Skip to main content Accessibility help
×
  • Cited by 41
Publisher:
Cambridge University Press
Online publication date:
May 2015
Print publication year:
1998
Online ISBN:
9780511758928

Book description

This 1998 book is both an introduction to, and a survey of, some topics of singularity theory; in particular the studying of singularities by means of differential forms. Here some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss–Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This will be an excellent resource for all researchers whose interests lie in singularity theory, and algebraic or differential geometry.

Reviews

‘Without any doubt, the author has covered a wealth of material on a highly advanced topic in complex geometry, and in this regard he has provided a great service to the mathematical community … he has succeeded in providing a brilliant introduction to, and a comprehensive overview of, this contemporary central subject of complex geometry … the entire text represents an irresistible invitation to the subject, and may be seen as a dependable pathfinder with regard to the vast existing original literature in the field.’

W. Kleinert Source: Zentralblatt für Mathematik und ihre Grenzgebiete

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.