References[1] Abelard, P. and , Héloïse. The Letters of Abelard and Eloise. Penguin, London, revised edition, 2003. Translated by Betty Radice.
[2] Benthem, J. F. A. K.. Logic games are complete for game logics. Studia Logica, 75:183–203, 2003.
[3] Benthem, J. F. A. K.. Probabilistic features in logic games. In Kolak, D. and Symons, D., editors, Quantifiers, Questions and Quantum Physics, pages 189–194. Springer, Dordrecht, 2004.
[4] Benthem, J. F. A. K.. The epistemic logic of IF games. In Auxier, R. E. and Hahn, L. E., editors, The Philosophy of Jaakko Hintikka, volume 30 of Library of Living Philosophers, pages 481–513. Open Court, Chicago, 2006.
[5] Blackburn, P., Rijke, M., and Venema, Y.. Modal Logic. Cambridge University Press, Cambridge, UK, 2001.
[6] Blackburn, P., Benthem, J. F. A. K., and Wolter, F., editors. Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning. Elsevier, Amsterdam, 2007.
[7] Blass, A. and Gurevich, Y.. Henkin quantifiers and complete problems. Annals of Pure and Applied Logic, 32:1–16, 1986.
[8] Burgess, J. P.. A remark on Henkin sentences and their contraries. Notre Dame Journal of Formal Logic, 44:185–188, 2003.
[9] Caicedo, X., Dechesne, F., and Janssen, T. M. V.. Equivalence and quantifier rules for logic with imperfect information. Logic Journal of IGPL, 17:91–129, 2009.
[10] Caicedo, X. and Krynicki, M.. Quantifiers for reasoning with imperfect information and -logic. In Carnielli, W. A. and Ottaviano, I. M., editors, Advances in Contemporary Logic and Computer Science: Proceedings of the Eleveth Brazilian Conference on Mathematical Logic, May 6-10, 1996, volume 235 of Contemporary Mathematics, pages 17–31. American Mathematical Society, 1999.
[11] Cameron, P. J. and Hodges, W.. Some combinatorics of imperfect information. Journal of Symbolic Logic, 66:673–684, 2001.
[12] Church, A.. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1:40–41, 1936.
[13] Craig, W.. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of Symbolic Logic, 22:269–285, 1957.
[14] Dechesne, F.. Game, Set, Maths: Formal investigations into logic with imperfect information. PhD thesis, Tilburg University, Tilburg, 2005.
[15] Dedekind, R.. Was sind und was sollen die Zahlen?Braunschweig, Germany, 1888.
[16] Ebbinghaus, H.-D. and Flum, J.. Finite Model Theory. Springer-Verlag, Berlin, 1999.
[17] Ebbinghaus, H.-D., Flum, J., and Thomas, W.. Mathematical Logic. Undergraduate Texts in Mathematics. Springer-Verlag, Berlin, 2nd edition, 1994.
[18] Ehrenfeucht, A.. An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae, 49:129–141, 1961.
[19] Enderton, H. B.. Finite partially ordered quantifiers. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 16:393–397, 1970.
[20] Fraïssé, R.. Sur quelques classifications des systèmes de relations. Publications scientifiques, série A, 35–182, Université d'Alger, 1954.
[21] Gale, D. and Stewart, F.. Infinite games with perfect information. In Kuhn, H. W. and Tucker, A. W., editors, Contributions to the Theory of Games II, volume 28 of Annals of Mathematics Studies, pages 245–266. Princeton University Press, Princeton, 1953.
[22] Galliani, P.. Game values and equilibria for undetermined sentences of dependence logic. Master's thesis. Master of Logic Series 2008-08, University of Amsterdam, Amsterdam, 2008.
[23] Galliani, P. and Mann, A. L.. Lottery semantics. In Kontinen, J. and Väänänen, J., editors, Proceedings of the ESSLLI Workshop on Dependence and Independence in Logic, pages 30–54, Copenhagen, August 16–20, 2010.
[24] Hella, L. and Sandu, G.. Partially ordered connectives and finite graphs. In Krynicki, M., Mostowski, M., and Szczerba, L. W., editors, Quantifiers: Logics, Models and Computation, volume 2, pages 79–88. Kluwer Academic Publishers, Dordrecht, 1995.
[25] Henkin, L.. Some remarks on infinitely long formulas. In Bernays, P., editor, Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959, pages 167–183, Oxford, 1961. Pergamon Press.
[26] Hintikka, J.. Language-games for quantifiers. In Studies in Logical Theory, volume 2 of American Philosophical Quarterly Monograph Series, pages 46–72. Basil Blackwell, Oxford, 1968.
[27] Hintikka, J.. Quantifiers vs. quantification theory. Dialectica, 27:329–358, 1973.
[28] Hintikka, J.. Principles of Mathematics Revisited. Cambridge University Press, Cambridge, UK, 1996.
[29] Hintikka, J. and Kulas, J.. The Game of Language. Reidel, Dordrecht, 1983.
[30] Hintikka, J. and Sandu, G.. Informational independence as a semantic phenomenon. In Fenstad, J. E.et al., editors, Logic, Methodology and Philosophy of Science, volume 8, pages 571–589. Elsevier, Amsterdam, 1989.
[31] Hintikka, J. and Sandu, G.. Game-theoretical semantics. In Benthem, J. F. A. K. and Meulen, A., editors, Handbook of Logic and Language, pages 361–481. North Holland, Amsterdam, 1997.
[32] Hodges, W.. Compositional semantics for a language of imperfect information. Logic Journal of the IGPL, 5:539–563, 1997.
[33] Hodges, W.. Some strange quantifiers. In Mycielski, J., Rozenberg, G., and Salomaa, A., editors, Structures in Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht, Lecture Notes in Computer Science, pages 51–65. Springer-Verlag, 1997.
[34] Kleene, S. C.. Introduction to Metamathematics. Van Nostrand, 1952.
[35] Kuhn, H. W.. Extensive games. Proceedings of the National Academy of Sciences of the United States of America, 36:570–576, 1950.
[36] Kuhn, H. W.. Extensive games and the problem of information. In Kuhn, H. W. and Tucker, A. W., editors, Contributions to the Theory of Games II, volume 28 of Annals of Mathematics Studies, pages 193–216. Princeton University Press, Princeton, 1953.
[37] Ladner, R. E.. The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing, 6:467–480, 1977.
[38] Lewis, D. K.. Convention: A Philosophical Study. Harvard University Press, Cambridge, Massachusetts, 1969.
[39] Mann, A. L.. Independence-Friendly Cylindric Set Algebras. PhD thesis, University of Colorado at Boulder, 2007.
[40] Mann, A. L.. Independence-friendly cylindric set algebras. Logic Journal of IGPL, 17:719–754, 2009.
[41] Marx, M.. Complexity of modal logic. In Blackburn et al. [6], pages 139–179.
[42] Nash, J.. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.
[43] Neumann, J.. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–320, 1928.
[44] Osborne, M. J.. An Introduction to Game Theory. Oxford University Press, Oxford, 2003.
[45] Osborne, M. J. and Rubinstein, A.. A Course in Game Theory. MIT Press, Cambridge, Massachusetts, 1994.
[46] Peirce, C. S.. Reasoning and the Logic of Things. Harvard University Press, Cambridge, Massachusetts, 1992.
[47] Piccione, M. and Rubinstein, A.. On the interpretation of decision problems with imperfect recall. Games and Economic Behavior, 20:3–24, 1997.
[48] Raghavan, T. E. S.. Zero-sum two person games. In Aumann, R. J. and Hart, S., editors, Handbook of Game Theory with Economic Applications, volume 2, pages 736–759. Elsevier, Amsterdam, 1994.
[49] Sandu, G.. On the logic of informational independence and its applications. Journal of Philosophical Logic, 22:29–60, 1993.
[50] Sandu, G.. The logic of informational independence and finite models. Logic Journal of the IGPL, 5:79–95, 1997.
[51] Sandu, G. and Väänänen, J.. Partially ordered connectives. Mathematical Logic Quarterly, 38:361–372, 1992.
[52] Sevenster, M.. Branches of Imperfect Information: Logic, Games, and Computation. PhD thesis, University of Amsterdam, Amsterdam, 2006.
[53] Sevenster, M.. Decidability of independence-friendly modal logic. Review of Symbolic Logic, 3:415–441, 2010.
[54] Sevenster, M. and Sandu, G.. Equilibrium semantics of languages of imperfect information. Annals of Pure and Applied Logic, 161:618–631, 2010.
[55] Skolem, T.. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse, 4:1–36, 1920.
[56] Skolem, T.. Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. Löwenheim and generalizations of the theorem. In Heijenoort, J., editor, From Frege to Gödel: A Source Book in Mathematical Logic, pages 254–263. Harvard University Press, Cambridge, Massachusetts, 1967.
[57] Skolem, T.. Selected Works in Logic. Scandinavian University Press, Oslo, 1970.
[58] Tarski, A.. Pojȩcie prawdy w jȩzykach nauk dedukcyjnych (On the concept of truth in languages of deductive sciences). Warsaw, 1933. English translation in (Tarski 1983), pages 152–278.
[59] Tarski, A.. The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4:341–376, 1944.
[60] Tarski, A.. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Hackett, Indianapolis, 2nd edition, 1983.
[61] Tarski, A. and Vaught, R. L.. Arithmetical extensions of relational systems. Compositio Mathematica, 13:81–102, 1956–1958.
[62] Tulenheimo, T.. On IF modal logic and its expressive power. In Balbiani, P., Suzuki, N.-Y., Wolter, F., and Zakharyaschev, M., editors, Advances in Modal Logic, volume 4, pages 474–498. King's College Publications, 2003.
[63] Tulenheimo, T.. Independence-Friendly Modal Logic. PhD thesis, University of Helsinki, Helsinki, 2004.
[64] Tulenheimo, T. and Sevenster, M.. On modal logic, IF logic and IF modal logic. In Hodkinson, I. and Venema, Y., editors, Advances in Modal Logic, volume 6, pages 481–501. College Publications, 2006.
[65] Väänänen, J.. A remark on nondeterminacy in IF logic. In Aho, T. and Pietarinen, A.-V., editors, Truth and Games: Essays in Honour of Gabriel Sandu, chapter 4, pages 71–77. Societas Philosophica Fennica, Helsinki, 2006.
[66] Väänänen, J.. Dependence Logic. Cambridge University Press, Cambridge, UK, 2007.
[67] Walkoe, W.. Finite partially-ordered quantification. Journal of Symbolic Logic, 35:535–555, 1970.
[68] Wittgenstein, L.. Philosophical Investigations. Basil Blackwell, Oxford, 1958. Translated by G. E. M. Anscombe.