
Hoover, W. G.
Moran, B. and Straub, G. K.
Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics. Phys. Rev. A, 22: 2798, 1980.
[374] Holian, B. L. and Lomdahl, P. S.
Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science, 280: 2085, 1998.
[375] Reed, E. J.
Fried, L. E.
Henshaw, W. D. and Tarver, C. M.
Analysis of simulation technique for steady shock waves in materials with analytical equations of state. Phys. Rev. E, 74: 056706, 2006.
[376] Jou, D.
Casas-Vazquez, J. and Lebon, G.
Extended Irreversible Thermodynamics. Springer, Heidelberg, 2001.
[377] Dhont, J. K. G.
A constitutive relation describing the shear-banding transition. Phys. Rev. E, 60: 4534, 1999.
[378] Masselon, C.
Salmon, J.-B. and Colin, A.
Nonlocal effects in flows of wormlike micellar solutions. Phys. Rev. Lett., 100: 038301, 2008.
[379] Schiek, R. L. and Shaqfeh, E. S. G.
A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibers. J. Fluid. Mech., 296: 271, 1995.
[380] Goyon, J.
Colin, A.
Ovarlez, G.
Ajdari, A. and Bocquet, L.
Spatial cooperativity in soft glassy flows. Nature, 454: 84, 2008.
[381] Akhmatskaya, E.
Todd, B. D.
Daivis, P. J.
Evans, D. J.
Gubbins, K. E. and Pozhar, L. A.
A study of viscosity inhomogeneity in porous media. J. Chem. Phys., 106: 4684, 1997.
[382] Travis, K. P. Personal communication.
[383] Palmer, B. J.
Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Phys. Rev. E, 49: 359, 1994.
[384] Smith, B.
Hansen, J. S. and Todd, B. D.
Nonlocal viscosity kernel of mixtures. Phys. Rev. E, 85: 022201, 2012.
[385] Lado, F.
Numerical Fourier transforms in one, two, and three dimensions for liquid state calculations. J. Comput. Phys., 8: 417, 1971.
[386] Puscasu, R. M.
Todd, B. D.
Daivis, P. J. and Hansen, J. S.
An extended analysis of the viscosity kernel for monatomic and diatomic fluids. J. Phys: Condens. Matter, 22: 195105, 2010.
[387] Cadusch, P. J.
Todd, B. D.
Zhang, J. and Daivis, P. J.
A non-local hydrodynamic model for the shear viscosity of confined fluids: analysis of a homogeneous kernel. J. Phys. A: Math. Theor., 41: 035501, 2008.
[388] Glavatskiy, K. S.
Dalton, B. A.
Daivis, P. J. and Todd, B. D.
Non-local viscosity. In preparation.
[389] Dalton, B. A.
Glavatskiy, K. S.
Daivis, P. J. and Todd, B. D.
Non-local density dependent constitutive relations. In preparation.
[390] Dalton, B. A.
The effects of density inhomogeneity and non-locality on nanofluidic flow. PhD thesis, RMIT University, 2014.
[391] Bitsanis, I.
Magda, J. J.
Tirrell, M. and Davis, H. T.
Molecular dynamics of flow in micropores. J. Chem. Phys., 87: 1733, 1987.
[392] Bitsanis, I.
Vanderlick, T. K.
Tirrell, M. and Davis, H. T.
A tractable molecular theory of flow in strongly inhomogeneous fluids. J. Chem. Phys., 89: 3152, 1988.
[393] M, C. L.
Navier, H.
Memoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr., 6: 389, 1823.
[394] Bocquet, L. and Barrat, J.-L.
Hydrodynamic boundary-conditions, correlation-functions, and Kubo relations for confined fluids. Phys. Rev. E, 49: 3079, 1994.
[395] Petravic, J. and Harrowell, P.
On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys., 127: 174706, 2007.
[396] Petravic, J. and Harrowell, P.
On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys., 128: 209901, 2008.
[397] Bhatia, S. K. and Nicholson, D.
Modeling mixture transport at the nanoscale: Departure from existing paradigms. Phys. Rev. Lett., 100: 236103, 2008.
[398] Koplik, J.
Banavar, J. and Willemsen, J.
Molecular-dynamics of fluid-flow at solid-surfaces. Phys. Fluids A, 1: 781, 1989.
[399] Brochard, F. and de Gennes, P. G.
Shear-dependent slippage at a polymer solid interface. Langmuir, 8: 3033, 1992.
[400] Guo, Z.
Zhao, T. S. and Shi, Y.
Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E, 71: 035301, 2005.
[401] Vinogradova, O. I.
Drainage of a thin liquid-film confined between hydrophobic surfaces. Langmuir, 11: 2213, 1995.
[402] Mundy, C. J.
Balasubramanian, S. and Klein, M. L.
Hydrodynamic boundary conditions for confined fluids via a nonequilibrium molecular dynamics simulation. J. Chem. Phys., 105: 3211, 1996.
[403] Heidenreich, S.
Ilg, P. and Hess, S.
Boundary conditions for fluids with internal orientational degrees of freedom: Apparent velocity slip associated with the molecular alignment. Phys. Rev. E, 75: 066302, 2007.
[404] Sokhan, V. P. and Quirke, N.
Slip coefficient in nanoscale pore flow. Phys. Rev. E, 78: 015301, 2008.
[405] Denniston, C. and Robbins, M. O.
General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations. J. Chem. Phys., 125: 214102, 2006.
[406] Cieplak, M.
Koplik, J. and Banavar, J.
Boundary conditions at a fluid-solid interface. Phys. Rev. Lett., 86: 803, 2001.
[407] Huang, K. and Szlufarska, I.
Green–Kubo relation for friction at liquid-solid surfaces. Phys. Rev. E, 89: 032118, 2014.
[408] Hansen, J. S.
Todd, B. D. and Daivis, P. J.
Prediction of fluid velocity slip at solid surfaces. Phys. Rev. E, 84: 016313, 2011.
[409] Kannam, S. K.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
Slip flow in graphene nanochannels. J. Chem. Phys., 135: 144701, 2011.
[410] Kannam, S. K.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys., 136: 024705, 2012.
[411] Kannam, S. K.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
Interfacial slip friction at a fluidsolid cylindrical boundary. J. Chem. Phys., 136: 244704, 2012.
[412] Kannam, S. K.
Todd, B. D.
Hansen, J. S. and Daivis, P. J.
How fast does water flow in carbon nanotubes?
J. Chem. Phys., 138: 094701, 2013.
[413] Hansen, J. S.
Daivis, P. J.
Dyre, J.
Todd, B. D. and Bruus, H.
Generalized extended Navier-Stokes theory. J. Chem. Phys.
138: 034503, 2013.
[414] Hansen, J. S.
Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids. Phys. Rev. E.
88: 032101, 2013.
[415] Hansen, J. S.
Dyer, J. C.
Daivis, P. J.
Todd, B. D. and Bruus, H.
Continuum nanofluidics. Langmuir
31:13275, 2015.