Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
October 2011
Print publication year:
2011
Online ISBN:
9780511978111

Book description

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
References
[1] J., Adámek, H., Herrlich, G., Strecker. Abstract and Concrete Categories–The Joy of Cats. John Wiley and Sons (1990 Google Scholar), online edition available at http://katmat.math.uni-bremen.de/acc/.
[2] J., Adámek, J., Rosický. Locally Presentable and Accessible Categories. LONDON MATH. SOC. LECTURE NOTE SERIES 189, Cambridge University Press (1994 Google Scholar).
[3] J., Adams. Infinite Loop Spaces. ANNALS OF MATH. STUDIES 90, Princeton University Press (1978 Google Scholar).
[4] M., Artin. Versal deformations and algebraic stacks, Invent. Math. 27 (1974 Google Scholar), 165–189.
[5] D., Ara. Sur les ∞-groupoïdes de Grothendieck et une variante ∞-catégorique. Doctoral thesis, Université de Paris 7 (2010 Google Scholar).
[6] H., Bacard. Segal enriched categories I. Arxiv preprint arXiv:1009.3673 (2010 Google Scholar).
[7] B., Badzioch. Algebraic theories in homotopy theory. Ann. Math. 155 (2002 Google Scholar), 895–913.
[8] J., Baez, J., Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36 (1995 Google Scholar), 6073–6105.
[9] J., Baez, J., Dolan Google Scholar. n-Categories, sketch of a definition. Letter to R. Street, 29 Nov. and 3 Dec. 1995. Available online at http://math.ucr.edu/home/baez/ncat.def.html.
[10] J., Baez. An introduction to n-categories. In Category Theory and Computer Science (Santa Margherita Ligure 1997). LECT. NOTES IN COMPUTER SCIENCE 1290, Springer-Verlag (1997 Google Scholar), 1–33.
[11] J., Baez, J., Dolan. Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135 (1998 Google Scholar), 145–206.
[12] J., Baez, J., Dolan. Categorification. In Higher Category Theory (Evanston, 1997). CONTEMP. MATH. 230, A.M.S. (1998 Google Scholar), 1–36.
[13] J., Baez, P., May. Towards Higher Categories. IMA VOLUMES MATH. APPL. 152, Springer-Verlag (2009 Google Scholar).
[14] I., Baković, B., Jurčo. The classifying topos of a topological bicategory. Homology, Homotopy Appl. 12 (2010 Google Scholar), 279–300.
[15] C., Balteanu, Z., Fiedorowicz, R., Schwänzl, R., Vogt. Iterated monoidal categories. Adv. Math. 176 (2003 Google Scholar), 277–349.
[16] C., Barwick. (∞, n) – Cat as a closed model category. Doctoral dissertation, University of Pennsylvania (2005 Google Scholar).
[17] C., Barwick. ∞-groupoids, stacks, and Segal categories. Seminars 2004–2005 of the Mathematical Institute, University of Göttingen (Y. Tschinkel, ed.). Universitätsverlag Göttingen (2005 Google Scholar), 155–195.
[18] C., Barwick. On (enriched) left Bousfield localization of model categories. Arxiv preprint arXiv:0708.2067 (2007 Google Scholar), now in [20].
[19] C., Barwick. On Reedy model categories. Preprint arXiv: 0708.2832 (2007 Google Scholar), now in [20].
[20] C., Barwick. On left and right model categories and left and right Bousfield localizations. Homology, Homotopy Appl. 1 (2010 Google Scholar), 1–76.
[21] C., Barwick, D., Kan. Relative categories: Another model for the homotopy theory of homotopy theories. Preprint arXiv:1011.1691 (2010 Google Scholar).
[22] C., Barwick, D., Kan. A Thomason-like Quillen equivalence between quasi-categories and relative categories. Preprint arXiv:1101.0772 (2011 Google Scholar).
[23] C., Barwick, D., Kan. n-relative categories: a model for the homotopy theory of n-fold homotopy theories. Preprint arXiv:1102.0186 (2011 Google Scholar).
[24] C., Barwick. On the Yoneda lemma and the strictification theorem for homotopy theories. Preprint (2008 Google Scholar).
[25] M., Batanin Google Scholar. On the definition of weak ω-category. Macquarie mathematics report number 96/207, Macquarie University, Australia.
[26] M., Batanin. Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136 (1998 Google Scholar), 39–103.
[27] M., Batanin. Homotopy coherent category theory and A∞ structures in monoidal categories. J. Pure Appl. Alg. 123 (1998 Google Scholar), 67–103.
[28] M., Batanin. On the Penon method of weakening algebraic structures. J. Pure Appl. Alg. 172 (2002 Google Scholar), 1–23.
[29] M., Batanin. The Eckmann–Hilton argument and higher operads. Adv. Math. 217 (2008 Google Scholar), 334–385.
[30] M., Batanin, D., Cisinski, M., Weber. Algebras of higher operads as enriched categories II. Preprint arXiv:0909.4715v1 (2009 Google Scholar).
[31] F., Bauer, T., Datuashvili. Simplicial model category structures on the category of chain functors. Homology, Homotopy Appl. 9 (2007 Google Scholar), 107–138.
[32] H., Baues. Combinatorial Homotopy and 4-Dimensional Complexes. de Gruyter, Berlin (1991 Google Scholar).
[33] T., Beke. Sheafifiable homotopy model categories. Math. Proc. Cambridge Phil. Soc. 129 (2000 Google Scholar), 447–475.
[34] J., Bénabou. Introduction to Bicategories. LECT. NOTES IN MATH. 47, Springer-Verlag (1967 Google Scholar).
[35] C., Berger. Double loop spaces, braided monoidal categories and algebraic 3-type of space. Contemp. Math. 227 (1999 Google Scholar), 49–65.
[36] C., Berger. A cellular nerve for higher categories. Adv. Math. 169 (2002 Google Scholar), 118–175.
[37] C., Berger. Iterated wreath product of the simplex category and iterated loop spaces. Adv. Math. 213 (2007 Google Scholar), 230–270.
[38] C., Berger, I., Moerdijk. On an extension of the notion of Reedy category. Math. Z. DOI 10.1007/s00209-010-0770-x (2010 Google Scholar), 1–28.
[39] J., Bergner. A model category structure on the category of simplicial categories. Trans. Amer. Math. Soc. 359 (2007 Google Scholar), 2043–2058.
[40] J., Bergner. Three models for the homotopy theory of homotopy theories. Topology 46 (2007 Google Scholar), 397–436.
[41] J., Bergner. Adding inverses to diagrams encoding algebraic structures. Homology, Homotopy Appl. 10 (2008 Google Scholar), 149–174.
[42] J., Bergner. A characterization of fibrant Segal categories. Proc. Amer. Math. Soc. 135 (2007 Google Scholar), 4031–4037.
[43] J., Bergner. Rigidification of algebras over multi-sorted theories. Alg. Geom. Topol. 6 (2006 Google Scholar), 1925–1955.
[44] J., Bergner. A survey of (∞, 1)-categories. In Towards Higher Categories (J., Baez, P., May, eds.). IMA VOLUMES MATH APPL. 152, Springer-Verlag (2009 Google Scholar).
[45] J., Bergner. Simplicial monoids and Segal categories. Contemp. Math. 431 (2007 Google Scholar), 59–83.
[46] J., Bergner. Homotopy fiber products of homotopy theories. Arxiv preprint arXiv:0811.3175 (2008 Google Scholar).
[47] J., Bergner. Homotopy limits of model categories and more general homotopy theories. Arxiv preprint arXiv:1010.0717 (2010 Google Scholar).
[48] J., Bergner. Models for (∞, n)-categories and the cobordism hypothesis. Arxiv preprint arXiv:1011.0110 (2010 Google Scholar).
[49] B., Blander. Local projective model structures on simplicial presheaves. K-theory 24 (2001 Google Scholar), 283–301.
[50] J., Boardman, R., Vogt. Homotopy Invariant Algebraic Structures on Topological Spaces. LECTURE NOTES IN MATH. 347, Springer-Verlag (1973 Google Scholar).
[51] A., Bondal, M., Kapranov. Enhanced triangulated categories. Math. U.S.S.R. Sb. 70 (1991 Google Scholar), 93–107.
[52] R., Bott, L., Tu. Differential Forms in Algebraic Topology. GRADUATE TEXTS IN MATH. 82, Springer-Verlag (1982 Google Scholar).
[53] D., Bourn. Anadèses et catadèses naturelles. C.R. Acad. Sci. Paris Sér. A–B 276 (1973 Google Scholar), A1401–A1404.
[54] D., Bourn. Sur les ditopos. C. R. Acad. Sci. Paris 279 (1974 Google Scholar), 911–913.
[55] D., Bourn. La tour de fibrations exactes des n-catégories. Cah. Top. Géom. Différ. Catég. (1984 Google Scholar).
[56] D., Bourn, J.-M., Cordier. A general formulation of homotopy limits. J. Pure Appl. Alg. 29 (1983 Google Scholar), 129–141.
[57] A., Bousfield. Cosimplicial resolutions and homotopy spectral sequences in model categories. Geometry & Topology 7 (2003 Google Scholar) 1001–1053.
[58] A., Bousfield, D., Kan. Homotopy Limits, Completions and Localizations. LECTURE NOTES IN MATH. 304, Springer-Verlag (1972 Google Scholar).
[59] L., Breen. On the Classification of 2-Gerbs and 2-Stacks. ASTÉRISQUE 225, S.M.F. (1994 Google Scholar).
[60] L., Breen. Monoidal categories and multiextensions. Compositio Math. 117 (1999 Google Scholar), 295–335.
[61] E., Brown Jr, Finite computability of Postnikov complexes. Ann. Math. 65 (1957 Google Scholar), 1–20
[62] K., Brown. Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc. 186 (1973 Google Scholar), 419–458.
[63] K., Brown, S., Gersten. Algebraic K-theory as Generalized Sheaf Cohomology. LECTURE NOTES IN MATH. 341, Springer-Verlag (1973 Google Scholar), 266–292.
[64] R., Brown. Groupoids and crossed objects in algebraic topology. Homology Homotopy Appl. 1 (1999 Google Scholar), 1–78.
[65] R., Brown. Computing homotopy types using crossed n-cubes of groups. Adams Memorial Symposium on Algebraic Topology, Vol. 1 (N., Ray, G, Walker, eds.). Cambridge University Press (1992 Google Scholar) 187–210.
[66] R., Brown, N.D., Gilbert. Algebraic models of 3-types and automorphism structures for crossed modules. Proc. London Math. Soc. (3) 59 (1989 Google Scholar), 51–73.
[67] R., Brown, P., Higgins. The equivalence of ∞-groupoids and crossed complexes. Cah. Top. Géom. Différ. Catég. 22 (1981 Google Scholar), 371–386.
[68] R., Brown, P., Higgins. The classifying space of a crossed complex. Math. Proc. Cambridge Phil. Soc. 110 (1991 Google Scholar), 95–120.
[69] R., Brown, J.-L., Loday. Van Kampen theorems for diagrams of spaces. Topology 26 (1987 Google Scholar), 311–335.
[70] R., Brown, J.-L., Loday. Homotopical excision, and Hurewicz theorems, for n-cubes of spaces. Proc. London Math. Soc. 54 (1987 Google Scholar), 176–192.
[71] J., Cabello, A., Garzon. Closed model structures for algebraic models of n-types. J. Pure Appl. Alg. 103 (1995 Google Scholar), 287–302.
[72] E., Cheng. The category of opetopes and the category of opetopic sets. Th. Appl. Cat. 11 (2003 Google Scholar), 353–374.
[73] E., Cheng. An omega-category with all duals is an omega groupoid. Appl. Cat. Struct. 15 (2007 Google Scholar), 439–453.
[74] E., Cheng. Comparing operadic theories of n-category. Preprint arXiv:0809.2070 (2008 Google Scholar).
[75] E., Cheng, A., Lauda. Higher-Dimensional Categories: an Illustrated Guidebook (2004 Google Scholar). http://cheng.staff.shef.ac.uk/guidebook/guidebook-new.pdf
[76] E., Cheng, M., Makkai. A note on the Penon definition of n-category. Preprint arXiv:0907.3961 (2009 Google Scholar).
[77] D., Cisinski. Les Préfaisceaux Comme Modèles des Types d'Homotopie. ASTÉRISQUE 308, S.M.F. (2006 Google Scholar).
[78] D., Cisinski. Batanin higher groupoids and homotopy types. In Categories in Algebra, Geometry and Mathematical Physics, Proceedings of Streetfest (M., Bataninet al., eds.), Contemporary Math. 431 (2007 Google Scholar), 171–186.
[79] D., Cisinski. Propriétés universelles et extensions de Kan dérivées. Th. Appl. Cat. 20 (2008 Google Scholar), 605–649.
[80] F., Cohen, T., Lada, J. P., May. The homology of iterated loop spaces. LECTURE NOTES IN MATH. 533, Springer-Verlag (1976 Google Scholar).
[81] J., Cordier. Comparaison de deux catégories d'homotopie de morphismes cohérents. Cah. Top. Géom. Différ. Catég. 30 (1989 Google Scholar), 257–275.
[82] J., Cordier, T., Porter. Vogt's theorem on categories of homotopy coherent diagrams. Math. Proc. Cambridge Phil. Soc. 100 (1986 Google Scholar), 65–90.
[83] J., Cordier, T., Porter. Homotopy coherent category theory. Trans. Amer. Math. Soc. 349 (1997 Google Scholar), 1–54.
[84] J., Cranch Google Scholar. Algebraic theories and (∞, 1)-categories. PhD thesis, University of Sheffield, arXiv:1011.3243 (2010).
[85] S., Crans. Quillen closed model structures for sheaves. J. Pure Appl. Alg. 101 (1995 Google Scholar), 35–57.
[86] S., Crans. A tensor product for Gray-categories. Th. Appl. Cat. 5 (1999 Google Scholar), 12–69.
[87] S., Crans. On braidings, syllapses and symmetries. Cah. Top. Géom. Différ. Catég. 41 (2000 Google Scholar), 2–74.
[88] E., Curtis. Lower central series of semisimplicial complexes. Topology 2 (1963 Google Scholar), 159–171.
[89] E., Curtis. Some relations between homotopy and homology. Ann. Math. 82 (1965 Google Scholar), 386–413.
[90] P., Deligne. Théorie de Hodge, III. Publ. Math. I.H.E.S. 44 (1974 Google Scholar), 5–77.
[91] P., Deligne, D., Mumford. On the irreducibility of the space of curves of a given genus. Publ. Math. I.H.E.S. 36 (1969 Google Scholar), 75–109.
[92] P., Deligne, A., Ogus, J., Milne, K., Shih. Hodge Cycles, Motives, and Shimura Varieties. LECTURE NOTES IN MATH. 900, Springer-Verlag (1982 Google Scholar).
[93] V., Drinfeld. DG quotients of DG categories. J. Alg. 272 (2004 Google Scholar), 643–691.
[94] E., Dror Farjoun, A., Zabrodsky. The homotopy spectral sequence for equivariant function complexes. In Algebraic Topology, Barcelona, 1986. LECTURE NOTES IN MATH. 1298, Springer-Verlag (1987 Google Scholar), 54–81.
[95] D., Dugger. Combinatorial model categories have presentations. Adv. Math. 164 (2001 Google Scholar), 177–201.
[96] D., Dugger, D., Spivak. Mapping spaces in quasi-categories. Preprint arXiv:0911. 0469 (2009 Google Scholar).
[97] G., Dunn. Uniqueness of n-fold delooping machines. J. Pure Appl. Alg. 113 (1996 Google Scholar), 159–193.
[98] J., Duskin. Simplicial matrices and the nerves of weak n-categories I: nerves of bicategories. Th. Appl. Cat. 9 (2002 Google Scholar), 198–308.
[99] W., Dwyer, P., Hirschhorn, D., Kan Google Scholar. Model categories and more general abstract homotopy theory, a work in what we like to think of as progress. (This historically important manuscript was later integrated into the next reference.)
[100] W., Dwyer, P., Hirschhorn, D., Kan, J., Smith. Homotopy Limit Functors on Model Categories and Homotopical Categories. MATH. SURVEYS AND MONOGRAPHS 113, A.M.S. (2004 Google Scholar).
[101] W., Dwyer, D., Kan. Simplicial localizations of categories. J. Pure Appl. Alg. 17 (1980 Google Scholar), 267–284.
[102] W., Dwyer, D., Kan. Calculating simplicial localizations. J. Pure Appl. Alg. 18 (1980 Google Scholar), 17–35.
[103] W., Dwyer, D., Kan. Function complexes in homotopical algebra. Topology 19 (1980 Google Scholar), 427–440.
[104] W., Dwyer, D., Kan, J., Smith. Homotopy commutative diagrams and their realizations. J. Pure Appl. Alg. 57 (1989 Google Scholar), 5–24.
[105] W., Dwyer, J., Spalinski. Homotopy theories and model categories. In Handbook of Algebraic Topology (I. M., James, ed.), Elsevier (1995 Google Scholar).
[106] J., Dydak. A simple proof that pointed, connected FANR spaces are regular fundamental retracts of ANRs. Bull. Acad. Polon. Sci. Ser. Sci. Math. Phys. 25 (1977 Google Scholar), 55–62.
[107] J., Dydak. 1-movable continua need not be pointed 1-movable. Bull. Acad. Polon. Sci. Ser. Sci. Math. Phys. 25 (1977 Google Scholar), 485–488.
[108] E., Dyer, R., Lashoff. Homology of iterated loop spaces. Amer. J. Math. 84 (1962 Google Scholar), 35–88.
[109] J., Elgueta. On the regular representation of an (essentially) finite 2-group. Preprint arXiv:0907.0978 (2009 Google Scholar).
[110] G., Ellis. Spaces with finitely many nontrivial homotopy groups all of which are finite. Topology 36 (1997 Google Scholar), 501–504.
[111] Z., Fiedorowicz. Classifying spaces of topological monoids and categories. Amer. J. Math. 106 (1984 Google Scholar), 301–350.
[112] Z., Fiedorowicz, R., Vogt. Simplicial n-fold monoidal categories model all n-fold loop spaces. Cah. Top. Géom. Différ. Catég. 44 (2003 Google Scholar), 105–148.
[113] T., Fiore. Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory. Mem. Amer. Math. Soc. 182 (2006 Google Scholar).
[114] P., Freyd, A., Heller. Splitting homotopy idempotents, II. J. Pure Appl. Alg. 89 (1993 Google Scholar), 93–106.
[115] K., Fukaya. Morse homotopy, A∞-category and Floer homologies. In Proceedings of GARC Workshop on Geometry and Topology (H. J., Kim, ed.), Seoul National University, (1993 Google Scholar).
[116] C., Futia. Weak omega categories I. Preprint arXiv:math/0404216 (2004 Google Scholar).
[117] P., Gabriel, M., Zisman. Calculus of Fractions and Homotopy Theory. Springer-Verlag (1967 Google Scholar).
[118] N., Gambino. Homotopy limits for 2-categories. Math. Proc. Cambridge Phil. Soc. 145 (2008 Google Scholar), 43–63.
[119] R., Garner, N., Gurski. The low-dimensional structures that tricategories form. Preprint arXiv:0711.1761 (2007 Google Scholar).
[120] P., Gaucher. Homotopy invariants of higher dimensional categories and concurrency in computer science. Math. Struct. Comp. Sci. 10 (2000 Google Scholar), 481–524.
[121] J., Giraud. Cohomologie Nonabélienne. GRUNDLEHREN DER WISSENSCHAFTEN IN EINZELDARSTELLUNG 179, Springer-Verlag (1971 Google Scholar).
[122] P., Goerss, R., Jardine. Simplicial Homotopy Theory. PROGRESS IN MATH. 174, Birkhäuser (1999 Google Scholar).
[123] R., Gordon, A.J., Power, R., Street. Coherence for tricategories. Memoirs A.M.S. 117 (1995 Google Scholar), 558 ff.
[124] M., Grandis. Directed homotopy theory, I. The fundamental category. Cah. Top. Géom. Différ. Catég. 44 (2003 Google Scholar), 281–316.
[125] M., Grandis, R., Paré. Limits in double categories. Cah. Top. Géom. Différ. Catég. 40 (1999 Google Scholar), 162–220.
[126] J., Gray. Formal Category Theory: Adjointness for 2-Categories. LECTURE NOTES IN MATH. 391, Springer-Verlag (1974 Google Scholar).
[127] J., Gray. Closed categories, lax limits and homotopy limits. J. Pure Appl. Alg. 19 (1980 Google Scholar), 127–158.
[128] J., Gray. The existence and construction of lax limits. Cah. Top. Géom. Différ. Catég. 21 (1980 Google Scholar), 277–304.
[129] A., Grothendieck. Sur quelques points d'algèbre homologique, I. Tohoku Math. J. 9 (1957 Google Scholar), 119–221.
[130] A., Grothendieck. Techniques de construction et théorèmes d'existence en géométrie algébrique. III. Préschemas quotients. Séminaire Bourbaki, 13e année, 1960/61 212 (1961 Google Scholar).
[131] A., Grothendieck. Revetements Etales et Groupe Fondamental (SGA I), LECTURE NOTES IN MATH. 224, Springer-Verlag (1971 Google Scholar).
[132] A., Grothendieck Google Scholar. Pursuing Stacks.
[133] A., Grothendieck. Les Dérivateurs (G., Maltsiniotis Google Scholar, ed.) Available online at http://people.math.jussieu.fr/ maltsin/textes.html.
[134] N., Gurski. An algebraic theory of tricategories. Ph.D. thesis, University of Chicago (2006 Google Scholar).
[135] R., Hain. Completions of mapping class groups and the cycle C – C-. In Mapping Class Groups and Moduli Spaces of Riemann Surfaces: Proceedings of Workshops held in Göttingen and Seattle. CONTEMPORARY MATH. 150, A.M.S. (1993 Google Scholar), 75–106.
[136] R., Hain. The de rham homotopy theory of complex algebraic varieties I. K-theory 1 (1987 Google Scholar), 271–324.
[137] R., Hain. The Hodge de Rham theory of relative Malcev completion. Ann. Sci. de l'E.N.S. 31 (1998 Google Scholar), 47–92.
[138] H., Hastings, A., Heller. Splitting homotopy idempotents. In Shape Theory and Geometric Topology (Dubrovnik, 1981). LECTURE NOTES IN MATH. 870, Springer-Verlag (1981 Google Scholar), 23–36.
[139] H., Hastings, A., Heller. Homotopy idempotents on finite-dimensional complexes split. Proc. Amer. Math. Soc. 85 (1982 Google Scholar), 619–622.
[140] A., Heller. Homotopy in functor categories. Trans. Amer. Math. Soc. 272 (1982 Google Scholar), 185–202.
[141] A., Heller. Homotopy theories. Mem. Amer. Math. Soc. 71 (388) (1988 Google Scholar).
[142] C., Hermida, M., Makkai, A., Power. On weak higher-dimensional categories I. J. Pure Appl. Alg. Part 1: 154 (2000 Google Scholar), 221–246; Part 2: 157 (2001), 247–277; Part 3: 166 (2002), 83–104.
[143] V., Hinich. Homological algebra of homotopy algebras. Comm. Alg. 25 (1997 Google Scholar), 3291–3323.
[144] P., Hirschhorn. Model Categories and their Localizations. MATH. SURVEYS AND MONOGRAPHS 99, A.M.S. (2003 Google Scholar).
[145] A., Hirschowitz, C., Simpson. Descente pour les n-champs. Preprint math/9807049 (1998 Google Scholar).
[146] J., Hirsh, J., Millès. Curved Koszul duality theory. Preprint, University of Nice (2010 Google Scholar).
[147] S., Hollander. A homotopy theory for stacks. Israel J. Math. 163 (2008 Google Scholar) 93–124.
[148] M., Hovey. Monoidal model categories. Arxiv preprint math/9803002 (1998 Google Scholar).
[149] M., Hovey. Model Categories. MATH. SURVEYS AND MONOGRAPHS 63, A.M.S. (1999 Google Scholar).
[150] L., Illusie. Complexe Cotangent et Déformations, II. LECTURE NOTES IN MATH. 283, Springer-Verlag (1972 Google Scholar).
[151] I., James. Reduced product spaces. Ann. Math. 62 (1955 Google Scholar), 170–197.
[152] G., Janelidze. Precategories and Galois theory. Springer-Verlag (1990 Google Scholar).
[153] J.F., Jardine. Simplicial presheaves, J. Pure Appl. Alg. 47 (1987 Google Scholar), 35–87.
[154] M., Johnson. The combinatorics of n-categorical pasting. J. Pure Appl. Alg. 62 (1989 Google Scholar), 211–225.
[155] M., Johnson. On modified Reedy and modified projective model structures. Preprint arXiv:1004.3922v1 (2010 Google Scholar).
[156] A., Joyal Google Scholar. Letter to A. Grothendieck (referred to in Jardine's paper).
[157] A., Joyal. Quasi-categories and Kan complexes. J. Pure Appl. Alg. 175 (2002 Google Scholar), 207–222.
[158] A., Joyal. Disks, duality and θ-categories. Preprint (1997 Google Scholar).
[159] A., Joyal, J., Kock. Weak units and homotopy 3-types. In Categories in Algebra, Geometry and Mathematical Physics: Conference and Workshop in Honor of Ross Street's 60th Birthday. CONTEMPORARY MATH. 431, A.M.S (2007 Google Scholar), 257–276.
[160] A., Joyal, J., Kock. Coherence for weak units. Preprint arXiv:0907.4553 (2009 Google Scholar).
[161] A., Joyal, M., Tierney Google Scholar. Algebraic homotopy types. Occurs as an entry in the bibliography of [8].
[162] A., Joyal, M., Tierney. Quasi-categories vs Segal spaces. In Categories in Algebra, Geometry and Mathematical Physics: Conference and Workshop in Honor of Ross Street's 60th Birthday. CONTEMPORARY MATH. 431, A.M.S. (2007 Google Scholar), 277–326.
[163] D., Kan. On c.s.s. complexes. Amer. J. Math. 79 (1957 Google Scholar), 449–476.
[164] D., Kan. A combinatorial definition of homotopy groups. Ann. Math. 67 (1958 Google Scholar), 282–312.
[165] D., Kan. On homotopy theory and c.s.s. groups. Ann. Math. 68 (1958 Google Scholar), 38–53.
[166] D., Kan. On c.s.s. categories. Bol. Soc. Math. Mexicana (1957 Google Scholar), 82–94.
[167] M., Kapranov. On the derived categories of coherent sheaves on some homogeneous spaces. Invent. Math. 92 (1988 Google Scholar), 479–508.
[168] M., Kapranov, V., Voevodsky. ∞-groupoids and homotopy types. Cah. Top. Géom. Différ. Catég. 32 (1991 Google Scholar), 29–46.
[169] L., Katzarkov, T., Pantev, B., Toën. Algebraic and topological aspects of the schematization functor. Compositio Math. 145 (2009 Google Scholar), 633–686.
[170] B., Keller. Deriving DG categories. Ann. Sci. E.N.S. 27 (1994 Google Scholar), 63–102.
[171] G., Kelly, Basic concepts of enriched category theory. LONDON MATH. SOC. LECTURE NOTES 64, Cambridge University Press (1982 Google Scholar).
[172] J., Kock. Weak identity arrows in higher categories. Int. Math. Res. Papers (2006 Google Scholar).
[173] J., Kock. Elementary remarks on units in monoidal categories. Math. Proc. Cambridge Phil. Soc. 144 (2008 Google Scholar), 53–76.
[174] J., Kock, A., Joyal, M., Batanin, J., Mascari. Polynomial functors and opetopes. Adv. Math. 224 (2010 Google Scholar), 2690–2737.
[175] G., Kondratiev. Concrete duality for strict infinity categories. Preprint arXiv:0807.4256 (2008 Google Scholar) (see also arXiv:math/0608436).
[176] M., Kontsevich. Homological algebra of mirror symmetry. In Proceedings of I.C.M.-94, Zurich. Birkhäuser (1995 Google Scholar), 120–139.
[177] J.-L., Krivine. Théorie Axiomatique des Ensembles, Presses Universitaires de France (1969); English translation by D. Miller, Introduction to Axiomatic Set Theory, D. Reidel Publishing Co. (1971 Google Scholar).
[178] S., Lack. A Quillen model structure for Gray-categories. Preprint arXiv:1001. 2366 (2010 Google Scholar).
[179] Y., Lafont, F., Métayer, K., Worytkiewicz. A folk model structure on omega-cat. Adv. Math. 224 (2010 Google Scholar), 1183–1231.
[180] G., Laumon, L., Moret-Bailly. Champs Algébriques. Springer-Verlag (2000 Google Scholar).
[181] F. W., Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. 50 (1963 Google Scholar), 869–872.
[182] F. W., Lawvere. Functorial semantics of algebraic theories, Dissertation, Columbia University 1963 Google Scholar; reprint in Th. Appl. Cat.5 (2004), 23–107.
[183] T., Leinster. A survey of definitions of n-category. Th. Appl. Cat. 10 (2002 Google Scholar,E;), 1–70.
[184] T., Leinster. Higher Operads, Higher Categories. LONDON MATH. SOC. LECTURE NOTES 298, Cambridge University Press (2004 Google Scholar).
[185] T., Leinster. Up-to-homotopy monoids. Arxiv preprint math/9912084 (1999 Google Scholar).
[186] O., Leroy. Sur une notion de 3-catégorie adaptée à l'homotopie. Preprint Univ. de Montpellier 2 (1994 Google Scholar).
[187] L. G., Lewis. Is there a convenient category of spectra?J. Pure Appl. Alg. 73 (1991 Google Scholar), 233–246.
[188] J.-L., Loday. Spaces with finitely many non-trivial homotopy groups. J. Pure Appl. Alg. 24 (1982 Google Scholar), 179–202.
[189] J., Lurie. On infinity topoi. Preprint arXiv:math/0306109 (2003 Google Scholar).
[190] J., Lurie. Higher topos theory. Ann. Math. Studies 170 (2009 Google Scholar).
[191] J., Lurie. Derived Algebraic Geometry II–VI. Arxiv preprints (20072009 Google Scholar).
[192] J., Lurie. (Infinity,2)-Categories and the Goodwillie Calculus I. Preprint arXiv:0905.0462v2 (2009 Google Scholar).
[193] J., Lurie. On the classification of topological field theories. Current Developments in Mathematics Vol. 2008 (2009 Google Scholar), 129–280.
[194] D., McDuff. On the classifying spaces of discrete monoids. Topology 18 (1979 Google Scholar), 313–320.
[195] M., Mackaay. Spherical 2-categories and 4-manifold invariants. Adv. Math. 143 (1999 Google Scholar), 288–348.
[196] S., Mac Lane. Categories for the Working Mathematician. GRADUATE TEXTS IN MATH. 5, Springer-Verlag (1971 Google Scholar).
[197] M., Makkai, R., Paré. Accessible Categories: The Foundations of Categorical Model Theory. CONTEMPORARY MATH. 104, A.M.S. (1989 Google Scholar).
[198] G., Maltsiniotis. La Théorie de l'Homotopie de Grothendieck. ASTÉRISQUE 301, S.M.F. (2005 Google Scholar).
[199] G., Maltsiniotis. Infini groupoïdes non stricts, d'après Grothendieck. Preprint (2007 Google Scholar).
[200] G., Maltsiniotis. Infini catégories non strictes, une nouvelle définition. Preprint (2007 Google Scholar).
[201] W., Massey. Algebraic Topology: An Introduction. GRADUATE TEXTS IN MATH. 56, Springer-Verlag (1977 Google Scholar).
[202] J. P., May. Simplicial Objects in Algebraic Topology. Van Nostrand (1967 Google Scholar).
[203] J.P., May. The Geometry of Iterated Loop Spaces. LECTURE NOTES IN MATH. 271, Springer-Verlag (1972 Google Scholar).
[204] J. P., May. Classifying spaces and fibrations. Mem. Amer. Math. Soc. 155 (1975 Google Scholar).
[205] J. P., May, R., Thomason. The uniqueness of infinite loop space machines. Topology 17 (1978 Google Scholar), 205–224.
[206] S., Mochizuki. Idempotent completeness of higher derived categories of abelian categories. K-theory preprint archives n. 970 (2010 Google Scholar).
[207] F., Morel, V., Voevodsky. A1-homotopy theory of schemes. Publ. Math. I.H.E.S. 90 (1999 Google Scholar), 45–143.
[208] S., Moriya. Rational homotopy theory and differential graded category. J. Pure Appl. Alg. 214 (2010 Google Scholar), 422–439.
[209] J., Nichols-Barrer. On quasi-categories as a foundation for higher algebraic stacks. Ph.D. thesis, M.I.T. (2007 Google Scholar).
[210] S., Paoli. Weakly globular catn-groups and Tamsamani's model. Adv. Math. 222 (2009 Google Scholar), 621–727.
[211] R., Pellissier. Catégories enrichies faibles. Thesis, Université de Nice (2002 Google Scholar), available online at http://tel.archives-ouvertes.fr/tel-00003273/fr/.
[212] J., Penon. Approche polygraphique des ∞-catégories non strictes. Cah. Top. Géom. Différ. Catég. 40 (1999 Google Scholar), 31–80.
[213] A., Power. Why tricategories? Information and Computation 120 (1995 Google Scholar), 251–262.
[214] J., Pridham. Pro-algebraic homotopy types. Proc. London Math. Soc. 97 (2008 Google Scholar), 273–338.
[215] D., Quillen. Homotopical Algebra. LECTURE NOTES IN MATH. 43, Springer-Verlag (1967 Google Scholar).
[216] D., Quillen. Rational homotopy theory. Ann. Math. 90 (1969 Google Scholar), 205–295.
[217] C., Reedy. Homotopy theory of model categories. Preprint (1973 Google Scholar) available from P. Hirschhorn.
[218] C., Rezk. A model for the homotopy theory of homotopy theory. Trans. Amer. Math. Soc. 353 (2001 Google Scholar), 973–1007.
[219] C., Rezk. A cartesian presentation of weak n-categories. Geometry & Topology 14 (2010 Google Scholar), 521–571.
[220] E., Riehl. On the structure of simplicial categories associated to quasi-categories. Preprint arXiv:0912.4809 (2009 Google Scholar).
[221] J., Rosický and W., Tholen, Left-determined model categories and universal homotopy theories. Trans. Amer. Math. Soc. 355 (2003 Google Scholar), 3611–3623.
[222] J., Rosický. On homotopy varieties. Adv. Math. 214 (2007 Google Scholar), 525–550.
[223] J., Rosický. On combinatorial model categories. Appl. Cat. Structures 17 (2009 Google Scholar) 303–316.
[224] R., Schwänzl, R., Vogt. Homotopy homomorphisms and the hammock localization. Papers in Honor of José Adem, Bol. Soc. Mat. Mexicana 37 (1992 Google Scholar), 431–448.
[225] G., Segal Google Scholar. Homotopy everything H-spaces. Preprint.
[226] G., Segal. Classifying spaces and spectral sequences. Publ. Math. IHES 34 (1968 Google Scholar), 105–112.
[227] G., Segal. Configuration spaces and iterated loop spaces. Invent. Math. 21 (1973 Google Scholar), 213–221.
[228] G., Segal. Categories and cohomology theories. Topology 13 (1974 Google Scholar), 293–312.
[229] B., Shipley, S., Schwede. Equivalences of monoidal model categories. Algebr. Geom. Topol. 3 (2003 Google Scholar), 287–334.
[230] C., Simpson. Homotopy over the complex numbers and generalized de Rham cohomology. In Moduli of Vector Bundles (M., Maruyama, ed.). LECTURE NOTES IN PURE AND APPLIED MATH. 179, Marcel Dekker (1996 Google Scholar), 229–263.
[231] C., Simpson. Flexible sheaves. Preprint q-alg/9608025 (1996 Google Scholar).
[232] C., Simpson. The topological realization of a simplicial presheaf. Preprint q-alg/9609004 (1996 Google Scholar).
[233] C., Simpson. Algebraic (geometric) n-stacks. Preprint alg-geom/9609014 (1996 Google Scholar).
[234] C., Simpson. A closed model structure for n-categories, internal Hom, n-stacks and generalized Seifert-Van Kampen. Preprint alg-geom/9704006 (1997 Google Scholar).
[235] C., Simpson. Limits in n-categories. Preprint alg-geom 9708010 (1997 Google Scholar).
[236] C., Simpson. Effective generalized Seifert–Van Kampen: how to calculate ΩX. Preprint q-alg/9710011 (1997 Google Scholar).
[237] C., Simpson. On the Breen–Baez–Dolan stabilization hypothesis. Preprint math.CT/9810058 (1998 Google Scholar).
[238] C., Simpson. Homotopy types of strict 3-groupoids. Preprint, math.CT/9810059 (1998 Google Scholar).
[239] J., Smith Google Scholar. Combinatorial model categories. Unpublished manuscript referred to in [95].
[240] A., Stanculescu. A homotopy theory for enrichment in simplicial modules. Preprint arXiv:0712.1319 (2007 Google Scholar).
[241] J., Stasheff. Homotopy associativity of H-spaces, I, II. Trans. Amer. Math. Soc. 108 (1963 Google Scholar), 275–292, 293–312.
[242] R., Street. Elementary cosmoi, I. In Category Seminar (Sydney, 1972/1973). LECTURE NOTES IN MATH. 420, Springer-Verlag (1974 Google Scholar), 134–180.
[243] R., Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Alg. 8 (1976 Google Scholar), 149–181.
[244] R., Street. The algebra of oriented simplexes. J. Pure Appl. Alg. 49 (1987 Google Scholar), 283–335.
[245] R., Street. Weak ω-categories. Diagrammatic Morphisms and Applications (San Francisco, 2000) Contemporary Mathematics 318, A.M.S. (2003 Google Scholar), 207–213.
[246] G., Tabuada. Differential graded versus Simplicial categories. Top. Appl. 157 (2010 Google Scholar), 563–593.
[247] G., Tabuada. Homotopy theory of spectral categories. Adv. Math. 221 (2009 Google Scholar), 1122–1143.
[248] Z., Tamsamani. Sur des notions de n-catégorie et n-groupoïde non-stricte via des ensembles multi-simpliciaux. Thesis, Université Paul Sabatier, Toulouse (1996 Google Scholar), first part available as alg-geom/9512006.
[249] Z., Tamsamani. Equivalence de la théorie homotopique des n-groupoïdes et celle des espaces topologiques n-tronqués. Preprint alg-geom alg-geom/9607010 (1996 Google Scholar).
[250] Z., Tamsamani. Sur des notions de n-catégorie et n-groupoïde non-stricte via des ensembles multi-simpliciaux. K-theory 16 (1999 Google Scholar), 51–99.
[251] D., Tanre. Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan. LECTURE NOTES IN MATH. 1025, Springer-Verlag (1983 Google Scholar).
[252] R., Thomason. Homotopy colimits in the category of small categories. Math. Proc. Cambridge Phil. Soc. 85 (1979 Google Scholar), 91–109.
[253] R., Thomason. Uniqueness of delooping machines. Duke Math. J. 46 (1979 Google Scholar), 217–252.
[254] R., Thomason. Algebraic K-theory and étale cohomology. Ann. Sci. E.N.S. 18 (1985 Google Scholar), 437–552.
[255] B., Toën. Champs affines. Selecta Math. 12 (2006 Google Scholar), 39–134.
[256] B., Toën. Vers une axiomatisation de la théorie des catégories supérieures. K-theory 34 (2005 Google Scholar), 233–263.
[257] B., Toën. The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167 (2007 Google Scholar), 615–667.
[258] B., Toën. Anneaux de définition des dg-algèbres propres et lisses. Bull. Lond. Math. Soc. 40 (2008 Google Scholar), 642–650.
[259] T., Trimble Google Scholar. Notes on tetracategories. Available online at http://math.ucr.edu/home/baez/trimble/tetracategories.html.
[260] D., Verity. Weak complicial sets I. Basic homotopy theory. Adv. Math. 219 (2008 Google Scholar), 1081–1149.
[261] V., Voevodsky. The Milnor conjecture. Preprint (1996 Google Scholar).
[262] R., Vogt. Homotopy limits and colimits. Math. Z. 134 (1973 Google Scholar), 11–52.
[263] R., Vogt. The HELP-Lemma and its converse in Quillen model categories. Preprint arXiv:1004.5249v1 (2010 Google Scholar).
[264] M., Weber. Yoneda Structures from 2-toposes. Appl. Cat. Struct. 15 (2007 Google Scholar), 259–323.
[265] G., Whitehead. Elements of Homotopy Theory. Springer-Verlag (1978 Google Scholar).
[266] J. H. C., Whitehead. On the asphericity of regions in a 3-sphere. Fund. Math. 32 (1939 Google Scholar), 149–166.
[267] M., Zawadowski. Lax Monoidal Fibrations. Preprint arXiv:0912.4464 (2009 Google Scholar).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6770 *
Loading metrics...

Book summary page views

Total views: 5324 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.