Skip to main content Accessibility help
×
  • Cited by 265
Publisher:
Cambridge University Press
Online publication date:
September 2011
Print publication year:
2011
Online ISBN:
9780511975837

Book description

Kalman filter, particle filter, IMM, PDA, ITS, random sets... The number of useful object-tracking methods is exploding. But how are they related? How do they help track everything from aircraft, missiles and extra-terrestrial objects to people and lymphocyte cells? How can they be adapted to novel applications? Fundamentals of Object Tracking tells you how. Starting with the generic object-tracking problem, it outlines the generic Bayesian solution. It then shows systematically how to formulate the major tracking problems – maneuvering, multiobject, clutter, out-of-sequence sensors – within this Bayesian framework and how to derive the standard tracking solutions. This structured approach makes very complex object-tracking algorithms accessible to the growing number of users working on real-world tracking problems and supports them in designing their own tracking filters under their unique application constraints. The book concludes with a chapter on issues critical to successful implementation of tracking algorithms, such as track initialization and merging.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Ackerson, G. A. and Fu, K. S. (1970) On state estimation in switching environments, IEEE Transactions on Automatic Control, 15(1), 10–17.
Alspach, D. L. and Sorenson, H. W. (1971) Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE Transactions on Automatic Control, 17(4), 439–448.
Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. New Jersey: Prentice-Hall.
Bar-Shalom, Y. (1978) Tracking methods in a multitarget environment, IEEE Transactions on Automatic Control, 23(4), 618–626.
Bar-Shalom, Y. (2000) Update with out-of-sequence measurements in tracking: exact solution, in Proc. SPIE: Signal and Data Processing of Small Targets 2000, O. E., Drummond (ed.), Vol. 4048, pp. 541–556.
Bar-Shalom, Y. and Birmiwal, K. (1982) Variable dimension filter for maneuvering target tracking, IEEE Transactions on Aerospace and Electronic Systems, 18(5), 621–629.
Bar-Shalom, Y. and Fortmann, T. E. (1988) Tracking and Data Association. New York: Academic Press.
Bar-Shalom, Y. and Li, X. R. (1993) Estimation and Tracking: Principles, Techniques, and Software. MA: Artech House.
Bar-Shalom, Y. and Li, X. R. (1995) Multitarget-Multisensor Tracking: Principles and Techniques. Storrs, CT: YBS Publishing.
Bar-Shalom, Y. and Tse, E. (1975) Tracking in a cluttered environment with probabilistic data association, Automatica, 11(5), 451–460.
Bar-Shalom, Y., Challa, S. and Blom, H. A. P. (2005) IMM estimator versus optimal estimator for hybrid systems, IEEE Transactions on Aerospace and Electronic Systems, 41(3), 986–991.
Bar-Shalom, Y., Chang, K. C. and Blom, H. A. P. (1989) Automatic track formation in clutter with a recursive algorithm, in Proc. 28th Conference on Decision and Control, Florida, December, pp. 1402–1408.
Bar-Shalom, Y., Chang, K. C. and Blom, H. A. P. (1990) Automatic track formation in clutter with a recursive algorithm, in Multitarget-Multisensor Tracking: Advanced Applications, Y., Bar-Shalom (ed.). MA: Artech House, pp. 25–42.
Bar-Shalom, Y. (ed.) (1990) Multitarget-Multisensor Tracking: Advanced Applications. MA: Artech House.
Bar-Shalom, Y., Li., X. R. and Kirubarajan, T. (2001) Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley.
Bayes, T. (1764) Essay towards solving a problem in the doctrine of chances, Philosophical Transactions of the Royal Society of London, 53, 370–418.
Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. New York: Springer.
Bergman, N. (2001) Posterior Cramér–Rao bounds for sequential estimation, in Sequential Monte Carlo Methods in Practice, A., Doucet, N., de Freitas and N., Gordon (eds.). New York: Springer, pp. 321–338.
Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. New York: Wiley.
Berry, D. A. (1996) Statistics: A Bayesian Perspective. Belmont: Duxbury.
Blackman, S. (1986) Multiple Target Tracking with Radar Applications. MA: Artech House.
Blackman, S. and Popoli, R. (1999) Design and Analysis of Modern Tracking Systems. MA: Artech House.
Blair, W. D. and Watson, G. A. (1992) Interacting multiple bias model algorithm with application to tracking maneuvering targets, in IEEE Proc. 31st Conference on Decision and Control, Tucson, AZ, December, pp. 3790–3795.
Blair, W. D. and Watson, G. A. (1994) IMM Algorithm for solution to benchmark problem for tracking maneuvering targets, in Proc. SPIE Symposium on Acquisition, Tracking and Pointing, Orlando, FL.
Blair, W. D., Watson, G. A. and Hoffman, S. A. (1993) Second order interacting multiple model algorithm for tracking maneuvering targets, in Proc. SPIE: Signal and Data Processing of Small Targets 1993, O. E., Drummond (ed.), vol. 1954, pp. 518–529.
Blair, W. D., Watson, G. A. and Rice, T. R. (1991) Interacting multiple model filter for tracking maneuvering targets in spherical coordinates, in IEEE Proceedings of SOUTHEASTCON' 91, Williamsburg, VA, vol. 2, 1991, pp. 1055–1059.
Blom, H. A. P. (1984a) A sophisticated tracking algorithm for ATC surveillance data, in Proc. International Radar Conference, Paris, May.
Blom, H. A. P. (1984b) An efficient filter for abruptly changing systems, in Proc. 23rd IEEE Conference on Decision and Control, Las Vegas, NV, December, pp. 656–658.
Blom, H. A. P. and Bar-Shalom, Y. (1988) The interacting multiple model algorithm for systems with Markovian switching coefficients, IEEE Proceedings on Auto Control AC, 33(8), 780–783.
Blom, H. A. P. and Bloem, E. (2002) Combining IMM and JPDA for tracking multiple maneuvering targets in clutter, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, vol. 1, pp. 705–712.
Bochardt, O., Calhoun, R., Uhlmann, J. K. and Julier, S. J. (2006) Generalized information representation and compression using covariance union, in Proc. 9th International Conference on Information Fusion, Fusion 2006, Florence, Italy, July, pp. 1–7.
Boult, T. (1998) Frame-rate multi-body tracking for surveillance, in Proc. DARPA Image Understanding Workshop, Monterey, CA, pp. 305–308.
Box, G. P. A. and Tiao, G. C. (1973) Bayesian Inference in Statistical Analysis. New York: Wiley.
Bucy, R. and Senne, K. (1971) Digital synthesis of non-linear filters, Automatica, 7, 287–298.
Chakravorty, R. and Challa, S. (2004) Fixed lag smoothing technique for track maintenance in clutter, in Proc. Intelligent Sensors Sensor Networks and Information Processing, pp. 119–124.
Chakravorty, R. and Challa, S. (2005) Smoothing framework for automatic track initiation in clutter, in Proc. 8th International Conference on Information Fusion, Philadelphia, PA, July, pp. 54–61.
Chakravorty, R. and Challa, S. (2006) Augmented state integrated probabilistic data association smoothing for multiple target tracking in clutter, Journal of Advances in Information Fusion, 1(1), 63–74.
Chakravorty, R. and Challa, S. (2009) Multitarget tracking algorithm: joint IPDA and Gaussian mixture PHD filter, in Proc. 12th International Conference on Information Fusion, Fusion 2009, Seattle, WA, July, pp. 316–323.
Challa, S. (1998) Nonlinear state estimation and filtering with applications to target tracking problems. Unpublished PhD thesis, Queenland University of Technology.
Challa, S., Bar-Shalom, Y. and Krishnamurthy, V. (2000) Nonlinear filtering via generalized Edgeworth series and Gauss–Hermite quadrature, IEEE Transactions on Signal Processing, 48(6), 1816–1820.
Challa, S., Evans, R. J. and Mušicki, D. (2002c) Target tracking – a Bayesian perspective, in Proc. 14th International Conference on Digital Signal Processing, Vol. 1, pp. 437–440.
Challa, S., Evans, R. and Wang, X. (2002a) A Bayesian solution to the OOSM problem, Submitted toIEEE Transactions on Aerospace and Electronic Systems.
Challa, S., Evans, R. and Wang, X. (2002b) Target tracking in clutter using time-delayed out-of-sequence measurements, in Proc. Defence Applications of Signal Processing (DASP), July.
Challa, S., Evans, R. J. and Wang, X. (2003) A Bayesian solution and its approximations to out-of-sequence measurement problems, Information Fusion, 4(3), 185–199.
Challa, S. and Koks, K. (2004) Bayesian and Dempster–Shafer fusion, in Sadhana, Vol. 29, Part 2, pp. 145–176.
Challa, S. and Koks, D. (2005) An introduction to Bayesian and Dempster–Shafer data fusion, DSTO Technical Report 1436.
Challa, S., Vo, B. and Wang, X. (2002c) Bayesian approaches to track existence – IPDA and random sets, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, Vol. 2, pp. 1228–1235.
Chan, Y. T., Hu, A. G. and Plant, J. B. (1979) A Kalman filter based tracking scheme with input estimation, IEEE Transactions on Aerospace and Electronic Systems, 15(2), 237–244.
Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N. and Hasegawa, O. (2000) A system for video surveillance and monitoring, Carnegie Mellon University, Pittsburgh, PA, Technical Report, CMU-RI-TR-00-12.
Cover, T. M. and Thomas, J. A. (2006) Elements of Information Theory. New York: Wiley.
Cutaia, N. J. and O'Sullivan, J. A. (1995) Identification of maneuvering aircraft using class dependent kinematic models, ESSRL-95-13, May.
Daum, F. E. (1986) Exact finite-dimensional nonlinear filters, IEEE Transactions on Automatic Control, 31(7), 616–622.
Davies, A. C., Yin, J. H. and Velastin, S. A. (1995) Crowd monitoring using image processing, Electronic and Communication Engineering Journal, 7(1), 37–47.
de Laplace, P. S. (1812) Théorie analytique des probabilités, Paris: Courcier Imprimeur.
Erdinc, O., Willett, P. and Bar-Shalom, Y. (2005) Probability hypothesis density filter for multitarget multisensor tracking, in Proc. 8th International Conference on Information Fusion, Philadelphia, PA, July, pp. 146–153.
Farina, A. and Studer, F. A. (1985) Radar Data Processing, Vol. I: Introduction and Tracking, Vol. II: Advanced Topics and Applications. Hertfordshire, England: Research Studies Press and New York: Wiley.
Farooq, M., Bruder, S., Quach, T. and Lim, S. S. (1992) Adaptive filtering techniques for manoeuvring targets, in Proc. 34th Midwest Symposium on Circuits and Systems, vol. 1, Monterey, CA, USA, pp. 31–34.
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. London: Chapman and Hall.
Gholson, N. H. and Moose, R. L. (1977) Maneuvering target tracking using adaptive state estimation, IEEE Transactions on Aerospace and Electronic Systems, 13(3), 310–317.
Goodman, I. R., Mahler, R. and Nhuyen, H. T. (1997) Mathematics of Data Fusion. Amsterdam: Kluwer.
Haritaoglu, I., Harwood, D. and Davis, L. S. (2004) W4: Real-time surveillance of people and their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 809–830.
Helmick, R. E., Blair, W. D. and Hoffman, S. A. (1993) Interacting multiple-model approach to fixed-interval smoothing, in Proc. 32nd IEEE Conference on Decision and Control, San Antonio, TX, December, pp. 3052–3057.
Helmick, R. E., Blair, W. D. and Hoffman, S. A. (1995) Fixed-interval smoothing for Markovian switching systems, IEEE Transactions on Information Theory, 41(6), 1845–1855.
Helmick, R. E., Blair, W. D. and Hoffman, S. A. (1996) One-step fixed-lag smoothers for Markovian switching systems, IEEE Transactions on Automatic Control, 41(7), 1051–1056.
Hernandez, M., Farina, A. and Ristic, B. (2006) PCRLB for tracking in cluttered environments: measurement sequence conditioning approach, IEEE Transactions on Aerospace and Electronic Systems, 42(2), 680–704.
Hernandez, M., Marrs, A. D., Gordon, N. J., Maskell, S. R. and Reed, C. M. (2002) Cramér–Rao bounds for non-linear filtering with measurement origin uncertainty, in Proc. 5th International Converence on Information Fusion, Fusion 2002, Annapolis, MD, July, Vol. 2, pp. 18–25.
Hernandez, M., Ristic, B. and Farina, A. (2005) A performance bound for manoeuvring target tracking using best-fitting Gaussian distributions, in Proc. 8th International Conference on Information Fusion, Philadelphia, PA, July, pp. 1–8.
Hilton, R. D., Martin, D. A. and Blair, W. D. (1993) Tracking with time delayed data in multisensor system, Technical Report, NSWCDD/TR-93/351, Dahlgren, VA.
Ho, Y. C. and Lee, R. C. K. (1964) A Bayesian approach to problems in stochastic estimation and control, IEEE Transactions on Automatic Control, 9(4), 333–339.
Hoffman, J. R. and Mahler, R. (2002) Multitarget miss distance and its applications, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, Vol. 2, pp. 149–155.
Hogg, R. V. and Craig, A. T. (1995) Introduction to Mathematical Statistics. New Jersey: Prentice-Hall.
Houles, A. and Bar-Shalom, Y. (1989) Multisensor tracking of a maneuvring target in clutter, IEEE Transactions on Aerospace and Electronic Systems, 25(2), 176–189.
Hu, W., Tan, T., Wang, L. and Maybank, S. (2004) A survey on visual surveillance of object motion and behaviors, IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, 34(3), pp. 334–352.
Hwang, I., Balakrishnan, H., Roy, K. and Tomlin, C. (2004) Multiple-target tracking and identity management in clutter, with application to aircraft tracking, in Proc. 2004 American Control Conference, Boston, MA, June 30–July 2, pp. 3422–3428.
Ito, K. and Xiong, K. (2000) Gaussian filters for nonlinear filtering problems, IEEE Transactions on Automatic Control, 45(5), 910–927.
Jaffer, A. G. and Gupta, S. C. (1971) Recursive Bayesian estimation with uncertain observation, IEEE Transactions on Information Theory, 17, 614–616.
Jazwinski, A. H. (1970) Stochastic Processes and Filtering Theory. New York: Academic Press.
Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control, 45(3), 477–482.
Kalman, R. E. (1960) A new approach to linear filtering and prediction problems, Transactions of the ASME, Journal of Basic Engineering, March, 35–45.
Kingman, J. F. C. (1992) Poisson Processes. Oxford: Oxford University Press.
Kramer, S. C. and Sorenson, H. W. (1988) Bayesian parameter estimation, IEEE Transactions on Automatic Control, 33(2), 217–222.
Krause, S. S. (1995) Avoiding Mid-air Collisions. TAB Books.
Kudryavtsev, L. D. (2001) Implicit function, in Encyclopedia of Mathematics, M., Hazewinkel (ed.). New York: Springer.
Lerner, U. N. (2002) Hybrid Bayesian Networks for Reasoning about Complex Systems. Stanford, CA: Stanford University Press.
Lerro, D. and Bar-Shalom, Y. (1990) Automated tracking with target amplitude information, in Proc. 1990 American Control Conference, San Diego, CA, May, pp. 2875–2880.
Lerro, D. and Bar-Shalom, Y. (1993) Interactive multiple model tracking with target amplitude feature, IEEE Transactions on Aerospace and Electronic Systems, 29(2), 494–509.
Li, X. R. (1994) Multiple-model estimation with variable structure: some theoretical considerations, in Proc. 33rd IEEE Conference on Decision and Control, Orlando, FL, December, pp. 1199–1204.
Li, X. R. (2000) Multiple-model estimation with variable structure – part II: model-set adaptation, IEEE Transactions on Automatic Control, 45(11), 2047–2060.
Li, X. R. and Bar-Shalom, Y. (1992) Mode-set adaptation in multiple-model estimators for hybrid systems, in Proc. 1992 American Control Conference, Chicago, IL, June, pp. 1794–1799.
Li, X. R. and Bar-Shalom, Y. (1996) Multiple-model estimation with variable structure, IEEE Transactions on Automatic Control, 41(4), 478–493.
Li, X. R. and Bar-Shalom, Y. (1997) Intelligent PDAF: refinement of IPDAF for tracking in clutter, in Proc. 29th SSST, March, pp. 133–137.
Li, X. R. and He, C. (1999) 2M-PDAF: an integrated two-model probabilistic data association filter, in Proc. SPIE: Signal and Data Processing of Small Targets 1999, O. E., Drummond (ed.), pp. 384–395.
Li, X. R. and Zhang, Y. (2000) Multiple-model estimation with variable structure–part V: likely-model set algorithm, IEEE Transactions on Aerospace and Electronic Systems, 36(2), pp. 448–466.
Li, X. R., Zhi, X. and Zhang, Y. (1999) Multiple-model estimation with variable structure part III: model-group switching algorithm, IEEE Transactions on Aerospace and Electronic Systems, 35(1), 225–240.
Lin, L., Bar-Shalom, Y. and Kirubarajan, T. (2006) Track labeling and PHD filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 42(3), 778–795.
Lindley, D. V. (1972) Bayesian Statistics, A Review. Philadelphia: Society for Industrial and Applied Mathematics.
Lipton, A. J., Fujiyoshi, H. and Patil, R. S. (1998) Moving target classification and tracking from real-time video, in Proc. 4th IEEE Workshop on Applications of Computer Vision, pp. 8–14.
Mahalanabis, A. K., Zhou, B. and Bose, N. K. (1990) Improved multi-target tracking in clutter by PDA smoothing, IEEE Transactions on Aerospace and Electronic Systems, 26(1), 113–121.
Mahler, R. (1997) Multisensor-multitarget statistics, in A Unified Approach to Data Fusion – Proceedings of 7th Joint Data Fusion Symposium, F. A., Sadjadi (ed.), pp. 154–174.
Mahler, R. (2000) Approximate multisensor-multitarget joint detection, IEEE Transactions on Aerospace and Electronic Systems, to appear.
Mahler, R. (2003a) Multitarget Bayes filtering via first-order multitarget moments, IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1152–1178.
Mahler, R. (2003b) Objective functions for Bayesian control-theoretic sensor management, I: Multitarget first-moment approximation, in Proc. IEEE Conference on Aerospace and Electronics Systems, Vol. 4, pp. 1905–1923.
Mahler, R. (2004a) “Statistics 101” for multisensor, multitarget data fusion, IEEE Magazine of Aerospace and Electronic Systems, 19(1), 53–64.
Mahler, R. (2004b) An introduction to multisource-multitarget statistics and its applications, Technical report, Lockheed Martin.
Mahler, R. (2007) PHD filters of higher order in target number, IEEE Transactions on Aerospace and Electronic Systems, 43(4), 1523–1543.
Mallick, M., Coraluppi, S. and Bar-Shalom, Y. (2001b) Comparison of out-of-sequence measurement algorithms in multi-platform target tracking, in Proc. 4th International Conference on Information Fusion, Fusion 2001, Montreal, Quebec, August, Vol. II, pp. ThB1-11–18.
Mallick, M., Coraluppi, S. and Carthel, C. (2001a) Advances in asynchronous and decentralized estimation, in Proc. 2001 IEEE Aerospace Conference, Big Sky, MT, March.
Marcus, G. D. (1979) Tracking with measurements of uncertain origin and random arrival times. Unpublished thesis, University of Connecticut.
Mazor, E., Averbuch, A., Bar-Shalom, Y. and Dayan, J. (1998) Interacting multiple model methods in target tracking: a survey, IEEE Transactions on Aerospace and Electronic Systems, 34(1), 103–123.
McGinnity, S. and Irwin, G. (2001) Manoevring target tracking using a multiple-model bootstrap filter, in Sequential Monte Carlo Methods in Practice, A., Doucet, N. de, Freitas and N., Gordon (eds.), New York: Springer, pp. 479–496.
Moose, R. L. (1975) An adaptive state estimation solution to the maneuvering target tracking problem, IEEE Transactions on Automatic Control, 20, 359–362.
Moose, R. L., Vanlandingham, H. F. and McCabe, D. H. (1979) Modeling and estimation for tracking maneuvering targets, IEEE Transactions on Aerospace and Electronic Systems, 15(3), 448–456.
Mori, S., Chong, C. Y., Tse, E. and Wishner, R. P. (1986) Tracking and classifying multiple targets without a priori identification, IEEE Transactions on Automatic Control, 31(5), 401–408.
Munir, A. and Atherton, D. P. (1994) Maneuvering target tracking using an adaptive interacting multiple model algorithm, in Proc. 1994 American Control Conference, Vol. 2, Baltimore, MD, pp. 1324–1328.
Mušicki, D. (1994) Automatic tracking of maneuvering targets in clutter using IPDA. Unpublished PhD dissertation, University of Newcastle, New South Wales, Australia.
Mušicki, D. and Evans, R. J. (1995) Integrated probabilistic data association – finite resolution, Automatica, 31(4), pp. 559–570.
Mušicki, D. and Evans, R. J. (2002) Joint integrated probabilistic data association JIPDA, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, pp. 1120–1125.
Mušicki, D. and Evans, R. J. (2004a) Clutter map information for data association and track initialization, IEEE Transactions on Aerospace and Electronic Systems, 40(2), 387–398.
Mušicki, D. and Evans, R. J. (2004b) Joint integrated probabilistic data association – JIPDA, IEEE Transactions on Aerospace and Electronic Systems, 40(3), 1093–1099.
Mušicki, D. and Evans, R. J. (2008) Multi-scan multi-target tracking in clutter with ITS, IEEE Transactions on Aerospace and Electronic Systems, to appear.
Mušicki, D. and La Scala, B. F. (2005) Limits of linear multitarget tracking, in Proc. 8th International Conference on Information Fusion, Fusion 2005, Philadelphia, PA, July, pp. 205–210.
Mušicki, D. and La Scala, B. F. (2008) Multi-target tracking in clutter without measurement assignment, IEEE Transactions on Aerospace and Electronic Systems, 44(3), 877–896.
Mušicki, D. and Morelande, M. (2004) Gate volume estimation for target tracking, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 455–462.
Mušicki, D. and Suvorova, S. (2004) Target tracking initiation comparison and optimisation, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 28–32.
Mušicki, D. and Suvorova, S. (2008) Tracking in clutter using IMM-IPDA based algorithms, IEEE Transactions on Aerospace and Electronic Systems, 44(1), 111–126.
Mušicki, D. and Wang, X. (2004) Reliability of PDA based target tracking in clutter, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 1257–1262.
Mušicki, D., Challa, S. and Suvorova, S. (2004a) Automatic track initiation of maneuvering target in clutter, in Asian Control Conference, ASCC 2004, Melbourne, Australia, July, pp. 1008–1014.
Mušicki, D., Evans, R. J. and La Scala, B. F. (2003) Integrated tracking splitting suite of target tracking filters, in Proc. 6th International Conference on Information Fusion, Fusion 2003, Cairns, Australia, July, pp. 1039–1047.
Mušicki, D., Evans, R. J. and Stanković, S. (1994) Integrated probabilistic data association, IEEE Transactions on Automatic Control, 39(6), 1237–1241.
Mušicki, D., La Scala, B. F. and Evans, R. J. (2004b) Integrated track splitting filter for manoeuvring targets, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 146–152.
Mušicki, D., La Scala, B. F. and Evans, R. J. (2007) The integrated track splitting filter – efficient multi-scan single target tracking in clutter, IEEE Transactions on Aerospace and Electronic Systems, 43(4), 1409–1425.
Mušicki, D., Mallick, M., La Scala, B. F., Strange, S. and Evans, R. (2005a) LMITS as an efficient MHT, in Proc. SPIE: Signal and Data Processing of Small Targets 2005, O. E., Drummond (ed.), pp. OVI–OVI2.
Mušicki, D., Suvorova, S., Morelande, M. and Moran, W. (2005b) Clutter map and target tracking, in Proc. 8th International Conference on Information Fusion, Fusion 2005, Philadelphia, PA, July, pp. 69–76.
Olson, T. and Brill, F. (1997) Moving object detection and event recognition algorithms for smart cameras, in Proc. DARPA Image Understanding Workshop, pp. 159–175.
Panta, K., Vo, B. and Singh, S. (2005) Improved PHD filter for multi-target tracking, in Proc. International Conference on Intelligent Sensing and Information Processing, pp. 213–218.
Rapoport, I. and Oshman, Y. (2004) Recursive Weiss–Weinstein lower bounds for discretetime nonlinear filtering, in Proc. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December, pp. 2662–2667.
Rasmussen, C. and Hager, G. D. (2001) Probabilistic data association methods for tracking complex visual objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 560–576.
Ravn, O., Larsen, T. D., Andersen, N. A. and Poulsen, N. K. (1998) Incorporation of time delayed measurements in a discrete time Kalman filter, in Proc. 37th IEEE Conference on Decision and Control, Tampa, FL, December, pp. 3972–3977.
Regazzoni, C. S. and Tesei, A. (1996) Distributed data fusion for real time crowding estimation, Signal Processing, 53(1), 47–63.
Regazzoni, C. S., Tesei, A. and Munro, V. (1993) A real time vision system for crowding monitoring, Proc. IECON, pp. 1860–1864.
Reid, D. B. (1979) An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, 24(6), 843–854.
Ricker, G. G. and Williams, J. R. (1978) Adaptive tracking filter for maneuvering targets, IEEE Transactions on Aerospace and Electronic Systems, 14(1), 185–193.
Ristic, B. and Morelande, M. (2007) Comments on: Cramer–Rao lower bound for tracking multiple targets, in Proceedings of the IET Radar Sonar Navigation, 1(1), 74–76.
Ristic, B., Farina, A. and Hernandez, M. (2004) Cramer–Rao lower bound for tracking multiple targets, in Proceedings of the IET Radar Sonar Navigation, 151(3), 129–134.
Ross, S. M. (2003) Introduction to Probability Models. Orlando, FL: Academic Press.
Roumeliotis, S. I. and Bekey, G. A. (1997) An extended Kalman filter for frequent local and infrequent global sensor data fusion, in Proc. SPIE (Sensor Fusion and Decentralized Control in Autonomous Robotic Systems), Pittsburgh, PA, October 14–19, pp. 11–22.
Salmond, D. (1990) Mixture reduction algorithms for target tracking in clutter, Proc. SPIE: Signal and Data Processing of Small Targets, 1990, O. E., Drummond (ed.), pp. 434–445.
Sidenbladh, H. (2003) Multi-target particle filtering for the probability hypothesis density, in Proc. 6th International Conference on Information Fusion, Fusion 2003, Cairns, Australia, July, pp. 800–806.
Singer, R. A., Sea, R. G. and Housewright, K. B. (1974) Derivation and evaluation of improved tracking filters for use in dense multitarget environments, IEEE Transactions on IT, IT-20(4), 423–432.
Stigler, S. M. (1986) The History of Statistics, The Measurement of Uncertainty before 1900. The Belknap Press of Harvard University Press.
Sworder, D. D. and Boyd, J. E. (1999) Estimation Problems in Hybrid Systems. New York: Cambridge University Press.
Tan, T. N., Sullivan, G. D. and Baker, K. D. (1998) Model-based localization and recognition of road vehicles, International Journal of Computer Vision, 27(1), 5–25.
Thomopoulos, S. C. A. and Zhang, L. (1994) Decentralized filtering with random sampling and delay, Information Sciences, 81(1), 117–131.
Tichavský, P., Muravchik, C. H. and Hehorai, A. (1998) Posterior Cramér–Rao bounds for discrete-time nonlinear filtering, IEEE Transactions on Signal Processing, 46(5), 1386–1396.
Tugnait, J. K. (1982) Detection and estimation for abruptly changing systems, Automatica, 18(5), 607–615.
Van Trees, H. L. (1968) Detection, Estimation, and Modulation Theory, Part 1. New York: Wiley.
Vo, B. and Ma, W. (2006) The Gaussian mixture probability hypothesis density filter, IEEE Transactions on Signal Processing, 54(11), 4091–4104.
Vo, B., Singh, S. and Doucet, A. (2005) Sequential Monte Carlo methods for multi-target filtering with random finite sets, IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1224–1245.
Vo, B. T., Vo, B. N. and Cantoni, A. (2006) The cardinalized probability hypothesis density filter for linear Gaussian multi-target models, in Proc. 40th Annual Conference on Information Sciences and Systems, pp. 681–686.
Wang, X. and Challa, S. (2003) Augmented state IMM-PDA for OOSM solution to maneuvering target tracking in clutter, in Proc. 2003 International Radar Conference, pp. 479–485.
Wang, X. and Mušicki, D. (2007) Low elevation sea-surface target tracking, using IPDA type filters, IEEE Transactions on Aerospace and Electronic Systems, 43(2), 759–774.
Wang, X., Challa, S., Evans, R. J. and Li, X. R. (2003) Minimal submodel-set algorithm for maneuvering target tracking, IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1218–1231.
Wang, X., Mušicki, D., Richard, E. and Fletcher, F. (2008) Efficient and enhanced multitarget tracking with Doppler measurements, IEEE Transactions on Aerospace and Electronic Systems, to appear.
Williams, J. L. and Mayback, P. S. (2003) Cost-function-based Gaussian mixture reduction for target tracking, in Proc. 5th International Conference on Information Fusion, Fusion 2003, Cairns, Australia, July, pp. 1047–1054.
Wren, C. R., Azarbayejani, A., Darrell, T. and Pentland, A. P. (1997) Pfinder: real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 780–785.
Zajic, T. and Mahler, R. (2003) A particle-systems implementation of the PHD multi-target tracking filter, in Proc. SPIE Signal Process, Sensor Fusion Target Recognition XII, pp. 291–299.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.