Skip to main content Accessibility help
×
  • Cited by 29
Publisher:
Cambridge University Press
Online publication date:
April 2016
Print publication year:
2016
Online ISBN:
9781316563267

Book description

The area of nonlinear dispersive partial differential equations (PDEs) is a fast developing field which has become exceedingly technical in recent years. With this book, the authors provide a self-contained and accessible introduction for graduate or advanced undergraduate students in mathematics, engineering, and the physical sciences. Both classical and modern methods used in the field are described in detail, concentrating on the model cases that simplify the presentation without compromising the deep technical aspects of the theory, thus allowing students to learn the material in a short period of time. This book is appropriate both for self-study by students with a background in analysis, and for teaching a semester-long introductory graduate course in nonlinear dispersive PDEs. Copious exercises are included, and applications of the theory are also presented to connect dispersive PDEs with the more general areas of dynamical systems and mathematical physics.

Reviews

'The exercises in each chapter, while not at all trivial, tremendously enhance one’s understanding of the material. The focus on periodic boundary conditions sets this book apart from related ones in the area, and yet the authors do a nice job discussing related well-posedness results and estimates on the real line as well. While certainly not meant for students without any analysis background, a thorough work-through of this book certainly brings one to the frontier of the theory of nonlinear dispersive PDEs.'

Eric Stachura Source: MAA Reviews

'The book is a manual for beginning graduate students in the field of the general theory of nonlinear partial differential equations. The material is presented in the rigorous mathematical style, providing proofs of formal theorems, rather than less strict considerations which may be often encountered in physics literature.'

Boris A. Malomed Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] A., Babin, A. A., Ilyin, and E. S., Titi, On the regularization mechanism for the periodic Korteweg–de Vries equation, Comm. Pure Appl. Math. 64 (2011 Google Scholar), no. 5, 591–648.
[2] A., Babin, A., Mahalov, and B., Nicolaenko, Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids, Asymptot. Anal. 15 (1997 Google Scholar), no.2, 103–150.
[3] J. M., Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst. 10 (2004 Google Scholar), no. 1–2, 31–52.
[4] M., Beals, Self-spreading and strength of singularities of solutions to semilinear wave equations, Ann. of Math. 118 (1983 Google Scholar), 187–214.
[5] H., Berestycki and P.-L., Lions, Existence d'ondes solitaires dans des problemes nonlinéaires du type Klein–Gordon, C. R. Acad. Sci. Paris Sér. A-B 288 (1979 Google Scholar), no. 7, A395–A398.
[6] M. V., Berry, Quantum fractals in boxes, J. Phys. A: Math. Gen. 29 (1996 Google Scholar), 6617–6629.
[7] M. V., Berry and S., Klein, Integer, fractional and fractal Talbot effects, J. Mod. Optics 43 (1996 Google Scholar), 2139–2164.
[8] M. V., Berry and Z. V., Lewis, On the Weierstrass–Mandelbrot fractal function, Proc. Roy. Soc. London A 370 (1980 Google Scholar), 459–484.
[9] M. V., Berry, I., Marzoli, and W., Schleich, Quantum carpets, carpets of light, Physics World 14 (2001 Google Scholar), no.6, 39–44.
[10] H., Biagioni and F., Linares, Ill-posedness for the Derivative Schrödinger and Generalized Benjamin-Ono equations, Trans. Amer. Math. Soc. 353 (2001 Google Scholar), 3649–3659.
[11] B., Birnir, C. E., Kenig, G., Ponce, N., Svanstedt, and L., Vega, On the ill-posedness of the IVP for the generalized Korteweg–de Vries and nonlinear Schrödinger equations, J. London Math. Soc. 53 (1996 Google Scholar), pp. 551–559.
[12] E., Bombieri and J., Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989 Google Scholar), 337–357.
[13] J. L., Bona and R., Smith, The initial-value problem for the Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975 Google Scholar), no. 1287, 555–601.
[14] J. L., Bona and N., Tzvetkov, Sharp wellposedness results for the BBM equation, Discrete Contin. Dyn. Syst. 23 (2009 Google Scholar), no.4, 1241–1252.
[15] J., Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations, GAFA 3 (1993 Google Scholar), 209–262.
[16] J., Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation, GAFA 3 (1993 Google Scholar), 209–262.
[17] J., Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices (1996 Google Scholar), no. 6, 277–304.
[18] J., Bourgain, Periodic Korteweg–de Vries equation with measures as initial data, Sel. Math. New ser. 3 (1997 Google Scholar), 115–159.
[19] J., Bourgain, Refinement of Strichartz’ inequality and applications to 2D–NLS with critical nonlinearity, Internat. Math. Res. Notices (1998 Google Scholar), no. 5, 253–283.
[20] J., Bourgain, Global Solutions of Nonlinear Schrödinger Equations, AMS Colloquium Publications 46. American Mathematical Society, Providence, RI, 1999 Google Scholar.
[21] J., Bourgain, A remark on normal forms and the “I-method” for periodic NLS, J. Anal. Math. 94 (2004 Google Scholar), 125–157.
[22] J., Bourgain and C., Demeter, The proof of the l2 decoupling conjecture, preprint 2014 Google Scholar, http://arxiv.org/abs/1403.5335.
[23] N., Burq, P., Gérard, and N., Tzvetkov, An instability property of the nonlinear Schrödinger equation on Sd, Math. Res. Lett. 9 (2002 Google Scholar), 323–335.
[24] N., Burq, P., Gérard, and N., Tzvetkov, Global solutions for the nonlinear Schrödinger equation on three-dimensional compact manifolds, Mathematical Aspects of Nonlinear Dispersive Equations, 111–129, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007 Google Scholar.
[25] M., Cabral and R., Rosa, Chaos for a damped and forced KdV equation, Physica D 192 (2004 Google Scholar), 265–278.
[26] L., Carleson, Some analytical problems related to statistical mechanics, Euclidean Harmonic Analysis, 5–45, Lecture Notes in Math. 779 Springer- Verlag, Berlin and New York, 1979 Google Scholar.
[27] F., Catoire and W.-M., Wang, Bounds on Sobolev norms for the defocusing nonlinear Schrödinger equation on general flat tori, Commun. Pure Appl. Anal. 9 (2010 Google Scholar), no. 2, 483–491.
[28] T., Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, 22, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1989 Google Scholar.
[29] T., Cazenave, Blow Up and Scattering in the Nonlinear Schrödinger Equation, Textos de Métodos Matemáticos, 30, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1994 Google Scholar.
[30] T., Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10. New York University, Courant Institute of Mathematical Sciences, NY; American Mathematical Society, Providence, RI, 2003 Google Scholar.
[31] T., Cazenave and F. B., Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear Semigroups, Partial Differential Equations and Attractors (Washington, DC, 1987 Google Scholar), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, 1989.
[32] N., Chang, J., Shatah, and K., Uhlenbeck, Schrödinger maps, Comm. Pure Appl. Math. 53 (2000 Google Scholar), 590–602.
[33] G., Chen and P. J., Olver, Numerical simulation of nonlinear dispersive quantization, Discrete Contin. Dyn. Syst. 34 (2014 Google Scholar), no. 3, 991–1008.
[34] G., Chen and P. J., Olver, Dispersion of discontinuous periodic waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013 Google Scholar), no. 2149, 20120407, 21 pp.
[35] Y., Cho, G., Hwang, S., Kwon, and S., Lee, well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst. 35 (2015 Google Scholar), no. 7, 2863–2880.
[36] V., Chousionis, M.B., Erdoğan, and N., Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. Lond. Math. Soc. 110 (2015 Google Scholar), no. 3, 543–564.
[37] M., Christ, Power series solution of a nonlinear Schrödinger equation in Mathematical Aspects of Nonlinear Dispersive Equations, 131–155, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007 Google Scholar.
[38] M., Christ, J., Colliander, and T., Tao, Asymptotics, frequency modulation, low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003 Google Scholar), 1235–1293.
[39] M., Christ, J., Colliander, and T., Tao Google Scholar, Instability of the periodic nonlinear Schrödinger equation, arxiv:math/0311227v1.
[40] J., Chung, Z., Guo, S., Kwon, and T., Oh, Normal form approach to global wellposedness of the quadratic derivative Schrödinger equation on the circle, Preprint 2015 Google Scholar, http://arxiv.org/abs/1509.08139.
[41] J., Colliander, M., Keel, G., Staffilani, H., Takaoka, and T., Tao, Global wellposedness for Schrödinger equation with derivative, SIAM J. Math. Anal. 33 (2001 Google Scholar), 649–669.
[42] J., Colliander, M., Keel, G., Staffilani, H., Takaoka, T., Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Research Letters, 9 (2002 Google Scholar), 659–682.
[43] J., Colliander, M., Keel, G., Staffilani, H., Takaoka, and T., Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc. 16 (2003 Google Scholar), 705–749.
[44] J., Colliander, M., Keel, G., Staffilani, H., Takaoka, and T., Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on R3, Comm. Pure Appl. Math. 57 (2004 Google Scholar), no. 8, 987–1014.
[45] J., Colliander, S., Kwon, and T., Oh, A remark on normal forms and the “upsidedown” I-method for periodic NLS: growth of higher Sobolev norms, J. Anal. Math. 118 (2012 Google Scholar), no. 1, 55–82.
[46] J., Colliander, G., Staffilani, and H., Takaoka, Global wellposedness for KdV below L2, Math. Res. Lett. 6 (1999 Google Scholar), no. 5–6, 755–778.
[47] E., Compaan, Smoothing and global attractors for the Majda–Biello system on the torus, Differential Integral Equations 29 (2016 Google Scholar), no. 3–4, 269–308.
[48] B. E., Dahlberg and C. E., Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic Analysis (Minneapolis, Minn., 1981), 205–209, Lecture Notes in Math. 908, Springer, Berlin-New York, 1982 Google Scholar.
[49] A., Deliu and B., Jawerth, Geometrical dimension versus smoothness, Constr. Approx. 8 (1992 Google Scholar), 211–222.
[50] S., Demirbaş Google Scholar, Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms, Preprint 2013, to appear in Communications in Pure and Applied Analysis, http://arxiv.org/abs/1307.0051.
[51] S., Demirbaş, M. B., Erdoğan, and N., Tzirakis Google Scholar, Existence and uniqueness theory for the fractional Schrödinger equation on the torus, http://arxiv.org/ abs/1312.5249.
[52] B., Dodson Google Scholar, Global well-posedness and scattering for the defocusing, L2 critical, nonlinear Schrödinger equation when d = 1, http://arxiv.org/abs/1010.0040.
[53] B., Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, preprint 2011 Google Scholar, http://arxiv.org/abs/1104.1114.
[54] P. F., Embid and A. J., Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Diff. Eqs. 21 (1996 Google Scholar), 619– 658.
[55] M. B., Erdoğan, J., Marzuola, K., Newhall, and N., Tzirakis, Global Attractors for Forced and Weakly Damped Zakharov System on the Torus, SIAM J. Appl. Dyn. Syst. 14 (2015 Google Scholar), 1978–1990.
[56] M. B., Erdoğan and N., Tzirakis, Global smoothing for the periodic KdV evolution, Internat. Math. Res. Notices (2013 Google Scholar), 4589–4614.
[57] M. B., Erdoğan and N., Tzirakis, Long time dynamics for forced and weakly damped KdV on the torus, Commun. Pure Appl. Anal. 12 (2013 Google Scholar), 2669–2684.
[58] M. B., Erdoğan and N., Tzirakis, Smoothing and global attractors for the Zakharov system on the torus, Analysis & PDE 6 (2013 Google Scholar), no. 3, 723–750.
[59] M. B., Erdoğan and N., Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett. 20 (2013 Google Scholar), 1081–1090.
[60] M. B., Erdoğan and N., Tzirakis Google Scholar, Regularity properties of the cubic nonlinear Schrödinger equation on the half line, http://arxiv.org/abs/1509.03546.
[61] G. B., Folland, Real analysis. Modern Techniques and Their Applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., NY, 1984 Google Scholar.
[62] G., Fonseca, F., Linares, and G., Ponce, Global well-posedness for the modified Korteweg–de Vries equation, Comm. PDE 24 (1999 Google Scholar), 683–705.
[63] G., Fonseca, F., Linares, and G., Ponce, Global existence for the critical generalized KdV equation, Proc. Amer. Math. Soc. 131 (2003 Google Scholar), 1847–1855.
[64] P., Germain, N., Masmudi, and J., Shatah, Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris 347 (2009 Google Scholar), 897– 902.
[65] J. M., Ghidaglia, Weakly damped forced Korteweg–de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eqs. 74 (1988 Google Scholar), 369–390.
[66] J. M., Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Diff. Eqs. 110 (1994 Google Scholar), 356–359.
[67] J., Ginibre and G., Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Annal. Non linéaire 2 (1985 Google Scholar), 309–327.
[68] R. T., Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977 Google Scholar), no. 9, 1794–1797.
[69] O., Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg– de Vries equations, Discrete Contin. Dyn. Syst. 6 (2000 Google Scholar), 625–644.
[70] O., Goubet, Asymptotic smoothing effect for a weakly damped nonlinear Schrödinger equation in T2, J. Diff. Eqs. 165 (2000 Google Scholar), no. 1, 96–122.
[71] D. J., Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1995 Google Scholar.
[72] Z., Guo, Global well-posedness of Korteweg–de Vries equation in H3/4(R), J. Math. Pures Appl. 91 (2009 Google Scholar), no. 6, 583–597.
[73] Z., Guo, Local well-posedness for dispersion generalized Benjamin–Ono equations in Sobolev spaces, J. Diff. Eqs. 252 (2012 Google Scholar), 2053–2084.
[74] N. J., Hitchin, G. B., Segal, and R. S., Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces, Oxford University Press, 1999 Google Scholar.
[75] Y., Hu and X., Li, Discrete Fourier restriction associated with KdV equations, Anal. PDE 6 (2013 Google Scholar), no. 4, 859–892.
[76] T. W., Hungerford, Algebra, Holt, Rinehart & Winston, Inc., New York– Montreal, Que.–London, 1974 Google Scholar.
[77] A. D., Ionescu and C. E., Kenig, Global well-posedness of the Benjamin–Ono equation in low-regularity spaces, J. Amer. Math. Soc. 20 (2007 Google Scholar), 753-798.
[78] L., Kapitanski and I., Rodnianski, Does a quantum particle knows the time?, in: Emerging Applications of Number Theory, D., Hejhal, J., Friedman, M. C., Gutzwiller and A. M., Odlyzko, eds., IMA Volumes in Mathematics and Its Applications, vol. 109, Springer Verlag, New York, 1999 Google Scholar, pp. 355–371.
[79] T., Kappeler, B., Schaad, and P., Topalov, Qualitative features of periodic solutions of KdV, Comm. PDE 38 (2013 Google Scholar), 1626–1673.
[80] T., Kappeler, B., Schaad, and P., Topalov Google Scholar, Scattering-like phenomena of the periodic defocusing NLS equation, http://arxiv.org/abs/1505.07394.
[81] T., Kappeler and P., Topalov, Global wellposedness of KdV in H-1(T,R), Duke Math. J. 135, no. 2 (2006 Google Scholar), 327–360.
[82] T., Kato, On the Korteweg–de Vries equation, Manuscripta Math. 28 (1979 Google Scholar), 89–99.
[83] T., Kato and G., Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math. 41 (1988 Google Scholar), 891–907.
[84] Y., Katznelson, An Introduction to Harmonic Analysis. Third edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004 Google Scholar.
[85] M., Keel and T., Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998 Google Scholar), no. 5, 955–980.
[86] M., Keel and T., Tao, Local and global well-posedness of wave maps on R1+1 for rough data, Internat. Math. Res. Notices 1998 Google Scholar, no. 21, 1117–1156.
[87] C. E., Kenig Google Scholar, The Cauchy problem for the quasilinear Schrödinger equation, http://arxiv.org/abs/1309.3291.
[88] C. E., Kenig, G., Ponce, and L., Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993 Google Scholar), 527–620.
[89] C. E., Kenig, G., Ponce, and L., Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993 Google Scholar), no. 3, 255–288.
[90] C. E., Kenig, G., Ponce, and L., Vega, On the Zakharov and Zakharov–Schulman systems, J. Funct. Anal. 127 (1995 Google Scholar), no. 1, 204–234.
[91] C. E., Kenig, G., Ponce, and L., Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996 Google Scholar), no. 2, 573–603.
[92] C. E., Kenig, G., Ponce, and L., Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001 Google Scholar), 617–633.
[93] S., Keraani and A., Vargas, A smoothing property for the L2-critical NLS equations and an application to blow up theory, Ann. Inst. H. Poincaré Annal. Non linéaire 26 (2009 Google Scholar), 745–762.
[94] A. Y., Khinchin, Continued Fractions, Translated from the 3rd Russian edition of 1961, The University of Chicago Press, 1964 Google Scholar.
[95] N., Kishimoto, Remark on the periodic mass critical nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 142 (2014 Google Scholar), 2649–2660.
[96] S., Klainerman and M., Machedon, space-time estimates for null forms and a local existence theorem, Comm. Pure Appl. Math. 46 (1993 Google Scholar), 1221–1268.
[97] H., Koch and N., Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Internat. Math. Res. Notices 2005 Google Scholar, no. 30, 1833–1847.
[98] L., Kuipers and H., Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1974 Google Scholar.
[99] S. B., Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, 2000 Google Scholar.
[100] S., Kwon and T., Oh, On unconditional well-posedness of modified KdV, Internat. Math. Res. Notices 2012 Google Scholar, no. 15, 3509–3534.
[101] M. K., Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in Rn, Arch. Rational Mech. Anal. 105 (1989 Google Scholar), no. 3, 243–266.
[102] P., Lévy, Théorie de l'Addition des Variables Aléatoires, Paris, 1937 Google Scholar.
[103] Y., Li, Y., Wu, and G., Xu, Global well-posedness for the mass-critical nonlinear Schrödinger equation on T, J. Diff. Eqs. 250 (2011 Google Scholar), no. 6, 2715–2736.
[104] F., Linares, D., Pilod, and J.-C., Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, SIAM J. Math. Anal. 46 (2014 Google Scholar), no. 2, 1505- 1537.
[105] F., Linares and G., Ponce, Introduction to Nonlinear Dispersive Equations, UTX, Springer–Verlag, 2009 Google Scholar.
[106] L., Molinet, Global well-posedness in the energy space for the Benjamin–Ono equation on the circle, Math. Ann. 337 (2007 Google Scholar), 353–383.
[107] L., Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett. 16 (2009 Google Scholar), 111-120.
[108] L., Molinet, Sharp ill-posedness result for the periodic Benjamin–Ono equation, J. Funct. Anal. 257, (2009 Google Scholar), 3488-3516.
[109] L., Molinet, A note on ill-posedness for the KdV equation, Differential Integral Equations 24 (2011 Google Scholar), 759–765.
[110] L., Molinet, Sharp ill-posedness results for the KdV and mKdV equations on the torus, Adv. Math. 230 (2012 Google Scholar), 1895–1930.
[111] L., Molinet, Global well-posedness in L2 for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008 Google Scholar), no. 3, 635-683.
[112] L., Molinet, J. C., Saut, and N., Tzvetkov, Ill-posedness issues for the Benjamin– Ono and related equations, Siam J. Math. Anal. 33 (2001 Google Scholar), 982–988.
[113] H. L., Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional conference series in Mathematics Volume 84, 1990 Google Scholar.
[114] S J., Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J. 19 (1998 Google Scholar), 393– 408.
[115] A., Moyua and L., Vega, Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations, Bull. Lond. Math. Soc. 40 (2008 Google Scholar), no. 1, 117–128.
[116] C., Muscalu and W., Schlag, Classical and Multilinear Harmonic Analysis. Vol. I. Cambridge Studies in Advanced Mathematics, 137, Cambridge University Press, Cambridge, 2013 Google Scholar.
[117] L., Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959 Google Scholar), 115–162.
[118] T., Ogawa and Y., Tsutsumi, Blow-up of H1 solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc. 111 (1991 Google Scholar), no. 2, 487–496.
[119] S., Oh, Resonant phase–shift and global smoothing of the periodic Korteweg–de Vries equation in low regularity settings, Adv. Diff. Eqs. 18 (2013 Google Scholar), 633–662.
[120] P. J., Olver, Dispersive quantization, Amer. Math. Monthly 117 (2010 Google Scholar), no. 7, 599–610.
[121] K. I., Oskolkov, A class of I. M. Vinogradov's series and its applications in harmonic analysis, in: Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math. 19, Springer, New York, 1992 Google Scholar, pp. 353–402.
[122] H., Pecher, Global well-posedness below energy space for the 1-dimensional Zakharov system, Internat. Math. Res. Notices 2001 Google Scholar, no. 19, 1027–1056.
[123] J., Pöschel and E., Trubowitz, Inverse Spectral Theory, Pure Appl. Math. 130, Academic Press, Boston, 1987 Google Scholar.
[124] L., Rayleigh, On copying diffraction-gratings, and on some phenomena connected therewith, Philos. Mag. 11 (1881 Google Scholar), 196–205.
[125] I., Rodnianski, Fractal solutions of the Schrödinger equation, Contemp. Math. 255 (2000 Google Scholar), 181–187.
[126] J. C., Saut and R., Temam, Remarks on the Korteweg–de Vries equation, Israel J. Math. 24 (1976 Google Scholar), 78–87.
[127] J., Shatah, Normal forms and quadratic nonlinear Klein–Gordon equations, Comm. Pure Appl. Math. 38 (1985 Google Scholar), 685–696.
[128] V., Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on S1, Differential and Integral Equations 24 (2011 Google Scholar), no. 7–8, 653–718.
[129] V., Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on R, Indiana Math. J. 60 (2011 Google Scholar), no. 5, 1487– 1516.
[130] G., Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J. 86 (1997 Google Scholar), no. 1, 109–142.
[131] A., Stefanov, Strichartz estimates for the Schrödinger equation with radial data, Proc. Amer. Math. Soc. 129 (2001 Google Scholar), 1395–1401.
[132] E. M., Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956 Google Scholar), 482–492.
[133] E. M., Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993 Google Scholar.
[134] E. M., Stein and R., Shakarchi, Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, 4. Princeton University Press, Princeton, NJ, 2011 Google Scholar.
[135] E. M., Stein and G., Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32. Princeton University Press, Princeton, NJ, 1971 Google Scholar.
[136] R. S., Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977 Google Scholar), 705–714.
[137] C., Sulem and P. L., Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences 139. Springer–VerlagNY 1999 Google Scholar.
[138] P.L., Sulem, C., Sulem and C., Bardos, On the continuous limit for a system of classical spins, Comm. Math. Phys. 107 (1986 Google Scholar), no. 3, 431–454.
[139] H., Takaoka, Y., Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 2004 Google Scholar, no. 56, 3009–3040.
[140] H. F., Talbot, Facts related to optical science, No. IV, Philo. Mag. 9 (1836 Google Scholar), 401–407.
[141] T., Tao, Spherically averaged endpoint Strichartz estimates for the two–dimensional Schrödinger equation, Commun. PDE 25 (2000 Google Scholar), 1471–1485.
[142] T., Tao, Global well-posedness of the Benjamin–Ono equation in H1(R), J. Hyperbolic Differ. Equ. 1 (2004 Google Scholar), no. 1, 27–49.
[143] T., Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106. American Mathematical Society, Providence, RI, 2006 Google Scholar.
[144] M., Taylor, The Schrödinger equation on spheres, Pacific J. Math. 209 (2003 Google Scholar), 145–155.
[145] M., Taylor, Tidbits in Harmonic Analysis, Lecture Notes, UNC, 1998 Google Scholar.
[146] M., Taylor, Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, 81. American Mathematical Society, Providence, RI, 2000 Google Scholar.
[147] R., Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Phyiscs, Applied Mathematical Sciences 68, Springer, 1997 Google Scholar.
[148] P., Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975 Google Scholar), 477–478.
[149] H., Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983 Google Scholar.
[150] K., Tsugawa, Existence of the global attractor for weakly damped forced KdV equation on Sobolev spaces of negative index, Commun. Pure Appl. Anal. 3 (2004 Google Scholar), no. 2, 301–318.
[151] Y., Tsutsumi, L2 solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987 Google Scholar), 115–125.
[152] N., Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris 329 Série I (1999 Google Scholar), 1043–1047.
[153] M., Wadati, H., Sanuki, and K., Konno, Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Progr. Theoret. Phys. 53 (1975 Google Scholar), 419–436.
[154] T., Wolff, Lectures on Harmonic Analysis, University Lecture Series, 29. American Mathematical Society, Providence, RI, 2003 Google Scholar.
[155] J., Yang, Nonlinear waves in integrable and nonintegrable systems, Mathematical Modeling and Computation 16, SIAM, Philadelphia, PA, 2010 Google Scholar.
[156] X., Yang Google Scholar, Global attractor for the weakly damped forced KdV equation in Sobolev spaces of low regularity, Nonlinear Differ. Equ. Appl., published online.
[157] V. E., Zakharov and A. B., Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972 Google Scholar), no. 1, 62–69.
[158] Y., Zhang, J., Wen, S. N., Zhu, and M., Xiao, Nonlinear Talbot effect, Phys. Rev. Lett. 104, 183901 (2010 Google Scholar).
[159] A., Zygmund, On Fourier coefficients and transforms of functions of two variables, Stud. Math. 50 (1974 Google Scholar), 189–201.

Metrics

Usage data cannot currently be displayed.