Skip to main content Accessibility help
×
  • Cited by 32
  • Anton Bovier, Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher:
Cambridge University Press
Online publication date:
November 2016
Print publication year:
2016
Online ISBN:
9781316675779

Book description

Branching Brownian motion (BBM) is a classical object in probability theory with deep connections to partial differential equations. This book highlights the connection to classical extreme value theory and to the theory of mean-field spin glasses in statistical mechanics. Starting with a concise review of classical extreme value statistics and a basic introduction to mean-field spin glasses, the author then focuses on branching Brownian motion. Here, the classical results of Bramson on the asymptotics of solutions of the F-KPP equation are reviewed in detail and applied to the recent construction of the extremal process of BBM. The extension of these results to branching Brownian motion with variable speed are then explained. As a self-contained exposition that is accessible to graduate students with some background in probability theory, this book makes a good introduction for anyone interested in accessing this exciting field of mathematics.

Reviews

'The text is a very well-written presentation of the motivations and recent developments in the study of the extreme process of the BBM. This provides a perfect guide for any researcher interested in this field, especially those who are looking for a relatively quick introduction.'

Bastien Mallein Source: Mathematical Reviews

'When discussing most of the questions, the author pays good attention to both ideas and techniques. He presents a large number of results, many of them are non-trivial limit theorems. Some results are classical in the field, others are quite new, published very recently. While some of the results belong to the author, credit is given to several other contributors in the area. Besides the many results given with their proofs, the author includes useful bibliographical notes in the end of each chapter. The book ends with a comprehensive list of 117 references and Index. This is a well-written book on hot topics from modern stochastics and its applications. The book can be recommended to researchers and university graduate students.'

Jordan M. Stoyanov Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Adke, S.R., and Moyal, J.E. 1963. A birth, death, and diffusion process. J. Math. Anal. Appl., 7, 209–224.
[2] Adler, R.J. 1990. An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Hayward, CA: IMS.
[3] Adler, R.J., and Taylor, J.E. 2007. Random Fields and Geometry. Springer Monographs in Mathematics. New York: Springer.
[4] Aïdéekon, E. 2013. Convergence in law of the minimum of a branching random walk. Ann. Probab., 41, 1362–1426.
[5] Aïdéekon, E., Berestycki, J., Brunet, É., and Shi, Z. 2013. Branching Brownian motion seen from its tip. Probab. Theory Related Fields, 157, 405–451.
[6] Aizenman, M., Sims, R., and Starr, S.L. 2003. An extended variational principle for the SK spin-glass model. Phys. Rev. B, 68, 214403.
[7] Arguin, L.-P. 2016. Extrema of log-correlated random variables: Principles and Examples. ArXiv e-prints, Jan.
[8] Arguin, L.-P., Bovier, A., and Kistler, N. 2011. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math., 64, 1647–1676.
[9] Arguin, L.-P., Bovier, A., and Kistler, N. 2012. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab., 22, 1693–1711.
[10] Arguin, L.-P., Bovier, A., and Kistler, N. 2013a. An ergodic theorem for the frontier of branching Brownian motion. Electron. J. Probab., 18(53), 1–25.
[11] Arguin, L.-P., Bovier, A., and Kistler, N. 2013b. The extremal process of branching Brownian motion. Probab. Theory Related Fields, 157, 535–574.
[12] Aronson, D.G., and Weinberger, H.F. 1975. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Pages 5–49 of: Partial Differential Equations and Related Topics (Program, Tulane University., New Orleans, LA., 1974). Lecture Notes in Mathematics, vol. 446. Berlin: Springer.
[13] Athreya, K.B., and Ney, P.E. 1972. Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. New York: Springer.
[14] Belius, D., and Kistler, N. 2016. The subleading order of two dimensional cover times. Probab. Theory Related Fields, online first, 1–92.
[15] Ben Arous, G., and Kuptsov, A. 2009. REM universality for random Hamiltonians. Pages 45–84 of: Spin Glasses: Statics and Dynamics. Progr. Probab., vol. 62. Basel: Birkhäuser.
[16] Ben Arous, G., Gayrard, V., and Kuptsov, A. 2008. A new REM conjecture. Pages 59–96 of: In and Out of Equilibrium. 2. Progr. Probab., vol. 60. Basel: Birkhäuser.
[17] Berman, S.M. 1964. Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist., 35, 502–516.
[18] Bernoulli, N. 1709. Specimina artis conjectandi, ad quaestiones juris applicatae. Basel. Acta Eruditorum Supplementa, pp. 159-170.
[19] Bertoin, J., and Le Gall, J.-F. 2000. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields, 117, 249–266.
[20] Billingsley, P. 1971. Weak Convergence of Measures: Applications in Probability. Philadelphia: Society for Industrial and Applied Mathematics.
[21] Biskup, M., and Louidor, O. 2014. Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field. ArXiv e-prints, Oct.
[22] Biskup, M., and Louidor, O. 2016. Extreme local extrema of two-dimensional discrete Gaussian free field. Commun. Math. Phys., online first, 1–34.
[23] Biskup, M., and Louidor, O. 2016. Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian Free Field. ArXiv e-prints, June.
[24] Bolthausen, E., and Sznitman, A.-S. 1998. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys., 197, 247–276.
[25] Bovier, A. 2006. Statistical Mechanics of Disordered Systems. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
[26] Bovier, A. 2015. From spin glasses to branching Brownian motion—and back? Pages 1–64 of: RandomWalks, Random Fields, and Disordered Systems. Lecture Notes in Mathematics, vol. 2144. Cham: Springer.
[27] Bovier, A., and Hartung, L. 2014. The extremal process of two-speed branching Brownian motion. Electron. J. Probab., 19(18), 1–28.
[28] Bovier, A., and Hartung, L. 2015. Variable speed branching Brownian motion: 1. Extremal processes in the weak correlation regime. ALEA Lat. Am. J. Probab. Math. Stat., 12, 261–291.
[29] Bovier, A., and Hartung, L. 2016. Extended convergence of the extremal process of branching Brownian motion. Ann. Appl. Probab., to appear.
[30] Bovier, A., and Kurkova, I. 2004a. Derrida's generalised random energy models I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40, 439–480.
[31] Bovier, A., and Kurkova, I. 2004b. Derrida's generalized random energy models II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40, 481–495.
[32] Bovier, A., Kurkova, I., and Löwe, M. 2002. Fluctuations of the free energy in the REM and th. p-spin SK models. Ann. Probab., 30, 605–651.
[33] Bramson, M. 1978. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math., 31, 531–581.
[34] Bramson, M. 1983. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc., 44(285), iv+190.
[35] Bramson, M. 1986. Location of the travelling wave for the Kolmogorov equation. Probab. Theory Related Fields, 73, 481–515.
[36] Bramson, M., and Zeitouni, O. 2012. Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math., 65, 1–20.
[37] Bramson, M., Ding, J., and Zeitouni, O. 2016. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math., 69, 62–123.
[38] Capocaccia, D., Cassandro, M., and Picco, P. 1987. On the existence of thermodynamics for the generalized random energy model. J. Statist. Phys., 46, 493–505.
[39] Chauvin, B., and Rouault, A. 1988. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields, 80, 299–314.
[40] Chauvin, B., and Rouault, A. 1990. Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr., 149, 41–59.
[41] Chauvin, B., Rouault, A., and Wakolbinger, A. 1991. Growing conditioned trees. Stochastic Process. Appl., 39, 117–130.
[42] Daley, D.J., and Vere-Jones, D. 2003. An Introduction to the Theory of Point Processes. Vol. 1: Elementary Theory and Methods. Springer Series in Statistics. New York: Springer.
[43] Daley, D.J., and Vere-Jones, D. 2007. An Introduction to the Theory of Point Processes. Vol. 2: General Theory and Structure. Springer Series in Statistics. New York: Springer.
[44] Derrida, B. 1980. Random-energy model: limit of a family of disordered models. Phys. Rev. Lett., 45, 79–82.
[45] Derrida, B. 1981. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3), 24, 2613–2626.
[46] Derrida, B. 1985. A generalisation of the random energy model that includes correlations between the energies. J. Phys. Lett., 46, 401–407.
[47] Derrida, B., and Spohn, H. 1988. Polymers on disordered trees, spin glasses, and traveling waves. J. Statist. Phys., 51, 817–840.
[48] Ding, J. 2013. Exponential and double exponential tails for maximum of twodimensional discrete Gaussian free field. Probab. Theory Related Fields, 157, 285–299.
[49] Duplantier, B., Rhodes, R., Sheffield, S., and Vargas, V. 2014a. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab., 42, 1769–1808.
[50] Duplantier, B., Rhodes, R., Sheffield, S., and Vargas, V. 2014b. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330, 283–330.
[51] Fang, M., and Zeitouni, O. 2012a. Branching random walks in time inhomogeneous environments. Electron. J. Probab., 17(67), 1–18.
[52] Fang, M., and Zeitouni, O. 2012b. Slowdown for time inhomogeneous branching Brownian motion. J. Statist. Phys., 149, 1–9.
[53] Fernique, X. 1974. Des résultats nouveaux sur les processus gaussiens. C. R. Acad. Sci. Paris Sér. A, 278, 363–365.
[54] Fernique, X. 1984. Comparaison de mesures gaussiennes et de mesures produit. Ann. Inst. H. Poincaré Probab. Statist., 20, 165–175.
[55] Fernique, X. 1989. Régularité de fonctions aléatoires gaussiennes stationnaires à valeurs vectorielles. Pages 66–73 of: Probability Theory on Vector Spaces, IV (Láncut, 1987). Lecture Notes in Mathematics, vol. 1391. Berlin: Springer.
[56] Fisher, R.A. 1937. The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.
[57] Fréchet, M. 1927. Sur la loi de probabilité de l'écart maximum. Ann. Soc. Pol. Math., 6, 93–116.
[58] Gardner, E., and Derrida, B. 1986a. Magnetic properties and function q(x) of the generalised random energy model. J. Phys. C, 19, 5783–5798.
[59] Gardner, E., and Derrida, B. 1986b. Solution of the generalised random energy model. J. Phys. C, 19, 2253–2274.
[60] Gnedenko, B. 1943. Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math, 44, 423–453.
[61] Gordon, Y. 1985. Some inequalities for Gaussian processes and applications. Israel J. Math., 50, 265–289.
[62] Gouéré, J.-B. 2014. Le mouvement Brownien branchant vu depuis sa particule la plus à gauche (d'après Arguin–Bovier–Kistler et Aïdékon–Berestycki–Brunet– Shi). Astérisque, 361, Exp. No. 1067, ix, 271–298.
[63] Guerra, F. 2003. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys., 233, 1–12.
[64] Gumbel, E. 1958. Statistics of Extremes. New York: Columbia University Press.
[65] Hardy, R., and Harris, S.C. 2006. A conceptual approach to a path result for branching Brownian motion. Stochastic Process. Appl., 116, 1992–2013.
[66] Harris, S.C. 1999. Travelling-waves for the FKPP equation via probabilistic arguments. Proc. Roy. Soc. Edinburgh Sect. A, 129, 503–517.
[67] Harris, S.C., and Roberts, M.I. 2015. The many-to-few lemma and multiple spines. Ann. Inst. H. Poincaré Probab. Statist., online first, 1–18.
[68] Harris, Th. E. 1963. The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Berlin: Springer.
[69] Ikeda, N., Nagasawa, M., and Watanabe, S. 1968a. Markov branching processes I. J. Math. Kyoto Univ., 8, 233–278.
[70] Ikeda, N., Nagasawa, M., and Watanabe, S. 1968b. Markov branching processes II. J. Math. Kyoto Univ., 8, 365–410.
[71] Ikeda, N., Nagasawa, M., and Watanabe, S. 1969. Markov branching processes I. J. Math. Kyoto Univ., 9, 95–160.
[72] Kac, M. 1949. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13.
[73] Kahane, J.-P. 1985. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9, 105–150.
[74] Kahane, J.-P. 1986. Une inégalité du type de Slepian et Gordon sur les processus gaussiens. Israel J. Math., 55, 109–110.
[75] Kallenberg, O. 1983. Random Measures. Berlin: Akademie Verlag.
[76] Karatzas, I., and Shreve, S.E. 1988. Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. New York: Springer.
[77] Kingman, J.F.C. 1993. Poisson Processes. Oxford Studies in Probability, vol. 3. New York: The Clarendon Press, Oxford University Press.
[78] Kistler, N. 2015. Derrida's random energy models. From spin glasses to the extremes of correlated random fields. Pages 71–120 of: Correlated Random Systems: Five Different Methods. Lecture Notes in Mathematics, vol. 2143. Cham: Springer.
[79] Kistler, N., and Schmidt, M.A. 2015. From Derrida's random energy model to branching random walks: from 1 to 3. Electron. Commun. Probab., 20(47), 1–12.
[80] Kolmogorov, A., Petrovsky, I., and Piscounov, N. 1937. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow Univ. Math. Bull., 1, 1–25.
[81] Kyprianou, A.E. 2004. Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist., 40, 53–72.
[82] Lalley, S. 2010. Branching Processes. Lecture Notes, University of Chicago.
[83] Lalley, S.P., and Sellke, T. 1987. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab., 15, 1052–1061.
[84] Leadbetter, M.R., Lindgren, G., and Rootzén, H. 1983. Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York: Springer.
[85] Ledoux, M., and Talagrand, M. 1991. Probability in Banach Spaces: isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23. Berlin: Springer.
[86] Liggett, Th. M. 1978. Random invariant measures for Markov chains, and independent particle systems. Z. Wahrsch. Verw. Gebiete, 45, 297–313.
[87] Madaule, T. 2015. Convergence in law for the branching random walk seen from its tip. J. Theor. Probab., online first, 1–37.
[88] Maillard, P., and Zeitouni, O. 2016. Slowdown in branching Brownian motion with inhomogeneous variance. Ann. Inst. H. Poincaré Probab. Statist., online first, 1–20.
[89] Mallein, B. 2015. Maximal displacement of a branching random walk in timeinhomogeneous environment. Stochastic Process. Appl., 125, 3958–4019.
[90] McKean, H.P. 1975. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math., 28, 323–331.
[91] Mézard, M., Parisi, G., and Virasoro, M.A. 1987. Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, vol. 9. Teaneck, NJ: World Scientific Publishing.
[92] Moyal, J.E. 1962. Multiplicative population chains. Proc. Roy. Soc. Ser. A, 266, 518–526.
[93] Neveu, J. 1986. Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist., 22, 199–207.
[94] Neveu, J. 1992. A continuous state branching process in relation with the GREM model of spin glass theory. rapport interne 267. Ecole Polytechnique Paris.
[95] Newman, C., and Stein, D. 2013. Spin Glasses and Complexity. Princeton, NJ: Princeton University Press.
[96] Nolen, J., Roquejoffre, J.-M., and Ryzhik, L. 2015. Power-like delay in time inhomogeneous Fisher-KPP equations. Commun. Partial Differential Equations, 40, 475–5–5.
[97] Panchenko, D. 2013. The Sherrington–Kirkpatrick model. Springer Monographs in Mathematics. New York: Springer.
[98] Piterbarg, V.I. 1996. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs, vol. 148. Providence, RI: American Mathematical Society.
[99] Resnick, S.I. 1987. Extreme Values, Regular Variation, and Point Processes. Applied Probability, vol. 4. New York: Springer.
[100] Rhodes, R., and Vargas, V. 2014. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11, 315–392.
[101] Roberts, M.I. 2013. A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Probab., 41, 3518–3541.
[102] Ruelle, D. 1987. A mathematical reformulation of Derrida's REM and GREM. Comm. Math. Phys., 108, 225–239.
[103] Sherrington, D., and Kirkpatrick, S. 1972. Solvable model of a spin glas. Phys. Rev. Letts., 35, 1792–1796.
[104] Shi, Z. 2016. Branching Random Walks. Lecture Notes in Mathematics, vol. 2151. Cham: Springer.
[105] Skorohod, A.V. 1964. Branching diffusion processes. Teor. Verojatnost. i Primenen., 9, 492–497.
[106] Slepian, D. 1962. The one-sided barrier problem for Gaussian noise. Bell System Tech. J., 41, 463–501.
[107] Stroock, D.W., and Varadhan, S. R. S. 1979. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften, vol. 233. Berlin-New York: Springer.
[108] Talagrand, M. 2003. Spin Glasses: a Challenge for Mathematicians. Ergebnisse der Mathematik und ihrer Grenzgebiete. (3), vol. 46. Berlin: Springer.
[109] Talagrand, M. 2006. The Parisi formula. Ann. of Math. (2), 163, 221–263.
[110] Talagrand, M. 2011a. Mean Field Models for Spin Glasses. Volume I. Basic Examples. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 54. Berlin: Springer.
[111] Talagrand, M. 2011b. Mean Field Models for Spin Glasses. Volume II. Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 55. Heidelberg: Springer.
[112] Uchiyama, K. 1978. The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ., 18, 453–508.
[113] Ulam, S.M. 1968. Computations on certain binary branching processes. Pages 168–171 of: Computers in Mathematical Research. Amsterdam: North-Holland.
[114] von Mises, R. 1936. La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique, 1, 141–160.
[115] Watanabe, T. 2004. Exact packing measure on the boundary of a Galton-Watson tree. J. London Math. Soc. (2), 69, 801–816.
[116] Watson, H.W., and Galton, F. 1875. On the probability of the extinction of families. J. Anthropol. Inst. Great Brit. Ireland, 4, 138–144.
[117] Zeitouni, O. 2016. Branching random walks and Gaussian fields. Proceedings of Symposia in Pure Mathematics, 91, 437–471.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.