Skip to main content Accessibility help
×
  • Cited by 89
Publisher:
Cambridge University Press
Online publication date:
June 2016
Print publication year:
2016
Online ISBN:
9781316480588

Book description

This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.

Reviews

'This book is devoted to various aspects affirming the importance of martingale techniques throughout the development of modern Banach space theory. … The book is self-contained and is quite accessible with only a basic functional analysis background. In particular, it does not assume any prior knowledge of scalar-valued martingale theory. … It is this reviewer’s opinion that this excellent book will appeal to a wide audience and will become a classic reference in martingale theory.'

Narcisse Randrianantoanina Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] C., Ané, S., Blachère, D., Chafai, P., Fougères, I., Gentil, F., Malrieu, C., Roberto and G., Scheffer, Sur les inégalités de Sobolev logarithmiques, Panoramas and Synthèses 10, Sociéteé Mathématique de France, Paris, 2000.
[2] W., Arveson, A short course on spectral theory, Graduate Texts in Mathematics 209, Springer, New York, 2002.
[3] R., Bañuelos and C., Moore, Probabilistic behavior of harmonic functions, Birkhäuser, Basel, 1999.
[4] B., Beauzamy, Introduction to Banach spaces and their geometry, North-Holland, Amsterdam, 1985.
[5] Y., Benyamini and J., Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1, American Mathematical Society, Providence, RI, 2000.
[6] J., Bergh and J., Löfström, Interpolation spaces: an introduction, Springer, Berlin, 1976.
[7] C., Bennett and R., Sharpley, Interpolation of operators, Academic Press, Boston, 1988.
[8] J., Bourgain, La propriété de Radon-Nikodym, Publications mathématiques de l'Université Pierre et Marie Curie, 36 (1979).
[9] J., Bourgain, New classes of Lp-spaces, Lecture Notes in Mathématics 889, Springer, Berlin, 1981.
[10] R., Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics 993, Springer, Berlin, 1983.
[11] L., Breiman, Probability, corrected reprint of the 1968 original Classics in applied mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992.
[12] Yu. A., Brudnyi and N. Ya., Krugljak, Interpolation functors and interpolation spaces, Vol. I, North-Holland, Amsterdam, 1991.
[13] M., Bruneau, Variation totale d'une fonction, Lecture Notes in Mathematics 413, Springer, New York, 1974.
[14] D. L., Burkholder, Selected works of Donald L. Burkholder, edited by Burgess, Davis and Renming, Song, Springer, New York, 2011.
[15] C., Carathéodory, Conformal representation, 2nd ed., Cambridge University Press, New York, 1952.
[16] G., Choquet, Lectures on analysis, Vol. II: Representation Theory, Benjamin, New York, 1969.
[17] I., Cuculescu and A. G., Oprea, Non-commutative probability, Kluwer, New York, 1994.
[18] C., Dellacherie and P. A., Meyer, Probabilities and potential. B. Theory of martingales, North-Holland, Amsterdam, 1982.
[19] R., Deville, G., Godefroy and V., Zizler, Smoothness and renormings in Banach spaces, PitmanMonographs and Surveys in Pure and Applied Mathematics 64, John Wiley, New York, 1993.
[20] J., Diestel, Geometry of Banach spaces – Selected topics, Springer Lecture Notes 485, Springer, New York, 1975.
[21] J., Diestel and J. J., Uhl Jr., Vector measures, Mathematical Surveys 15, American Mathematical Society, Providence, 1977.
[22] J. L., Doob, Stochastic processes, reprint of the 1953 original, Wiley Classics Library, Wiley-Interscience, New York, 1990.
[23] R., Dudley and R., Norvaiša, Differentiability of six operators on nonsmooth functions and p-variation, with the collaboration of Jinghua Qian, Lecture Notes in Mathematics 1703, Springer, Berlin, 1999.
[24] R., Dudley and R., Norvaiša, Concrete functional calculus, Springer Monographs in Mathematics, Springer, New York, 2011.
[25] P., Duren, Theory of Hp spaces, Academic Press, New York, 1970.
[26] R., Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth, Belmont, CA, 1984.
[27] R., Durrett, Probability: theory and examples, 4th ed., Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2010.
[28] H., Dym and H. P., McKean, Fourier series and integrals, Academic Press, New York, 1972.
[29] G. A., Edgar and L., Sucheston, Stopping times and directed processes, Cambridge University Press, Cambridge, 1992.
[30] R. E., Edwards and G. I., Gaudry, Littlewood–Paley and multiplier theory, Springer, New York, 1977.
[31] E., Effros and Z. J., Ruan, Operator spaces, Oxford University Press, Oxford, 2000.
[32] J., García-Cuerva and J. L, Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
[33] J., Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[34] A. M., Garsia, Martingale inequalities: seminar notes on recent progress,Mathematics Lecture Notes Series, W. A. Benjamin, Reading, MA, 1973.
[35] I., Gikhman and A., Skorokhod, The theory of stochastic processes, III, reprint of the 1974 edition, Springer, Berlin, 2007.
[36] L., Grafakos, Classical Fourier analysis, Springer, New York, 2008.
[37] L., Grafakos, Modern Fourier analysis, Springer, New York, 2009.
[38] P., Hàjek, S. Montesinos, Santalucša, J., Vanderwerff and V., Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC 26, Springer, New York, 2008.
[39] H., Helson, Lectures on invariant subspaces, Academic Press, New York, 1964.
[40] K., Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, NJ, 1962.
[41] L., Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, NJ, 1966.
[42] L., Hörmander, Notions of convexity, Birkhäuser, Boston, 1994.
[43] R., Kadison and J., Ringrose, Fundamentals of the theory of operator algebras, Vol. II, Advanced theory, Academic Press, New York, 1986.
[44] J. P., Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics 5, Cambridge University Press, Cambridge, 1985.
[45] N., Kalton, N., Peck and J., Roberts, An F-space sampler, London Mathematical Society Lecture Note Series 89, Cambridge University Press, Cambridge, 1984.
[46] B., Kashin and A., Saakyan, Orthogonal series, Translations of Mathematical Monographs 75, American Mathematical Society, Providence, RI, 1989.
[47] T., Kato, Perturbation theory for linear operators, reprint of the 1980 edition, Classics in Mathematics, Springer, Berlin, 1995.
[48] Y., Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge University Press, Cambridge, 2004.
[49] P., Koosis, Introduction to Hp-spaces, 2nd ed., Cambridge University Press, Cambridge, 1998.
[50] O., Kouba and A., Pallarès, Groupe de travail sur les espaces de Banach (B. Maurey et G. Pisier, 1986-1987), handwritten lecture notes.
[51] S. G., Krein, Yu., Petunin and E. M., Semenov, Interpolation of linear operators, Translations of Mathematical Monographs 54, American Mathematical Society, Providence, RI, 1982.
[52] S., Kwapień and W., Woyczyński, Random series and stochastic integrals: single and multiple, Birkhäuser, Boston, 1992.
[53] M., Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs 89, American Mathematical Society, Providence, RI, 2001.
[54] M., Ledoux and M., Talagrand, Probability in Banach Spaces: isoperimetry and processes, Springer, Berlin, 1991.
[55] Le, Gall, Mouvement brownien, martingales et calcul stochastique, Springer, Heidelberg, 2013.
[56] D., Li and H., Queffélec, Introduction. l'étude des espaces de Banach, Analyse et probabilités, Société Mathématique de France, Paris, 2004.
[57] J., Lindenstrauss and L., Tzafriri. Classical Banach spaces II, Springer, New York, 1979.
[58] R., Long, Martingale spaces and inequalities, Peking University Press, Beijing, 1993.
[59] V., Mandrekar and B., Rüdiger, Stochastic integration in Banach spaces, Springer, New York, 2015.
[60] M., Marcus and G., Pisier, Random Fourier series with applications to harmonic analysis, Princeton University Press, Princeton, NJ, 1981.
[61] M., Métivier, Semimartingales: a course on stochastic processes, Walter de Gruyter, Berlin, 1982.
[62] M., Métivier and J., Pellaumail, Stochastic integration, Probability and Mathematical Statistics, Academic Press, New York, 1980.
[63] P. A., Meyer, Probabilités et potentiel, Hermann, Paris, 1966.
[64] P. A., Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités 10, Lecture Notes in Mathematics 511, Springer, Berlin, 1976.
[65] P. A., Meyer, Quantum probability for probabilists, Lecture Notes in Mathematics 1538, Springer, Berlin, 1993.
[66] P., Meyer-Nieberg, Banach lattices, Springer, Berlin, 1991.
[67] H. P., McKean Jr., Stochastic integrals, Academic Press, New York, 1969.
[68] V., Milman and G., Schechtman, Asymptotic theory of finite-dimensional normed spaces, with an appendix by M., Gromov, Lecture Notes in Mathematics 1200, Springer, Berlin, 1986.
[69] P., Mörters and Y., Peres, Brownian motion, with an appendix by Oded, Schramm and Wendelin, Werner, Cambridge University Press, Cambridge, 2010.
[70] P. F. X., Müller, Isomorphisms between H1 spaces,Monografie Matematyczne (New Series) 66, Birkhäuser, Basel, 2005.
[71] J., Neveu, Discrete-parameter Martingales, translated from the French by T. P., Speed, rev. ed., North-Holland Mathematical Library 10, North-Holland, Amsterdam, 1975.
[72] A., Osękowski, Sharp martingale and semimartingale inequalities, Birkhäuser/Springer, Basel, 2012.
[73] M. I., Ostrovskii, Metric embeddings, Bilipschitz and coarse embeddings into Banach spaces, De Gruyter, Berlin, 2013.
[74] K. R., Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Mathematics, Birkhäuser, Basel, 1992.
[75] M. C., Pereyra and L., Ward, Harmonic analysis: from Fourier to wavelets, Institute for Advanced Study (IAS), Princeton, NJ, 2012.
[76] K., Petersen, Brownian motion, Hardy spaces, and bounded mean oscillation, Cambridge University Press, Cambridge, 1977.
[77] R. R., Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics 1364, Springer, Berlin, 1993.
[78] A., Pietsch, Operator ideals, North-Holland, Amsterdam, 1980.
[79] G., Pisier, The volume of convex bodies and Banach space geometry, Cambridge University Press, Cambridge, 1989.
[80] G., Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series 294, Cambridge University Press, Cambridge, 2003.
[81] D., Revuz and M., Yor, Continuous martingales and Brownian motion, 3rd ed., Springer, Berlin, 1999.
[82] A. W., Roberts and D. E., Varberg, Convex functions, Pure and Applied Mathematics 57, Academic Press, New York, 1973.
[83] L. C. G., Rogers and D., Williams, Diffusions, Markov processes, and martingales, Vol. 2, Itô calculus, Cambridge University Press, Cambridge, 2000.
[84] W., Rudin, Fourier analysis on groups, Interscience, New York, 1962.
[85] E. M., Stein, Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies 63, Princeton University Press, Princeton, NJ, 1970.
[86] E., Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.
[87] E., Stein and R., Shakarchi, Fourier analysis: an introduction, Princeton University Press, Princeton, NJ, 2003.
[88] E., Stein and R., Shakarchi, Complex analysis, Princeton University Press, Princeton, NJ, 2003.
[89] E., Stein and G., Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971.
[90] D. W., Stroock, Probability theory: an analytic view, Cambridge University Press, Cambridge, 1993.
[91] M., Takesaki, Theory of operator algebras I, Springer, New York, 1979.
[92] M., Talagrand, The generic chaining: upper and lower bounds of stochastic processes, Springer Monographs in Mathematics, Springer, Berlin, 2005.
[93] A. E., Taylor, Introduction to functional analysis, John Wiley, New York, 1958.
[94] A. E., Taylor and D. C., Lay, Introduction to functional analysis, 2nd ed., John Wiley, New York, 1980.
[95] H., Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995.
[96] D., Voiculescu, K., Dykema and A., Nica, Free random variables, CRM Monograph Series 1, American Mathematical Society, Providence, RI, 1992.
[97] F., Weisz, MartingaleHardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics 1568, Springer, Berlin, 1994.
[98] P., Wojtaszczyk, A mathematical introduction to wavelets, London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge, 1997.
[99] A., Zygmund, Trigonometric series, Vols. I and II, 3rd ed., Cambridge University Press, Cambridge, 2002.
[100] D., Aldous, Unconditional bases and martingales in Lp(F), Math. Proc. Cambridge Philos. Soc. 85 (1979), 117–123.
[101] M. E., Andersson, On the vector valued Hausdorff-Young inequality, Ark. Mat. 36 (1998), 1–30.
[102] T., Ando, Contractive projections in Lp-spaces, Pacific J. Math. 17 (1966), 391–405.
[103] N. H., Asmar, B. P., Kelly and S., Montgomery-Smith, A note on UMD spaces and transference in vector-valued function spaces, Proc. Edinburgh Math. Soc. (2) 39 (1996), 485–490.
[104] V., Aurich, Bounded holomorphic embeddings of the unit disk into Banach spaces, Manuscripta Math. 45 (1983), 61–67.
[105] V., Aurich, Bounded analytic sets in Banach spaces, Ann. Inst. Fourier (Grenoble) 36 (1986), 229–243.
[106] K., Azuma, Weighted sums of certain dependent random variables, Tôhoku Math. J. 19 (1967), 357–367.
[107] D., Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Mathematics 1581, Springer, Berlin, 1994, 1–114.
[108] K., Ball, Markov, chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992), 137–172.
[109] K., Ball, E., Carlen and E. H., Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), 463–482.
[110] J., Bastero and M., Romance, Random vectors satisfying Khinchine-Kahane type inequalities for linear and quadratic forms, Math. Nach. 278 (2005), 1015–1024.
[111] F., Baudier, Metrical characterization of super-reflexivity and linear type of Banach spaces, Arch. Math. (Basel) 89 (2007), 419–429.
[112] F., Baudier and G., Lancien, Embeddings of locally finite metric spaces into Banach spaces, Proc. Am. Math. Soc. 136 (2008), 1029–1033.
[113] F., Baudier and S., Zhang, (β)-distortion of some infinite graphs, J. London Math. Soc., forthcoming.
[114] A., Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Am. Math. Soc. 13 (1962), 329–334.
[115] W., Beckner, Inequalities in Fourier analysis, Ann. Math. 102 (1975), 159–182.
[116] A., Benedek, A., Calderón and R., Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA 48 (1962), 356–365.
[117] J., Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775–778.
[118] J., Bergh and J., Peetre, On the spaces Vp(0 < p ≤ ∞), Boll. Un. Mat. Ital. 10 (1974), 632–648.
[119] E., Berkson, T. A., Gillespie and P. S., Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. 53 (1986), 489–517.
[120] A., Bernal and J., Cerdà, Complex interpolation of quasi-Banach spaces with an A-convex containing space, Ark. Mat. 29 (1991), 183–201.
[121] A., Bernard and B., Maisonneuve, Décomposition atomique de martingales de la classe H1, in Séminaire de Probabilités, Vol. XI, Lecture Notes in Mathematics 581, Springer, Berlin, 1977, 303–326.
[122] P., Biane and R., Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112 (1998), 373–409.
[123] O., Blasco, Hardy spaces of vector-valued functions: duality, Trans. Am. Math. Soc. 308 (1988), 495–507.
[124] O., Blasco and A., Pełczyński, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Am. Math. Soc. 323 (1991), 335–367.
[125] O., Blasco and S., Pott, Operator-valued dyadic BMO spaces, J. Operator Theory 63 (2010), 333–347.
[126] G., Blower, A multiplier characterization of analytic UMD spaces, Studia Math. 96 (1990), 117–124.
[127] G., Blower and T., Ransford, Complex uniform convexity and Riesz measures, Can. J. Math. 56 (2004), 225–245.
[128] A., Bonami, Étude des coefficients de Fourier des fonctions de Lp (G), Ann. Inst. Fourier (Grenoble) 20 (1970), 335–402.
[129] A., Bonami and D., Lépingle, Fonction maximale et variation quadratique des martingales en présence d'un poids, Séminaire de Probabilités, Vol. XIII, Lecture Notes in Mathematics 721, Springer, Berlin, 1979, 294–306.
[130] J., Bourgain, A nondentable set without the tree property, Studia Math. 68 (1980), 131–139.
[131] J., Bourgain, New Banach space properties of the disc algebra and H∞, Acta Math. 152 (1984), 1–48.
[132] J., Bourgain, On trigonometric series in super reflexive spaces, J. London Math. Soc. 24 (1981), 165–174.
[133] J., Bourgain, A Hausdorff-Young inequality for B-convex Banach spaces, Pacific J. Math. 101 (1982), 255–262.
[134] J., Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163–168.
[135] J., Bourgain, On martingales transforms in finite-dimensional lattices with an appendix on the K-convexity constant, Math. Nachr. 119 (1984), 41–53.
[136] J., Bourgain, Extension of a result of Benedek, Calderón and Panzone, Ark. Mat. 22 (1984), 91–95.
[137] J., Bourgain, Vector valued singular integrals and the H1-BMO duality, in Probability theory and harmonic analysis, edited by Chao–Woyczynski, , Dekker, New York, 1986, 1–19.
[138] J., Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math. 56 (1986), 222–230.
[139] J., Bourgain, Pointwise ergodic theorems for arithmetic sets (Appendix: The return time theorem), Publ. Math. Inst. Hautes Étud. Sci. 69 (1989), 5–45.
[140] J., Bourgain, On the radial variation of bounded analytic functions on the disc, Duke Math. J. 69 (1993), 671–682.
[141] J., Bourgain and W. J., Davis, Martingale transforms and complex uniform convexity, Trans. Am. Math. Soc. 294 (1986), 501–515.
[142] J., Bourgain and M., Lewko, Sidonicity and variants of Kaczmarz's problem, preprint, Arxiv, April 2015.
[143] J., Bourgain and H. P., Rosenthal, Martingales valued in certain subspaces of L1, Israel J. Math. 37 (1980), 54–75.
[144] J., Bourgain and H. P., Rosenthal, Applications of the theory of semi-embeddings to Banach space theory, J. Funct. Anal. 52 (1983), 149–188.
[145] J., Bourgain, H. P., Rosenthal and G., Schechtman, An ordinal Lp-index for Banach spaces, with application to complemented subspaces of Lp, Ann. Math. 114 (1981), 193–228.
[146] J., Bretagnolle, p-variation de fonctions aléatoires, I and II, in Séminaire de Probabilités, Vol. VI, Lecture Notes in Mathematics 258, Springer, Berlin, 1972, 51–71.
[147] J., Briët, A., Naor and O., Regev, Locally decodable codes and the failure of cotype for projective tensor products, Elect. Res. Announ. Math. Sci. 19 (2012), 120–130.
[148] J., Brossard, Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace, Démonstration probabiliste d'un théorème de Calderón et Stein, Sém. Probab. (Strasbourg) 12 (1978), 378–397.
[149] A., Brunel and L., Sucheston, On J-convexity and some ergodic super-properties of Banach spaces, Trans. Am. Math. Soc. 204 (1975), 79–90.
[150] Q., Bu and P., Dowling, Observations about the projective tensor product of Banach spaces, III, Lp[0, 1] X, 1 < p < ∞, Quaest. Math. 25 (2002), 303–310.
[151] S., Bu, Deux remarques sur la propriété de Radon-Nikodym analytique, Ann. Fac. Sci. Toulouse 60 (1990), 79–89.
[152] S., Bu, Existence of radial limits of harmonic functions in Banach spaces, Chin. Ann. Math. Ser. B 13 (1992), 110–117. (Chinese summary in Chin. Ann. Math. Ser. A 13 (1992), 133.)
[153] S., Bu, On the analytic Radon-Nikodym property for bounded subsets in Banach spaces, J. London Math. Soc. 47 (1993), 484–496.
[154] S., Bu, A J-convex subset which is not PSH-convex, Acta Math. Sci. (English Ed.) 14 (1994), 446–450.
[155] S., Bu, A new characterization of the analytic Radon-Nikodym property for bounded subsets (English summary), Northeast. Math. J. 12 (1996), 227–229.
[156] S., Bu, The analytic Krein-Milman property in Banach spaces, Acta Math. Sci. (English Ed.) 18 (1998), 17–24.
[157] S., Bu, The existence of Jensen boundary points in complex Banach spaces, Syst. Sci. Math. Sci. 12 (1999), 8–12.
[158] S., Bu, A new characterisation of the analytic Radon-Nikodym property, Proc. Am. Math. Soc. 128 (2000), 1017–1022.
[159] S., Bu, The existence of radial limits of analytic functions with values in Banach spaces, Chin. Ann. Math. Ser. B 22 (2001), 513–518.
[160] S., Bu and B., Khaoulani, Une caractérization de la propriété de Radon–Nikodym analytique pour les espaces isomorphes à leur carrés, Math. Ann. 288 (1990), 345–360.
[161] S., Bu and C. Le, Merdy, Hp-maximal regularity and operator valued multipliers on Hardy spaces, Can. J. Math. 59 (2007), 1207–1222.
[162] S., Bu and W., Schachermayer, Approximation of Jensen measures by image measures under holomorphic functions and applications, Trans. Am. Math. Soc. 331 (1992), 585–608.
[163] A. V., Bukhvalov and A. A., Danilevich, Boundary properties of analytic and harmonic functions with values in a Banach space (Russian), Mat. Zametki 31 (1982), 203–214. 317. (English translation in Math. Notes 31 (1982), 104–110.(1983).)
[164] D. L., Burkholder, Maximal inequalities as necessary conditions for almost everywhere convergence, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 3 (1964), 75–88.
[165] D. L., Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19–42.
[166] D. L., Burkholder, Brownian motion and the Hardy spaces Hp, in Aspects of contemporary complex analysis, Academic Press, London, 1980, 97–118.
[167] D. L., Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997–1011.
[168] D. L., Burkholder, Martingale transforms and the geometry of Banach spaces, in Probability in Banach spaces, III, Lecture Notes in Mathematics 860, Springer, Berlin, 1981, 35–50.
[169] D. L., Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach space-valued functions, in Conference on Harmonic Analysis in honor of Antoni Zygmund, Vols. I and II (Chicago, Ill., 1981), Wadsworth, Belmont, CA, 1983, 270–286.
[170] D. L., Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647–702.
[171] D. L., Burkholder, Martingales and Fourier analysis in Banach spaces, in Probability and analysis (Varenna, 1985), 61–108, Lecture Notes in Mathematics 1206, Springer, Berlin, 1986, 61–108.
[172] D. L., Burkholder, Sharp inequalities for martingales and stochastic integrals, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), Astérisque 157–158 (1988), 75–94.
[173] D. L., Burkholder, Explorations in martingale theory and its applications, in École d'Été de Probabilités de Saint-Flour XIX – 1989, Lecture Notes in Mathematics 1464, Springer, Berlin, 1991, 1–66.
[174] D. L., Burkholder, Martingales and singular integrals in Banach spaces, in Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, 233–269.
[175] D. L., Burkholder and R. F., Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304.
[176] D. L., Burkholder, R. F., Gundy and M. L., Silverstein, A maximal function characterization of the class Hp, Trans. Am. Math. Soc. 157 (1971), 137–153.
[177] A. P., Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.
[178] S. D., Chatterji, Martingale convergence and the Radon-Nikodým theorem in Banach spaces, Math. Scand. 22 (1968), 21–41.
[179] J., Cheeger and B., Kleiner, Characterization of the Radon-Nikodym property in terms of inverse limits, Astérisque 321 (2008), 129–138.
[180] J., Cheeger and B., Kleiner, Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal. 19 (2009), 1017–1028.
[181] C. H., Chu, A note on scattered C*-algebras and the Radon-Nikodym property, J. London Math. Soc. 24 (1981), 533–536.
[182] F., Cobos and J., Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220–240.
[183] R. R., Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269–274.
[184] R. R., Coifman, M., Cwikel, R., Rochberg, Y., Sagher and G., Weiss, Complex interpolation for families of Banach spaces, in Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 2, Proc. Sympos. Pure Math. XXXV, American Mathematical Society, Providence, RI, 1979, 269–282.
[185] R. R., Coifman, R., Rochberg, G., Weiss, M., Cwikel and Y., Sagher, The complex method for interpolation of operators acting on families of Banach spaces, in Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Mathematics 779, Springer, Berlin, 1980, 123–153.
[186] R. R., Coifman, M., Cwikel, R., Rochberg, Y., Sagher and G., Weiss, A theory of complex interpolation for families of Banach spaces, Adv. Math. 43 (1982), 203–229.
[187] R. R., Coifman and S., Semmes, Interpolation of Banach spaces, Perron processes, and Yang- Mills, Am. J. Math. 115 (1993), 243–278.
[188] J., Conde, A note on dyadic coverings and nondoubling Calderón-Zygmund theory, J. Math. Anal. Appl. 397 (2013), 785–790.
[189] A., Connes, Classification of injective factors: cases II1, II∞, IIIλ, λ ≠ 1, Ann. Math. 104 (1976), 73–115.
[190] M. G., Cowling, G. I., Gaudry and T., Qian, A note on martingales with respect to complex measures, Miniconference on Operators in Analysis (Sydney, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ. 24 (1990), 10–27.
[191] D., Cox, The best constant in Burkholder's weak-L1 inequality for the martingale square function, Proc. Am. Math. Soc. 85 (1982), 427–433.
[192] I., Cuculescu, Martingales on von Neumann algebras, J. Multivariate Anal. 1 (1971), 17–27.
[193] M., Cwikel, On (Lp0 (A0), Lp1 (A1))θ, q, Proc. Am. Math. Soc. 44 (1974), 286–292.
[194] M., Cwikel, Complex interpolation spaces, a discrete definition and reiteration, Indiana Univ. Math. J. 27 (1978), 1005–1009.
[195] M., Cwikel, Lecture notes on duality and interpolation spaces, arxiv 2008.
[196] M., Cwikel and S., Janson, Interpolation of analytic families of operators, Studia Math. 79 (1984), 61–71.
[197] M., Cwikel and S., Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. Math. 66 (1987), 234–290.
[198] M., Cwikel, M., Milman and Y., Sagher, Complex interpolation of some quasi-Banach spaces, J. Funct. Anal. 65 (1986), 339–347.
[199] M., Daher, Une remarque sur la propriété de Radon-Nikodým, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 269–271.
[200] A., Daniluk, Themaximum principle for holomorphic operator functions, Integral Equations Operator Theory 69 (2011), 365–372.
[201] B., Davis. On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187–190.
[202] W. J., Davis, Moduli of complex convexity, in Geometry of Banach spaces (Strobl, 1989), Cambridge University Press, Cambridge, 1990, 65–69.
[203] W. J., Davis, T., Figiel, W. B., Johnson and A., Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
[204] W. J., Davis, D. J. H., Garling and N., Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), 110–150.
[205] W. J., Davis, W. B., Johnson and J., Lindenstrauss, The ln1 problem and degrees of nonreflexivity, Studia Math. 55 (1976), 123–139.
[206] W. J., Davis and J., Lindenstrauss, The n1 problem and degrees of non-reflexivity, II, Studia Math. 58 (1976), 179–196.
[207] M. M., Day, Uniform convexity in factor and conjugate spaces, Ann. Math. 45 (1944), 375–385.
[208] M. M., Day, Some more uniformly convex spaces, Bull. Am. Math. Soc. 47 (1941), 504–507.
[209] C., Demeter, M., Lacey, T., Tao and C., Thiele, Breaking the duality in the return times theorem, Duke Math. J. 143 (2008), 281–355.
[210] S., Dilworth, Complex convexity and the geometry of Banach spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), 495–506.
[211] S., Dineen and R., Timoney, Complex geodesics on convex domains, in Progress in functional analysis (Peniscola, 1990), North-Holland, Amsterdam, 1992, 333–365.
[212] J., Ding, J., Lee and Y., Peres, Markov type and threshold embeddings, Geom. Funct. Anal. 23 (2013), 1207–1229.
[213] R., Douglas, Contractive projections on an L1-space, Pacific J. Math. 15 (1965), 443–462.
[214] P., Dowling and G., Edgar, Some characterizations of the analytic Radon-Nikodým property in Banach spaces, J. Funct. Anal. 80 (1988), 349–357.
[215] P., Dowling, Stability of Banach space properties in the projective tensor product, Quaest. Math. 27 (2004), 1–7.
[216] G., Edgar, A non-compact Choquet theorem, Proc. Am. Math. Soc. 49 (1975), 354–358.
[217] G., Edgar, Analytic martingale convergence, J. Funct. Anal. 69 (1986), 268–280.
[218] G., Edgar, Complex martingale convergence, in Banach spaces. Proceedings, 1984, Lecture Notes in Mathematics 1166, Springer, New York, 1985, 38–59.
[219] G., Edgar and R. F., Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), 317–350.
[220] P., Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J.Math. 13 (1972), 281–288.
[221] T., Fack and H., Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math. 123(1986), 269–300.
[222] C., Fefferman and E., Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193.
[223] T., Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121–155.
[224] T., Figiel, Uniformly convex norms on Banach lattices, Studia Math. 68 (1980), 215–247.
[225] T., Figiel, Singular integral operators: a martingale approach, in Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge University Press, Cambridge, 1990, 95–110.
[226] T., Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polish Acad. Sci. Math. 36 (1988), 119–131.
[227] T., Figiel, J., Lindenstrauss and V., Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.
[228] T., Figiel and G., Pisier, Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses, C.R. Acad. Sci. Paris Sér. A 279 (1974), 611–614.
[229] R., Fortet and E., Mourier, Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach, Studia Math. 15 (1955), 62–79.
[230] J., García-Cuerva, K. S., Kazaryan, V. I., Kolyada and J. L., Torrea, The Hausdorff-Young inequality with vector-valued coefficients and applications, Russian Math. Surveys 53 (1998), 435–513.
[231] D. J. H., Garling, Convexity, smoothness and martingale inequalities, Israel J. Math. 29 (1978), 189–198.
[232] D. J. H., Garling, Brownian motion and UMD-spaces, in Probability and Banach spaces (Zaragoza, 1985), Lecture Notes in Mathematics 1221, Springer, Berlin, 1986, 36–49.
[233] D. J. H., Garling, On martingales with values in a complex Banach space, Math. Proc. Camb. Philos. Soc. 104 (1988), 399–406.
[234] D. J. H., Garling, Random martingale transform inequalities, in Probability in Banach spaces 6 (Sandbjerg, 1986), Progr. Probab. 20, Birkhauser Boston, Boston, 1990, 101–119.
[235] D. J. H., Garling and S., Montgomery-Smith, Complemented subspaces of spaces obtained by interpolation, J. London Math. Soc. 44 (1991), 503–513.
[236] J., Garnett and P., Jones, The distance in BMO to L∞, Ann. Math. 108 (1978), 373–393.
[237] J., Garnett and P., Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351–371.
[238] S., Geiss, A counterexample concerning the relation between decoupling constants and UMD-constants, Trans. Am. Math. Soc. 351 (1999), 1355–1375.
[239] S., Geiss, Contraction principles for vector valued martingales with respect to random variables having exponential tail with exponent 2 < α < ∞, J. Theoret. Probab. 14 (2001), 39–59.
[240] S., Geiss, S., Montgomery-Smith and E., Saksman, On singular integral and martingale transforms, Trans. Am. Math. Soc. 362 (2010), 553–575.
[241] N., Ghoussoub, G., Godefroy, B., Maurey and W., Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Am. Math. Soc. 70 (1987), 120 pp.
[242] N., Ghoussoub andW. B., Johnson, Counterexamples to several problems on the factorization of bounded linear operators, Proc. Am. Math. Soc. 92 (1984), 233–238.
[243] N., Ghoussoub, J., Lindenstrauss and B., Maurey, Analytic martingales and plurisubharmonic barriers in complex Banach spaces, in Banach space theory (Iowa City, IA, 1987), Contemp. Math. 85, American Mathematical Society, Providence, RI, 1989, 111–130.
[244] N., Ghoussoub and B., Maurey, Counterexamples to several problems concerning Gδ-embeddings, Proc. Am. Math. Soc. 92 (1984), 409–412.
[245] N., Ghoussoub and B., Maurey, Gδ-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72–97.
[246] N., Ghoussoub and B., Maurey, The asymptotic-norming and the Radon–Nikodým properties are equivalent in separable Banach spaces, Proc. Am. Math. Soc. 94 (1985), 665–671.
[247] N., Ghoussoub and B., Maurey, Hδ -embedding in Hilbert space and optimization on -sets, Mem. Am. Math. Soc. 62 (1986), 101.
[248] N., Ghoussoub and B., Maurey, Gδ-embeddings in Hilbert space. II, J. Funct. Anal. 78 (1988), 271–305.
[249] N., Ghoussoub and B., Maurey, Plurisubharmonic martingales and barriers in complex quasi- Banach spaces, Ann. Inst. Fourier (Grenoble) 39 (1989), 1007–1060.
[250] N., Ghoussoub, B., Maurey andW., Schachermayer, A counterexample to a problem on points of continuity in Banach spaces, Proc. Am. Math. Soc. 99 (1987), 278–282.
[251] N., Ghoussoub, B., Maurey and W., Schachermayer, Pluriharmonically dentable complex Banach spaces, J. Reine Angew. Math. 402 (1989), 76–127.
[252] N., Ghoussoub, B., Maurey and W., Schachermayer, Geometrical implications of certain infinite-dimensional decompositions, Trans. Am. Math. Soc. 317 (1990), 541–584.
[253] T. A., Gillespie, S., Pott, S., Treil and A., Volberg, Logarithmic growth for matrix martingale transforms, J. London Math. Soc. 64 (2001), 624–636.
[254] J., Globevnik, On complex strict and uniform convexity, Proc. Am. Math. Soc. 47 (1975), 175–178.
[255] Y., Gordon and D. R., Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27–48.
[256] O., Guedon, Kahane-Khinchine type inequalities for negative exponent, Mathematika 46 (1999), 165–173.
[257] R., Gundy, A decomposition for L1-bounded martingales, Ann. Math. Stat. 39 (1968), 134–138.
[258] R., Gundy and N., Varopoulos, A martingale that occurs in harmonic analysis, Ark. Mat. 14 (1976), 179–187.
[259] V. I., Gurarii and N. I., Gurarii, Bases in uniformly convex and uniformly smooth Banach spaces (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 210–215.
[260] U., Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981), 231–283.
[261] U., Haagerup and G., Pisier, Factorization of analytic functions with values in noncommutative L1-spaces and applications, Can. Math. J. 41 (1989), 882–906.
[262] O., Hanner, On the uniform convexity of Lp and p, Ark. Mat. 3 (1956), 239–244.
[263] C. S., Herz, Bounded mean oscillation and regulated martingales, Trans. Am. Math. Soc. 193 (1974), 199–215.
[264] C. S., Herz, Hp-spaces of martingales, 0 < p ≤ 1, Z.Wahrscheinlichkeitstheorie Verw. Gebiete 28 (1973/74), 189–205.
[265] J., Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186.
[266] G., Hong, M., Junge and J., Parcet, Algebraic Davis decomposition and asymmetric Doob inequalities, Comm. Math. Physics, forthcoming.
[267] R. E., Huff and P. D., Morris, Geometric characterizations of the Radon-Nikodym property in Banach spaces, Studia Math. 56 (1976), 157–164.
[268] T., Hytönen, The real-variable Hardy space and BMO, lecture notes of a course at the University of Helsinki, winter 2010, http://www.helsinki.fi/∼tpehyton/Hardy/hardy.pdf.
[269] T., Hytönen and M., Lacey, Pointwise convergence of vector-valued Fourier series, Math. Ann. 357 (2013), 1329–1361.
[270] T., Hytonen, M., Lacey and I., Parissis, A variation norm Carleson theorem for vector valued Walsh-Fourier series, Rev. Mat. Iberoam. 30 (2014), 979–1014.
[271] A. Ionescu, Tulcea and C. Ionescu, Tulcea, Abstract ergodic theorems, Trans. Am. Math. Soc. 107 (1963), 107–124.
[272] K., Itô and M., Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), 35–48.
[273] N., Jain and D., Monrad, Gaussian measures in Bp, Ann. Probab. 11 (1983), 46–57.
[274] R. C., James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950), 518–527.
[275] R. C., James, Uniformly non-square Banach spaces, Ann. Math. 80 (1964), 542–550.
[276] R. C., James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119.
[277] R. C., James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289–300.
[278] R. C., James, Some self-dual properties of normed linear spaces, in Symposium on Infinite- Dimensional Topology (Louisiana State Univ., Baton Rouge, LA, 1967), Annals of Mathematical Studies 69, Princeton University Press, Princeton, NJ, 1972, 159–175.
[279] R. C., James, Super-reflexive Banach spaces, Can. J. Math. 24 (1972), 896–904.
[280] R. C., James, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409–419.
[281] R. C., James, A nonreflexive Banach space that is uniformly nonoctahedral, Israel J. Math. 18 (1974), 145–155.
[282] R. C., James, Nonreflexive spaces of type 2, Israel J. Math. 30 (1978), 1–13.
[283] R. C., James and J., Lindenstrauss, The octahedral problem for Banach spaces, in Proceedings of the Seminar on Random Series, Convex Sets and Geometry of Banach Spaces, Various Publ. Ser. 24, Mat. Inst., Aarhus University, Aarhus, 1975, 100–120.
[284] R. C., James and J. J., Schäffer, Super-reflexivity and the girth of spheres, Israel J. Math. 11 (1972), 398–404.
[285] S., Janson, Minimal and maximalmethods of interpolation, J. Funct. Anal. 44 (1981), 50–73.
[286] S., Janson, On hypercontractivity for multipliers on orthogonal polynomials, Ark. Mat. 21 (1983), 97–110.
[287] S., Janson, On complex hypercontractivity, J. Funct. Anal. 151 (1997), 270–280.
[288] S., Janson and P., Jones, Interpolation between Hp spaces: the complex method, J. Funct. Anal. 48 (1982), 58–80.
[289] W. B., Johnson and G., Schechtman, Diamond graphs and super-reflexivity, J. Topol. Anal. 1 (2009), 177–189.
[290] W. B., Johnson and L., Tzafriri, Some more Banach spaces which do not have local unconditional structure, Houston J. Math. 3 (1977), 55–60.
[291] R. L., Jones, J. M., Rosenblatt and M., Wierdl, Oscillation in ergodic theory: higher dimensional results, Israel J. Math. 135 (2003), 1–27.
[292] M., Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149–190.
[293] M., Junge, Fubini's theorem for ultraproducts of noncommmutativeLp-spaces, Can. J. Math. 56 (2004), 983–1021.
[294] M., Junge and Q., Xu, On the best constants in some non-commutative martingale inequalities, Bull. London Math. Soc. 37 (2005), 243–253.
[295] M., Junge and Q., Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31 (2003), 948–995.
[296] M., Junge and Q., Xu, Noncommutative Burkholder/Rosenthal inequalities, II, Applications, Israel J. Math. 167 (2008), 227–282.
[297] M. I., Kadec and A., Pełczy'nski, Bases, lacunary sequences and complemented subspaces in the spaces Lp, Studia Math. 21 (1961/1962), 161–176.
[298] S., Kakutani, Markoff process and the Dirichlet problem, Proc. Jpn. Acad. 21 (1945), 227–233.
[299] N., Kalton, Differentials of complex interpolation processes for Köthe function spaces, Trans. Am. Math. Soc. 333 (1992), 479–529.
[300] N., Kalton, Lattice structures on Banach spaces, Mem. Am. Math. Soc. 103 (1993), 99 pp.
[301] N., Kalton, Complex interpolation of Hardy-type subspaces, Math. Nachr. 171 (1995), 227–258.
[302] N., Kalton, S. V., Konyagin and L., Vesely, Delta-semidefinite and delta-convex quadratic forms in Banach spaces, Positivity 12 (2008), 221–240.
[303] N., Kalton and S., Montgomery-Smith, Interpolation of Banach spaces, in Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1131–1175.
[304] N. H., Katz, Matrix valued paraproducts, J. Fourier Anal. Appl. 300 (1997), 913–921.
[305] S. V., Kisliakov, A remark on the space of functions of bounded p-variation, Math. Nachr. 119 (1984), 137–140.
[306] S. V., Kisliakov, Interpolation of Hp-spaces: some recent developments, in Function spaces, interpolation spaces, and related topics (Haifa, 1995), Israel Math. Conf. Proc. 13, Bar-Ilan University, Ramat Gan, 1999, 102–140.
[307] B., Kloeckner, Yet another short proof of the Bourgain's distortion estimate for embedding of trees into uniformly convex Banach spaces, Israel J. Math. 200 (2014), 419–422.
[308] H., Koch, Adapted function spaces for dispersive equations, in Singular phenomena and scaling in mathematical models, Springer, Cham, 2014, 49–67.
[309] H., Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative Lp-spaces, J. Funct. Anal. 56 (1984), 29–78.
[310] H., Konig, On the Fourier-coefficients of vector-valued functions, Math. Nachr. 152 (1991), 215–227.
[311] O., Kouba, H1-projective spaces, Q. J. Math. Oxford Ser. 41 (1990), 295–312.
[312] J. L., Krivine, Sous-espaces de dimension finie des espaces de Banach reticules, Ann. Math. 104 (1976), 1–29.
[313] J. L., Krivine and B., Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273–295.
[314] K., Kunen and H. P., Rosenthal, Martingale proofs of some geometrical results in Banach space theory, Pacific J. Math. 100 (1982), 153–175.
[315] S., Kwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583–595.
[316] S., Kwapień, On operators factorizable through Lp space, Bull. Soc.Math. France (Mémoire) 31–32 (1972), 215–225.
[317] G., Lancien, On uniformly convex and uniformly Kadec-Klee renormings, Serdica Math. J. 21 (1995), 1–18.
[318] R., Latała and K., Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality, Studia Math. 109 (1994), 101–104.
[319] J. M., Lee, Biconcave-function characterisations of UMD and Hilbert spaces, Bull. Austral. Math. Soc. 47 (1993), 297–306.
[320] J. M., Lee, On Burkholder's biconvex-function characterization of Hilbert spaces, Proc. Am. Math. Soc. 118 (1993), 555–559.
[321] J., Lee and A., Naor, Embedding the diamond graph in Lp and dimension reduction in L1, Geom. Funct. Anal. 14 (2004), 745–747.
[322] J. R., Lee, A., Naor, and Y., Peres, Trees andMarkov convexity, Geom. Funct. Anal. 18 (2009), 1609–1659. (Conference version in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2006, 1028–1037.)
[323] K. de, Leeuw, On Lp multipliers, Ann. Math. 81 (1965), 364–379.
[324] C. Le, Merdy and Q., Xu, Strong q-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble) 62 (2012), 2069–2097.
[325] E., Lenglart, D., Lépingle and M., Pratelli, Présentation unifiée de certaines inégalités de la théorie des martingales, with an appendix by Lenglart, in Seminar on Probability, XIV (Paris, 1978/1979), Lecture Notes in Mathematics 784, Springer-Verlag, Berlin, 1980, 26–52.
[326] D., Lépingle, Quelques inégalités concernant les martingales, StudiaMath. 59 (1976), 63–83.
[327] D., Lépingle, La variation d'ordre p des semi-martingales, Z.Wahrscheinlichkeitstheor. Verw. 36 (1976), 295–316.
[328] M., Lévy, L'espace d'interpolation réel (A0, A1)θ,p contient lp, C. R. Acad. Sci. Paris Sér.A-B 289 (1979), A675–A677.
[329] D. R., Lewis and C., Stegall, Banach spaces whose duals are isomorphic to l1 (Γ), J. Funct. Anal. 12 (1973), 177–187.
[330] J., Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Mich. Math. J. 10 (1963), 241–252.
[331] J., Lindenstrauss and A., Pełczy'nski, Absolutely summing operators in Lp-spaces and their applications, Studia Math. 29 (1968), 275–326.
[332] J., Lindenstrauss and H. P., Rosenthal, The Lp spaces, Israel J. Math. 7 (1969), 325–349.
[333] V. I., Liokumovich, Existence of B-spaces with a non-convex modulus of convexity, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (1973), 43–49.
[334] J. L., Lions, Une construction d'espaces d'interpolation, C. R. Acad. Sci. Paris 251 (1960), 1853–1855.
[335] J. L., Lions and J., Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68.
[336] A. E., Litvak, Kahane-Khinchin's inequality for quasinorms, Can. Math. Bull. 43 (2000), 368–379.
[337] A., Lubin, Extensions of measures and the von Neumann selection theorem, Proc. Am. Math. Soc. 43 (1974), 118–122.
[338] F., Lust-Piquard, Inégalités de Khintchine daus Cp (1 < p < ∞), C.R. Acad. Sci. Paris 303 (1986), 289–292.
[339] F., Lust-Piquard and G., Pisier, Noncommutative Khintchine and Paley inequalities, Arkiv Mat. 29 (1991), 241–260.
[340] M., Manstavicius, p-variation of strong Markov processes, Ann. Probab. 32 (2004), 2053–2066.
[341] T., Martínez and J. L., Torrea, Operator-valued martingale transforms, Tohoku Math. J. 52 (2000), 449–474.
[342] J., Matoušek, On embedding trees into uniformly convex Banach spaces, Israel J. Math. 114 (1999), 221–237.
[343] B., Maurey, Systémes de Haar, in Séminaire Maurey–Schwartz, Ecole Polytechnique, Paris, 74–75.
[344] B., Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp, with an Astérisque, no. 11, Société Mathématique de France, Paris, 1974.
[345] B., Maurey, Type et cotype dans les espaces munis de structures locales inconditionnelles, in Séminaire Maurey-Schwartz 1973–1974: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 24 and 25, Centre de Math., École Polytech., Paris, 1974.
[346] B., Maurey, Construction de suites symetriques, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), A679–A681.
[347] B., Maurey, Type, cotype and K-convexity, in Handbook of the geometry of Banach spaces, Vol. II, North-Holland, Amsterdam, 2003, 1299–1332.
[348] B., Maurey and G., Pisier, SÉries de variables alÉatoires vectorielles indépendantes et priétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45–90.
[349] T., McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Am. Math. Soc. 285 (1984), 739–757.
[350] T., Mei, BMO is the intersection of two translates of dyadic BMO, C. R. Math. Acad. Sci.Paris 336 (2003), 1003–1006.
[351] M., Mendel and A., Naor, Markov convexity and local rigidity of distorted metrics, J. Eur. Math. Soc. 15 (2013), 287–337.
[352] P. W., Millar, Path behavior of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 17 (1971), 53–73.
[353] M., Milman, Fourier type and complex interpolation. Proc. Am. Math. Soc. 89 (1983), 246–248.
[354] M., Milman, Complex interpolation and geometry of Banach spaces, Ann. Mat. Pura Appl. 136 (1984), 317–328.
[355] I., Monroe, On the γ-variation of processes with stationary independent increments, Ann. Math. Statist. 43 (1972), 1213–1220.
[356] M., Musat, On the operator space UMD property and non-commutative martingale inequalities, PhD Thesis, University of Illinois at Urbana-Champaign, 2002.
[357] A., Naor, Y., Peres, O., Schramm and S., Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), 165–197.
[358] A., Naor and T., Tao, Random martingales and localization of maximal inequalities, J. Funct. Anal. 259 (2010), 731–779.
[359] F., Nazarov, G., Pisier, S., Treil and A., Volberg, Sharp estimates in vector Carleson imbedding theorem and for vector paraproducts, J. Reine Angew. Math. 542 (2002), 147–171.
[360] F., Nazarov and S., Treil, Theweighted norm inequalities forHilbert transform are nowtrivial, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 717–722.
[361] F., Nazarov and S., Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, St. Petersburg Math. J. 8 (1997), 721–824.
[362] F., Nazarov, S., Treil and A., Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Am. Math. Soc. 12 (1999), 909–928.
[363] F., Nazarov, S., Treil and A., Volberg, Counterexample to infinite dimensional Carleson embedding theorem, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 383–388.
[364] E., Nelson, The free Markoff field, J. Funct. Anal. 12 (1973), 211–227.
[365] E., Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103–116.
[366] J., Neveu, Sur l'espérance conditionnelle par rapport á un mouvement brownien, Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976), 105–109.
[367] G., Nordlander, The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15–17.
[368] M. I., Ostrovskii, On metric characterizations of some classes of Banach spaces, C. R. Acad. Bulgare Sci. 64 (2011), 775–784.
[369] M. I., Ostrovskii, Embeddability of locally finite metric spaces into Banach spaces is finitely determined, Proc. Am. Math. Soc. 140 (2012), 2721–2730.
[370] M. I., Ostrovskii, Metric characterizations of superreflexivity in terms of word hyperbolic groups and finite graphs, Anal. Geom. Metr. Spaces 2 (2014), 154–168.
[371] M. I., Ostrovskii, Radon-Nikodym property and thick families of geodesics, J. Math. Anal. Appl. 409 (2014), 906–910.
[372] V. I., Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), 349–515.
[373] J., Parcet and N., Randrianantoanina, Gundy's decomposition for non-commutative martingales and applications, Proc. London Math. Soc. 93 (2006), 227–252.
[374] M., Pavlović, Uniform c -convexity of Lp, 0 < p 1, Publ. Inst. Math. (Beograd) (N.S.) 43 (1988), 117–124.
[375] M., Pavlović, On the complex uniform convexity of quasi-normed spaces, in Math. Balkanica (N.S.) 5 (1991), 92–98.
[376] J., Peetre, Sur la transformation de Fourier des fonctions á valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15–26.
[377] M. C., Pereyra, Lecture notes on dyadic harmonic analysis: Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000), Contemp. Math. 289, 1–60.
[378] S., Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 455–460.
[379] S., Petermichl, S., Treil and A., Volberg, Why the Riesz transforms are averages of the dyadic shifts? in Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publ. Mat., extra volume (2002), 209–228.
[380] B. J., Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), 249–253.
[381] R. R., Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78–90.
[382] M., Piasecki, A geometrical characterization of AUMD Banach spaces via subharmonic functions, Demonstratio Math. 30 (1997), 641–654.
[383] M., Piasecki, A characterization of complex AUMD Banach spaces via tangent martingales, Demonstratio Math. 30 (1997), 715–728.
[384] J., Picard, A tree approach to p-variation and to integration, Ann. Probab. 36 (2008), 2235–2279.
[385] S., Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165–179.
[386] G., Pisier, Un exemple concernant la super-réflexivité, Séminaire Maurey-Schwartz 1974- 1975, Annexe 2, http://www.numdam.org/.
[387] G., Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 326–350.
[388] G., Pisier, Some applications of the complex interpolationmethod to Banach lattices, J. Anal. Math. Jerusalem 35 (1979), 264–281.
[389] G., Pisier, Holomorphic semigroups and the geometry of Banach spaces, Ann. Math. 115 (1982), 375–392.
[390] G., Pisier,On the duality between type and cotype, in Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981), Lecture Notes in Mathematics 939, Springer, Berlin, 1982, 131–144.
[391] G., Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and analysis (Varenna, 1985), Lecture Notes in Mathematics 1206, Springer, Berlin, 1986, 167–241.
[392] G., Pisier, The dual J∗ of the James space has cotype 2 and the Gordon-Lewis property, Math. Proc. Cambridge Philos. Soc. 103 (1988), 323–331.
[393] G., Pisier, The Kt-functional for the interpolation couple L1(A0), L∞ (A1), J. Approx. Theory 73 (1993), 106–117.
[394] G., Pisier, Complex interpolation and regular operators between Banach lattices, Arch.Math. (Basel) 62 (1994), 261–269.
[395] G., Pisier, Noncommutative vector valued Lp-spaces and completely p-summing maps, Soc. Math. France Astérisque 237 (1998), 131 pp.
[396] G., Pisier, Remarks on the non-commutative Khintchine inequalities for 0 < p < 2, J. Funct. Anal. 256 (2009), 4128–4161.
[397] G., Pisier, Complex interpolation between Hilbert, Banach and operator spaces, Mem. Am. Math. Soc. 208 (2010), 78 pp.
[398] G., Pisier and É., Ricard, The non-commutative Khintchine inequalities for 0 < p < 1, J.Inst. Math. Jussieu, forthcoming.
[399] G., Pisier and Q., Xu, Random series in the real interpolation spaces between the spaces vp, in Geometrical aspects of functional analysis (1985/86), Lecture Notes in Mathematics 1267, Springer, Berlin, 1987, 185–209.
[400] G., Pisier and Q., Xu, The strong p-variation of martingales and orthogonal series, Probab. Theory Related Fields 77 (1988), 497–514.
[401] G., Pisier and Q., Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667–698.
[402] G., Pisier and Q., Xu, Non-commutative Lp-spaces, in Handbook of the geometry of Banach spaces, Vol. II, North-Holland, Amsterdam, 2003, 1459–1517.
[403] D., Potapov, F., Sukochev and Q., Xu, On the vector-valued Littlewood-Paley-Rubio de Francia inequality, Rev. Mat. Iberoam. 28 (2012), 839–856.
[404] V., Pták, Biorthogonal systems and reflexivity of Banach spaces, Czechoslovak Math. J. 9 (1959), 319–326.
[405] Y., Qiu, On the UMD constants for a class of iterated Lp (Lq) spaces, J. Funct. Anal. 262 (2012), 2409–2429.
[406] Y., Qiu, On the OUMD property for the column Hilbert space C, Indiana Univ. Math. J. 61 (2012), 2143–2156.
[407] Y., Qiu, A remark on the complex interpolation for families of Banach spaces, Rev. Mat. Iber. 31 (2015), 439–460.
[408] Y., Qiu, A non-commutative version of Lépingle-Yor martingale inequality, Statist. Probab. Lett. 91 (2014), 52–54.
[409] M., Raja, Finite slicing in superreflexive Banach spaces, J. Funct. Anal. 268 (2015), 2672–2694.
[410] N., Randrianantoanina, Non-commutative martingale transforms, J. Funct. Anal. 194 (2002), 181–212.
[411] N., Randrianantoanina, Square function inequalities for non-commutative martingales, Israel J. Math. 140 (2004), 333–365.
[412] N., Randrianantoanina, A weak-type inequality for non-commutative martingales and applications, Proc. London Math. Soc. 91 (2005), 509–544.
[413] N., Randrianantoanina, Conditioned square functions for noncommutative martingales, Ann. Probab. 35 (2007), 1039–1070.
[414] N., Randrianantoanina, A remark on maximal functions for noncommutative martingales, Arch. Math. (Basel) 101 (2013), 541–548.
[415] H. P., Rosenthal, On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303.
[416] H. P., Rosenthal, Martingale proofs of a general integral representation theorem, in Analysis at Urbana, Vol. II, Cambridge University Press, Cambridge, 1989, 294–356.
[417] J. L. Rubio de, Francia, Fourier series and Hilbert transforms with values in UMD Banach spaces, Studia Math. 81 (1985), 95–105.
[418] J. L. Rubio de, Francia, Martingale and integral transforms of Banach space valued functions, in Probability and Banach spaces (Zaragoza, 1985), Lecture Notes in Mathematics 1221, Springer, Berlin, 1986, 195–222.
[419] W., Schachermayer, For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math. 81 (1985), 329–339.
[420] W., Schachermayer, The sum of two Radon-Nikodym-sets need not be a Radon-Nikodým-set, Proc. Am. Math. Soc. 95 (1985), 51–57.
[421] W., Schachermayer, Some remarks concerning the Krein-Milman and the Radon-Nikodým property of Banach spaces, in Banach spaces (Columbia, Mo., 1984), Lecture Notes in Mathematics 1166, Springer, Berlin, 1985, 169–176.
[422] W., Schachermayer, The Radon-Nikodým property and the Krein-Milman property are equivalent for strongly regular sets, Trans. Am. Math. Soc. 303 (1987), 673–687.
[423] W., Schachermayer, A Sersouri and E. Werner, Moduli of nondentability and the Radon-Nikodým property in Banach spaces, Israel J. Math. 65 (1989), 225–257.
[424] J. J., Schäffer and K., Sundaresan, Reflexivity and the girth of spheres, Math. Ann. 184 (1969/1970), 163–168.
[425] J., Schwartz, A remark on inequalities of Calderón-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785–799.
[426] T., Simon, Small ball estimates in p-variation for stable processes, J. Theoret. Probab. 17 (2004), 979–1002.
[427] J., Stafney, The spectrum of an operator on an interpolation space, Trans. Am. Math. Soc. 144 (1969), 333–349.
[428] C., Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Am. Math. Soc. 206 (1975), 213–223.
[429] C., Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property, Israel J. Math. 29 (1978), 408–412.
[430] S., Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197–208.
[431] M., Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 73–205.
[432] N., Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp (1 ≤ p < ∞), Studia Math. 50 (1974), 163–182.
[433] D. A., Trautman, A note on MT operators, Proc. Am. Math. Soc. 97 (1986), 445–448.
[434] F., Watbled, Complex interpolation of a Banach space with its dual, Math. Scand. 87 (2000), 200–210.
[435] E., Werner,Nondentable solid subsets in Banach lattices failing RNP: applications to renormings, Proc. Am. Math. Soc. 107 (1989), 611–620.
[436] T., Wolff, A note on interpolation spaces, in Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Mathematics 908, Springer, Berlin, 1982, 199–204.
[437] W., Woyczyński, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. Math. Statist. 1 (1980), 117–131.
[438] Q., Xu, Espaces d'interpolation réels entre les espaces Vp : propriétés géométriques et applications probabilistes, Publ. Math. Univ. Paris VII 28 (1988), 77–123.
[439] Q., Xu, Real interpolation of some Banach lattices valued Hardy spaces, Bull. Sci. Math. 116 (1992), 227–246.
[440] Q., Xu, H∞ functional calculus and maximal inequalities for semigroups of contractions on vector-valued Lp-spaces, preprint, Arxiv, 2014.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.