Skip to main content Accessibility help
×
  • Cited by 376
Publisher:
Cambridge University Press
Online publication date:
February 2014
Print publication year:
2000
Online ISBN:
9781107590120

Book description

Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References for Volumes 1 and 2
[1] Abrahams, R. and Robbin, J, Transversal Mappings and Flows, Benjamin, New York, Amsterdam, 1967.
[1] Adler, R. J.The Geometry of Random Fields, WileyChichester, 1981.
[2] Adler, R. J., An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lecture Notes—Monograph Series Vol. 12, IMS, Hayward, Calif., 1990.
[1] Aizenmann, M. and Simon, B.Brownian motion and the Harnack inequality for Schrödinger operators, Comm. Pure and Appl. Math., 35, 209–273 (1982).
[1] Albeverio, S., Blanchard, P. and Høegh-Krohn, R.Newtonian diffusions and planets, with a remark on non-standard Dirichlet forms and polymers, Stochastic Analysis and Applications: Lecture Notes in Mathematics 1095, Springer, Berlin, 1984, pp. 1–24.
[1] Albeverio, S., Fenstad, I.E., Høegh-Krohn, R. and Lindström, T.Non-standard Methods in Probability and Mathematical Physics, Academic Press, New York (1986).
[1] Aldous, D. J.Stopping times and tightness, Ann. Prob., 6, 335–40 (1978).
[1] Ancona, A.Negatively curved manifolds, elliptic operators and Martin boundaryAnn. Math., 125, 495–536 (1987).
[1] Arnold, L. and Wihstutz, V. (editors) Lyapunov Exponents (Proceedings): Lecture Notes in Mathematics 1186, Springer, Berlin, 1986.
[1] Azéma, J.Sur les fermés aléatoires, Séminaires de Probabilités XIX: Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 297–495.
[1] Azéma, J. and Yor, M.Une solution simple au problème de Skorokhod, Séminaire de probabilités XIII: Lecture Notes in Mathematics 721, Springer, Berlin, 1979, pp. 90–115, 625–633.
[2] Azéma, J. and Yor, M. (editors) Temps locaux, Astérisque 52–53 Société Mathématique de France (1978).
[3] Azéma, J. and Yor, M.Etude d'une martingale remarquable, Séminaire de Probabilités XXIII: Lecture Notes in Mathematics 1372, Springer, Berlin, 1989, pp. 88–130.
[1] Azencott, R.Grandes déviations et applications, Ecole d'Été de Probabilités de Saint-Flour VIII: Lecture Note in Mathematics 774, Springer, Berlin, 1980.
[1] Barlow, M. T.Study of a filtration expanded to include an honest time, Z. Wahrscheinlichkeitstheorie, 44, 307–323 (1978).
[2] Barlow, M. T. Decomposition of a Markov process at an honest time (unpublished).
[3] Barlow, M. T.One dimensional stochastic differential equation with no strong solution, J. London Math. Soc., 26, 335–347 (1982).
[4] Barlow, M. T.On Brownian local time, Séminaire de Probabilités X V: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 189–190.
[5] Barlow, M. T.Necessary and sufficient conditions for the continuity of local time of Lévy processes, Ann. Prob. 16, 1389–1427 (1988).
[1] Barlow, M. T. and Hawkes, J.Application d'entropie métrique à la continuité des temps locaux des processus de Lévy. C.R. Acad. Sci. Paris Ser. I, 301, 237–239 (1985).
[1] Barlow, M. T., Jacka, S. and Yor, M.Inequalities for a pair of processes stopped at a random time, Proc. London Math. Soc., 52, 142–172 (1986).
[2] Barlow, M. T., Jacka, S. and Yor, M.Inégalities pour un couple de processus arrêtes à un temps quelconque, C.R. Acad. Sci., 299, 351–354 (1984).
[1] Barlow, M. T. and Perkins, E.One-dimensional stochastic differential equations involving a singular increasing process, Stochastics, 12, 229–249 (1984).
[2] Barlow, M. T. and Perkins, E.Strong existence, uniqueness and non-uniqueness in an equation involving local time, Séminaire de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 32–66.
[1] Barlow, M. T. and Yor, M.(Semi-) martingale inequalities and local times, Z. Wahrscheinlichkeitstheorie 55, 237–254 (1981).
[2] Barlow, M. T. and Yor, M.Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma and applications to local times, J. Funct. Anal., 49, 198–229 (1982).
[1] Bass, R. and Cranston, M.The Malliavin calculus for pure jump processes and applications to local time, Ann. Prob., 14, 490–532 (1986).
[1] Batchelor, G. K.Kolmogoroff's theory of locally isotropic turbulence, Proc. Camb. Phil. Soc, 43, 553–559 (1947).
[1] Baxendale, P.Asymptotic behaviour of stochastic flows of diffeomorphisms; two case studies, Prob. Th. Rel. Fields, 73, 51–85 (1986).
[2] Baxendale, P.Moment stability and large deviations for linear stochastic differential equations, Proc. Taniyuchi Symposium on Probabilistic Methods in Mathematical Physics. Katata and Kyoto. 1985 (ed. N., Ikeda), Kinokuniya, Tokyo, 31–54 (1986).
[3] Baxendale, P. The Lyapunov spectrum of a stochastic flow of diffeomorphisms, in Arnold and Wihstutz [1], pp. 322–337 (1986).
[4] Baxendale, P.Brownian motions on the diffeomorphism group, I, Compos. Math., 53, 19–50 (1984).
[1] Baxendale, P. and Harris, T. E.Isotropic stochastic flows. Ann. Prob., 14, 1155–1179 (1986).
[1] Baxendale, P. and Stroock, D. W.Large deviations and stochastic flows of diffeomorphisms, Prob. Th. Rel. Fields, 80, 169–215 (1988).
[1] Bensoussan, A.Lectures on stochastic control, Nonlinear Filtering and Stochastic Control: Lecture Notes in Mathematics 972, Springer, Berlin, 1982, pp. 1–62.
[1] Beneš, V. E., Shepp, L. A. and Witsenhausen, H. S.Some solvable stochastic control problems, Stochastics, 4, 39–83 (1980).
[1] Benveniste, A. and Jacod, J.Systèmes de Lévy des processus de Markov, Invent. Math., 21, 183–198 (1973).
[1] Berman, S. M.Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc., 137, 277–300 (1969).
[2] Berman, S. M.Harmonic analysis of local times and sample functions of Gaussian processes, Trans. Amer. Math. Soc., 143, 269–281 (1969).
[3] Berman, S. M.Gaussian processes with stationary increments: local times and sample function properties, Ann. Math. Statist., 41, 1260–1272 (1970).
[1] Biane, P.Comparaison entre temps d'atteinte et temps de séjour de certaines diffusions réelles, Séminaire de Probabilités XIX. Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 291–296.
[1] Bichteler, K.Stochastic integration and Lp-theory of semi-martingales, Ann. Prob., 9, 49–89 (1981).
[1] Bichteler, K. and Fonken, D.A simple version of the Malliavin calculus in dimension one, Martingale Theory in Harmonic Analysis and Banach Spaces: Lecture Notes in Mathematics 939, Springer, Berlin, 1982, pp. 6–12.
[1] Bichteler, K.. and Jacod, J.Calcul de Malliavin pour les diffusions avec sauts: Existence d'une densité dans le cas unidimensionnel, Séminaire de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 132–157.
[1] Billingsley, P.Ergodic Theory and Information, Wiley, New York, 1965.
[2] Billingsley, P.Convergence of Probability Measures, Wiley, New York, 1968.
[3] Billingsley, P.Conditional distributions and tightness, Ann. Prob., 2, 480–485 (1974).
[1] Bingham, N. H.Fluctuation theory in continuous time, Adv. Appl. Prob., 7, 705–766 (1975).
[1] Bingham, N. H. and Donky, R. A.On higher-dimensional analogues of the arc-sine law, J. Appl. Prob. 25, 120–131 (1988).
[1] Bishop, R. and Crittenden, R. J.Geometry of Manifolds, Academic Press, New York, 1964.
[1] Bismut, J.-M.Méchanique Aléatoire: Lecture Notes in Mathematics 866, Springer, Berlin, 1981.
[2] Bismut, J.-M.Martingales, the Malliavin calculus and hypoellipticity under general Hormander's conditions, Z. Wahrscheinlichkeitstheorie, 56, 469–505 (1981).
[3] Bismut, J.-M.Calcul de variations stochastiques et processus de sauts, Z. Wahrscheinlichkeitstheorie 56, 469–505 (1983).
[4] Bismut, J.-M.Large deviations and the Malliavin calculus, Progress in Mathematics, Birkhäuser, Boston, 1984.
[5] Bismut, J.-M.The Atiyah–Singer theorems; a probabilistic approach: I, The index theorem, J. Funct. Anal., 57, 56–98 (1984); II, The Lefschetz fixed-point formulas, J. Funct. Anal., 57, 329–348.
[1] Bismut, J.-M. and Michel, D.Diffusions conditionnelles, I, II, J. Funct. Anal, 44, 174–211 (1981), 45, 274–292 (1981).
[1] Blackwell, D. and Kendall, D. G.The Martin boundary for Polya's urn scheme and an application to stochastic population growth, J. Appl. Prob. 1, 284–296 (1964).
[1] Blumenthal, R. M. and Getoor, R. K.Markov Processes and Potential theory, Academic Press, New York, 1968.
[2] Blumenthal, R. M. and Getoor, R. K.Local times for Markov processes. Z. Wahrscheinlichkeitstheorie verw. Geb., 3, 50–74 (1964).
[1] Bondesson, L.Classes of infinitely divisible distributions and densities. Z. Wahrscheinlichkeitstheorie verw Geb., 57, 39–71 (1981).
[1] Bougerol, P. and Lacroix, J.Products of Random Matrices with Applications to Schrödinger Operators, Birkhauser, Boston, 1985.
[1] Bourbaki, N.Topologie générale, in Eléments de Mathématique, Hermann, Paris, 1958, Chap. IX, 2nd edition.
[1] Breiman, L.Probability, Addison-Wesley, Reading, Mass., 1968.
[1] Brémaud, P.Point Processes and Queues: Martingale Dynamics, Springer, New York, 1981.
[1] Bretagnolle, J.Résultats de Kesten sur les processus à accroissements indépendantes, Séminaire de Probabilités V, Lecture Notes in Mathematics 191, Springer, Berlin, 1971, pp. 21–36.
[1] Brydges, D., Fröhlich, J. and Spencer, T.The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys., 83, 123–150 (1982).
[1] Burdzy, K.On nonincrease of Brownian motion. Ann. Prob. 18, 978–980 (1990).
[2] Burdzy, K.Brownian paths and cones, Ann. Prob. 13, 1006–1010 (1985).
[3] Burdzy, K.Cut points on Brownian paths. Ann. Prob. 17, 1012–1036 (1989).
[1] Burkholder, D.Distribution function inequalities for martingales, Ann. Prob., 1, 19–42 (1973).
[1] Carlen, E. A.Conservative diffusions, Comm. Math. Phy., 94, 293–315 (1984).
[2] Carlen, E. A.Potential scattering in quantum mechanics, Ann. Inst. H. Poincaré, 42, 407–428 (1985).
[1] Carverhill, A. P.Flows of stochastic dynamical systems: ergodic theory, Stochastics, 14, 273–318 (1985).
[2] Carverhill, A. P.A formula for the Lyapunov exponents of a stochastic flow. Application to a perturbation theorem, Stochastics, 14, 209–226 (1985).
[3] Carverhill, A. P.A nonrandom Lyapunov spectrum for nonlinear stochastic dynamical systems, Stochastics, 17, 209–226, 1986.
[1] Carverhill, A. P., Chappell, M. J. and Elworthy, K. D.Characteristic exponents for stochastic flows, Proceedings, BIBOS I: Stochastic Processes.
[1] Carverhill, A. P. and Elworthy, K. D.Flows of stochastic dynamical systems: the functional analytic approach, Z. Wahrscheinlichkeitstheorie, 65, 245–268 (1983).
[1] Chaleyat-Maurel, M.La condition d'hypoellipticité d'Hörmander, Astérisque, 84–85, 189–202 (1981).
[1] Chaleyat-Maurel, M. and El Karoui, N.Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur R, case continu. In Azema, and Yor, [2], pp. 117–144.
[1] Cheeger, J. and Ebin, D. G.Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.
[1] Chung, K. L.Markov Chains with Stationary Transition Probabilities, 2nd edition, Springer, Berlin, 1967.
[2] Chung, K. L.Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier, Grenoble, 23, 313–322 (1973).
[3] Chung, K. L.Excursions in Brownian motion, Ark. Mat., 14, 155–177 (1976).
[1] Chung, K. L. and Getoor, R. K.The condenser problem, Ann. Prob., 5, 82–86 (1977).
[1] Chung, K. L. and Walsh, J. B.To reverse a Markov process, Acta Math., 123, 225–251 (1969).
[2] Chung, K. L. and Walsh, J. B.Meyer's theorem on previsibility, Z. Wahrscheinlichkeitstheorie, 29, 253–256 (1974).
[1] Chung, K. L. and Wlliams, R. J.Introduction to Stochastic IntegrationBirkhäuser, Boston, 1983.
[1] Ciesielski, Z.Hölder conditions for realisations of Gaussian processes. Trans. Amer. Math. Soc., 99, 403–413 (1961).
[1] Ciesielslki, Z. and Taylor, S. J.First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc., 103, 434–450 (1962).
[1] Çinlar, E., Chung, K. L. and Getoor, R. K. (editors) Seminars on Stochastic Processes 1981. 1982; 1983, 1984 (four volumes), Birkhäuser, Boston, 1982, 1983, 1984, 1985.
[1] Çinlar, E, Chung, K. L., Getoor, R. K. and Glover, J. (editors) Seminar on Stochastic Processes 1986, Birkhäuser, Boston, 1987.
[1] Çinlar, E., Jacod, J., Protter, P. and Sharpe, M. J.Semimartingales and Markov processes, Z. Wahrscheinlichkeitstheorie, 54, 161–220 (1980).
[1] Clark, J. M. C.The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Stat., 41, 1282–1295 (1970); 42, 1778 (1971).
[2] Clark, J. M. C.An introduction to stochastic differential equations on manifolds, Geometric Methods in Systems Theory (eds. D. Q., Mayne and R. W., Brockett), Reidel, Dordrecht, 1973.
[3] Clark, J. M. C.The design of robust approximations to the stochastic differential equations of nonlinear filtering, Communications Systems and Random Process Theory (ed. J., Skwirzynski), Sijthoff and Noordhoff, Alphen aan den Rijn, 1978.
[1] Clarkson, B. (editor) Stochastic Problems in Dynamics, Pitman, London, 1977.
[1] Cocozza, C. and Yor, M.Démonstration simplifiée d'un théorème de Knight, Séminaire de Probabilités XIV: Lecture Notes in Mathematics 721, Springer, Berlin, 1980, pp. 496–499.
[1] Crank, J.The Mathematics of Diffusion, 2nd ed. Oxford University Press, Oxford (1975).
[1] Cranston, M.On the means of approach of Brownian motionAnn. Probab., 15, 1009–1013 (1987).
[1] Cutland, N.Non-standard measure theory and its applications, Bull. London. Math. Soc., 15, 529–589 (1983).
[1] Cutland, N. and Kendall, W. S.A non-standard proof of one of David Williams' splitting-time theorems, in D. G., Kendall [5], pp. 37–48.
[1] Darling, R. W. R.Martingales in manifolds—definition, examples, and behaviour under maps, Séminaire de Probabilités XVI Supplement: Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 217–236.
[1] Davies, E. B. and Simon, B.Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Fund. Anal. 59, 335–395 (1984).
[1] Davis, B.Picard's theorem and Brownian motion, Trans. Amer. Math. Soc, 213, 353–362 (1975).
[2] Davis, B.Applications of the conformai invariance of Brownian motion, Harmonic analysis in Euclidean Space. Proc. Symp. Pure Math. XXXV, Amer. Math Soc., 303–310.
[1] Davis, M. H. A.On a multiplicative functional transformation arising in non-linear filtering theory, Z. Wahrscheinlichkeitstheorie, 54, 125–139 (1980).
[2] Davis, M. H. A.Pathwise non-linear filtering, Stochastic Systems: the Mathematics of Filtering and Identification and Applications (eds. M., Hazewinkel and J. C., Willems), Reidel, Dordrecht, 1981.
[3] Davis, M. H. A.Some current issues in stochastic control theory, Stochastics.
[4] Davis, M. H. A.Markov Models and Optimization, Chapman & Hall, London, 1993.
[1] Davis, M. H. A. and Varaiya, P.Dynamic programming conditions for partially observed stochastic systems, SIAM J. Control, 11, 226–261 (1973).
[1] Dawson, D. A.Measure-valued Markov processes, Ecole d'Eté de Probabilités de Saint-Flour XXI, 1993 (ed. P. L., Hennequin), Lecture Notes in Mathematics 1541, 1993.
[1] Dawson, D. A. and Gärtner, J.Large deviations from the McKean–Vlasov limit for weakly-interacting diffusions, Stochastics, 20, 247–308 (1987).
[1] Dellacherie, C.Capacités et Processus Stochastiques, Springer, Berlin, 1972.
[2] Dellacherie, C.Quelques exemples familiers en probabilités d'ensembles analytiques non-Boréliens, Séminaire de Probabilités XII: Lecture Notes in Mathematics, Springer, Berlin, 1978, pp. 742–745.
[3] Dellacherie, C.Un survoi de la théorie de l'intégrale stochastique, Stock Proc. Appt., 10, 115–144 (1980).
[1] Dellacherie, C., Doléans(-dade), Catherine, Letta, G. and Meyer, P. A.Diffusions à coefficients continus d'après D. W. Stroock et S. R. S. Varadhan, Séminaire de Probabilités IV: Lecture Notes in Mathematics 124, Springer, Berlin, 1970, pp. 241–282.
[1] Dellacherie, C. and Meyer, P. A.Probabilités et Potentiel, Chaps. I–VI, Hermann, Paris, 1975; Chaps. V–VIII, Hermann, Paris, 1980; Chaps. IX–XI, Hermann, Paris, 1983; Chapters XII–XVI, Hermann, Paris, 1987; Chaps XVII–XXIV, Hermann, Paris, 1993.
[1] Deuschel, J.-D. and Stroock, D. W.Large Deviations. Academic Press, Boston, 1989.
[1] De Witt-Morette, C. and Elworthy, K. D. (editors) New stochastic methods in physics, Phys. Rep., 77, 121–382 (1981).
[1] Doléans(-dade), C.Existence du processus croissant natural associé à un potentiel de la classe (D), Z. Wahrscheinlichkeitstheorie 9, 309–314 (1968).
[2] Doléans(-dade), C.Quelques applications de la formule de changement de variables pour les semimartingales, Z. Wahrescheinlichkeitstheorie, 16, 181–194 (1970).
[1] Doléans-Dade, C. and Meyer, P. A.Equations différentielles stochastiques, Séminaires de Probabilités XI: Lecture Notes in Mathematics 581, Springer, Berlin, 1977, pp. 376–382.
[1] Doney, R. A.On the maxima of random walks and stable processes and the arc-sine law. Bull. London Math. Soc., 19, 177–182 (1987).
[2] Doney, R. A.A path decomposition for Lévy processes, Stoch. Prot: Appl. 47, 167–181 (1993).
[1] Doob, J. L.Stochastic Processes, Wiley, New York, 1953.
[2] Doob, J. L.State-spaces for Markov chains, Trans. Amer. Math. Soc. 149, 279–305 (1970).
[3] Doob, J. L.Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1981.
[1] Doss, H.Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. Henri Poincaré B, 13, 99–126 (1977).
[1] Dubins, L. and Schwarz, G.On continuous martingales, Proc. Natl. Acad. Sei. USA, 53, 913–916 (1965).
[1] Dunford, N. and Schwartz, J. T.Linear Operators: Part I, General Theory, Interscience, New York, 1958.
[1] Durrett, R.Brownian Motion and Martingales in Analysis, Wadsworth, Belmont, Calif., 1984.
[2] Durrett, R. (editor) Particle systems, random media, large deviations, Contemp. Math. 41, Amer. Math. Soc., Providence, RI, 1985.
[3] Durrett, R. (editor) Probability: Theory and Examples, Wadsworth & Brooks Cole, Pacific Grove, Calif., 1991.
[1] Dvoretsky, A., Erdös, P. and Kakutani, S.Double points of paths of Brownian motion in n-space, Acta. Sci. Math. (Szeged), 12, 64–81 (1950).
[2] Dvoretsky, A., Erdös, P. and Kakutani, S.Multiple points of paths of Brownian motion in the plane, Bull. Res. Council Isr. Sect. F, 3, 364–371 (1954).
[3] Dvoretsky, A., Erdös, P. and Kakutani, S.Points of multiplicity c of plane Brownian paths, Bull. Res. Council Isr. Sect. F, 7, 175–180 (1958).
[1] Dvoretsky, A., Erdös, P., Kakutani, S. and Taylor, S. J.Triple points of Brownian motion in 3-space, Proc. Camb. Phil. Soc., 53, 856–862 (1957).
[1] Dynkin, E. B.Theory of Markov Processes, Pergamon Press, Oxford, 1960.
[2] Dynkin, E. B.Markov Processes (two volumes), Springer, Berlin, 1965.
[3] Dynkin, E. B.Non-negative eigenfunctions of the Laplace–Beltrami operator and Brownian motion in certain symmetric spaces (in Russian), Dokl. Akad. Naud SSSR, 141, 288–291 (1961).
[4] Dynkin, E. B.Diffusion of tensors, Dokl. Akad. Nauk. SSSR, 179, 1264–1267 (1968).
[5] Dynkin, E. B. Local times and quantum fields, in Çinlar, Chung and Getoor [1, 1983].
[6] Dynkin, E. B.Gaussian and non-Gaussian random fields associated with Markov processes, J. Func. Anal., 55, 344–376 (1984).
[7] Dynkin, E. B.Self-intersection local times, occupation fields and stochastic integrals, Adv. App. Math., 65, 254–271 (1987).
[8] Dynkin, E. B.Random fields associated with multiple points of the Brownian motion, J. Fund. Anal., 62, 397–434 (1985).
[9] Dynkin, E. B. Local times and quantum fields, in Çinlar, Chung and Getoor [1, 1984].
[1] Elliott, R. J.Stochastic Calculus and Applications, Springer, Berlin, 1982.
[1] Elliott, R. J. and Anderson, B. D. O.Reverse time diffusions, Stochastic Processes and their Applications, 19, 327–339 (1985).
[1] Elworthy, K. D.Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Note Series 20, Cambridge University Press, Cambridge, 1982.
[2] Elworthy, K. D. (editor) From Local Time to Global Geometry, Control and Physics, Proceedings, Warwick Symposium 1984/85, Longman, Harlow/Wiley, New York, 1986.
[1] Elworthy, K. D. and Stroock, D. W. Large deviation theory for mean exponents of stochastic flows, Appendix to Carverhill, Chappell and Elworthy [1].
[1] Elworthy, K. D. and Truman, A.Classical mechanics, the diffusion (heat) equation and the Schrödinger equation on a Riemannian manifold, J. Math. Phys., 22, 2144–2166 (1981).
[2] Elworthy, K. D. and Truman, A.The diffusion equation and classical mechanics: an elementary formula, Stochastic processes in quantum theory and statistical physics (ed. S., Albeverioet al.), Lecture Notes in Physics 173, Springer, Berlin, 1982, pp. 136–146.
[1] Eméry, M.Annoncabilité des temps prévisibles: deux contre-exemples, Séminaire de Probabilités IV: Lecture Notes in Mathematics 784, Springer, Berlin, 1980, pp. 318–323.
[2] Emery, M.On the Azéma martingales, Séminaire de Probabilitiés XXIII: Lecture Notes in Mathematics 1372, Springer, Berlin 1989 pp. 66–88.
[1] Ethier, S. N. and Kurtz, T. G.Markov Processes: Characterization and Convergence, Wiley, New York, 1986.
[1] Evans, S. N.On the Hausdorff dimension of Brownian cone points, Math. Proc. Camb. Phil. Soc., 98, 343–353 (1985).
[2] Evans, S. N.Multiple points in the sample paths of a Lévy process, Prob. Th. Rel. Fields, 76, 359–367 (1987).
[1] Feller, W.Introduction to Probability Theory and its Applications, Vol. 1, 2nd edition Wiley, New York, 1957; Vol. 2, Wiley, New York, 1966.
[2] Feller, W.Boundaries induced by non-negative matrices, Trans. Amer Math. Soc., 83, 19–54 (1956).
[3] Feller, W.On boundaries and lateral conditions for the Kolmogorov equations, Ann. Math., Ser. II, 65, 527–570 (1957).
[4] Feller, W.Generalized second-order differential operators and their lateral conditions, Illinois J. Math., 1, 459–504 (1957).
[1] Fleming, W. H. and Rishel, R. W.Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.
[1] Föllmer, H.Calcul d'Itô sans probabilités, Seminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 143–150.
[1] Freedman, D.Brownian Motion and Diffusion, Holden-Day, San Francisco, 1971.
[2] Freedman, D.Approximating Countable Markov Chains, Holden-Day, San Francisco, 1972.
[1] Friedman, A.Stochastic Differential Equations and Applications (two volumes), Academic Press, New York, 1975.
[1] Fristedt, B.Sample functions of stochastic processes with stationary independent increments, Adv. Prob., 3, 241–396 (1973).
[1] Fujisaki, M., Kallianpur, G. and Kunita, H.Stochastic differential equations for the non-linear filtering problem, Osaka J. Math., 9, 19–40 (1972).
[1] Fukushima, M.Dirichlet Forms and Markov Processes, Kodansha, Tokyo, 1980.
[2] Fukushima, M.Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan, 36, 161–176 (1984).
[1] Garcia Alvarez, M. A. and Meyer, P. A.Une théorie de la dualité à un ensemble polaire prés: I, Ann. Prob., 1, 207–222 (1973).
[1] Garsia, A.Martingale Inequalities: Seminar Notes on Recent Progress, Benjamin, Reading, Mass, 1973.
[1] Garsia, A., Rodemich, E. and Rumsey, H. JrA real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J., 20, 565–578 (1970).
[1] Geman, D. and Horowitz, J.Occupation densities, Ann. Prob., 8, 1–67 (1980).
[1] Geman, D.Horowitz, J. and Rosen, J.A local time analysis of intersections of Brownian paths in the plane, Ann. Prob., 12, 86–107 (1984).
[1] Getoor, R. K.Markov processes: Ray Processes and Right Processes: Lecture Notes in Mathematics 440, Springer, Berlin, 1975.
[2] Getoor, R. K.Excursions of a Markov process, Ann. Prob., 8, 244–266 (1979).
[3] Getoor, R. K.Splitting times and shift functionals, Z. Wahrscheinlichkeitstheorie, 47, 69–81 (1979).
[1] Getoor, R. K. and Sharpe, M. J.Last exit times and additive functionals, Ann. Prob., 1, 550–569 (1973).
[2] Getoor, R. K. and Sharpe, M. J.Excursions of Brownian motion and Bessel process, Z. Wahrscheinlichkeitstheorie, 47, 83–106 (1979).
[3] Getoor, R. K. and Sharpe, M. J.Last exit decompositions and distributions, Indiana Univ. Math. J., 23, 377–404 (1973).
[4] Getoor, R. K. and Sharpe, M. J.Excursions of dual processes, Adv. Math., 45, 259–309 (1982).
[5] Getoor, R. K. and Sharpe, M. J.Conformal martingales, Invent Math., 16, 271–308 (1972).
[1] Gikhman, I.I. and Skorokhod, A. V.The Theory of Stochastic Processes (three volumes), Springer, Berlin, 1979.
[1] Gray, A., Karp, L. and Pinsky, M. A.The mean exit time from a tube in a Riemannian manifold, Probability and Harmonic Analysis (eds. J., Chao and W., Woyczynski), Dekker, 1986, pp. 113–137.
[1] Gray, A. and Pinsky, M. A.The mean exit time from a small geodesic ball in a Riemannian manifold, Bull. Sci Math., 107, 345–370 (1983).
[1] Greenwood, P. and Perkins, E.A conditional limit theorem for random walk and Brownian local time on square root boundaries, Ann. Prob. 11, 227–261 (1982).
[2] Greenwood, P. and Perkins, E.Limit theorems for excursions from a moving boundary. Th. Prob. Appl. 29, 703–714 (1984).
[1] Greenwood, P. and Pitman, J. W.Construction of local time and Poisson point processes from nested arrays, J. London Math. Sot: (2), 22, 182–192 (1980).
[2] Greenwood, P. and Pitman, J. W.Fluctuation identities for Levy processes and splitting at the maximum, Adv. Appl. Prob., 12, 893–902 (1980).
[1] Grenander, U.Probabilities on Algebraic Structures, Wiley, New York, 1963.
[1] Griffeath, D.Coupling methods for Markov processes, Advances in Mathematics Supplementary Studies: Studies in Probability and Ergodic Theory, Vol. 2, Academic Press, New York, 1978, pp. 1–43.
[1] Gromov, M. and Rohlin, V. A.Russian Math. Surveys, 25, 1–57 (1970).
[1] Grosswald, E.The Student t-distribution of any degree of freedom is infinitely divisible, Z. Wahrsheinlichkeitscheorie verw. Geb., 36, 103–109 (1976).
[1] Halmos, P.Measure Theory, Van Nostrand, Princeton, NJ, 1959.
[1] Harris, T. E.Brownian motions on the homeomorphisms of the plane, Ann. Prob., 9, 232–254 (1981).
[1] Haussmann, U.On the integral representation of Ito processes, Stochastics, 3, 17–7 (1979).
[2] Haussmann, U.A Stochastic Maximum Principle for Optimal Control of Diffusions, Longman, Harlow, 1986.
[1] Hawkes, J.Multiple points for symmetric Levy processes, Math. Proc. Camb. Phil., 83, 83–90 (1978).
[2] Hawkes, J.The measure of the range of a subordinator, Bull. London Math. Soc., 5, 21–28 (1973).
[3] Hawkes, J.Local times as stationary processes, From Local to Global Geometry, Control and Physics, Research Notes in Math. 150, Pitman, Harlow, 1986, pp. 111–120.
[1] Hazewinkel, M. and Willems, J. C. (editors) Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht, 1981.
[1] Helgason, S.Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[1] Helms, L. L.Introduction to Potential Theory, Robert E. Krieger, Huntington, NY, 1975.
[1] Hille, E. and Phillips, R. S.Functional Analysis and Semigroups, Amer. Math. Soc., Providence, RI, 1957.
[1] Holley, R., Stroock, D. W. and Williams, D.Applications of dual processes to diffusion theory, Proc. Amer. Math. Soc. Prob. Symp., Urbana, 1976, pp. 23–36.
[1] Hörmander, L.Hypoelliptic second-order differential equations, Acta Math., 117, 147–171 (1967).
[1] Hsu, P.On excursions of reflecting Brownian motion, Trans. Math. Soc, 296, 239–264 (1986).
[2] Hsu, P. Brownian motion and the index theorem (to appear).
[1] Hunt, G. A.Markoff processes and potentials: I, II, III, Illinois J. Math., 1, 44–93; 316–369 (1957); 2, 151–213 (1958).
[1] Ikeda, N. and Watanabe, S.Stochastic Differential Equations and Diffusion Processes, North Holland–Kodansha, Amsterdam and Tokyo, 1981.
[2] Ikeda, N. and Watanabe, S. Malliavin calculus of Wiener functionals and its applications, in Elworthy [2], pp. 132–178.
[1] Ismail, M. E. and Kelker, D. H.The Bessel polynomials and the Student t-distribution, SIAM J. Math. Anal., 7, 82–91 (1976).
[1] Itô, K.Stochastic integral, Proc Imp. Acad. Tokyo, 20, 519–524 (1944).
[2] Itô, K.On a stochastic integral equation, Proc. Imp. Acad. Tokyo, 22, 32–35 (1946).
[3] Itô, K.Stochastic differential equations in a differential manifold, Nagoya Math. J., 1, 35–47 (1950).
[4] Itô, K.The Brownian motion and tensor fields on a Riemannian manifold, Proc. Int. Congr. Math. Stockholm, 1963, pp. 536–539.
[5] Itô, K.Stochastic parallel displacement. Probabilistic Methods in Differential Equations: Lecture Notes in Mathematics 451, Springer, Berlin, 1975, pp. 1–7.
[6] Itô, K.Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, Berkeley, 1971, pp. 225–240.
[7] Itô, K. (editor) Proceedings of the 1982 Taniguchi Int. Symp. on Stochastic Analysis, Kinokuniya Wiley, 1984.
[8] Itô, K.Stationary random distributions. Mem Coll. Sci. Kyoto Univ. Ser. A, 28, 209–223 (1954).
[1] Itô, K. and McKean, H. P.Diffusion Processes and their Sample Paths, Springer, Berlin, 1965.
[1] Jacka, S.A finite fuel stochastic control problem, Stochastics, 10, 103–113 (1983).
[2] Jacka, S.A local time inequality for martingales, Séminaires de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983.
[1] Jacobsen, M.Splitting times for Markov processes and a generalised Markov property for diffusions, Z. Wahrscheinlichkeitstheorie, 30, 27–43 (1974).
[2] Jacobsen, M.Statistical Analysis of Counting Processes: Lecture Notes in Mathematics 12, Springer, New York, 1982.
[1] Jacod, J.A general theorem of representation for martingales, Proc Amer. Math. Soc. Prob. Symp., Urbana, 1976, 37–53.
[2] Jacod, J.Calcul Stochastique et Problèmes de Martingales: Lecture Notes in Mathematics 714, Springer, Berlin, 1979.
[1] Jacod, J. and Yor, M.Etude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales, Z. Wahrscheinlichkeitstheorie, 38, 83–125 (1977).
[1] Jeulin, T.Semimartingales et Grossissement d'une Filtration: Lecture Notes in Mathematics 833, Springer, Berlin, 1980.
[1] Jeulin, T. and Yor, M.Grossissement d'une Filtration et semi-martingales: formules explicites, Séminaire de Probabilités XII: Lecture Notes in Mathematics 649, Springer, Berlin, 1978, pp. 78–97.
[2] Jeulin, T. and Yor, M. (editors) Grossissements de Filtrations: Exemples et Applications: Lecture Notes in Mathematics 1118, Springer, Berlin, 1985.
[1] Johnson, G. and Helms, L. L.Class (D) supermartingales, Bull. Amer. Math. Soc., 69, 59–62 (1963).
[1] Kailath, T.An innovations approach to least squares estimation. Part I: Linear filtering with additive white noise, IEEE Trans. Autom. Control. 13, 646–655 (1968).
[1] Kallianpur, G.Stochastic Filtering Theory, Springer, Berlin, 1980.
[1] Karatzas, I.Shreve, S. E.Brownian Motion and Stochastic Calculus, Springer, Berlin, 1988.
[1] Kellogg, O. D.Foundations of Potential Theory, Dover, New York, 1953.
[1] Kendall, D. G.Pole-seeking Brownian motion and bird navigation (with discussion), J. Roy. Statist. Soc. B, 36, 365–417 (1974).
[2] Kendall, D. G.The diffusion of shape, Adv. Appl. Prob., 9, 428–430 (1979).
[3] Kendall, D. G.Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc., 16, 81–121 (1984).
[4] Kendall, D. G.A totally unstable Markov process, Quart. J. Math. Oxford, 9, 149–160 (1958).
[5] Kendall, D. G. (editor) Analytic and Geometric Stochastics (special supplement to Adv. Appl. Prob. to honour G. E. H. Reuter), Appl. Prob. Trust, 1986.
[1] Kendall, D. G. and Reuter, G. E. H.Some pathological Markov processes with a denumerable infinity of states and the associated contraction semigroups of operators on l, Proc. Int. Congr. Math. 1954 (Amsterdam), 3, 377–415 (1956).
[1] Kendall, W. S.Knotting of Brownian motion in 3-space, J. London Math. Soc. (2), 19, 378–384 (1979).
[2] Kendall, W. S.Brownian motion, negative curvature, and harmonic maps, Stochastic Integrals: Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 479–491.
[3] Kendall, W. S.Brownian motion on a surface of negative curvature, Séminaire de Probabilités XVIII: Lecture Notes in Mathematics 1059, Springer, Berlin, 1984, pp. 70–76.
[4] Kendall, W. S. Survey article on stochastic differential geometry (to appear).
[1] Kent, J.Some probabilistic properties of Bessel functions, Ann. Prob., 6, 760–770 (1978).
[2] Kent, J.The infinite divisibility of the von Mises–Fisher distribution for all values of the parameter in all dimensions, Proc. London Math. Soc., 3, 359–384 (1977).
[3] Kent, J.Continuity properties for random fields. Ann. Prob. 17, 1432–1440 (1989).
[1] Kesten, H.Hitting probabilities of single points for processes with stationary independent increments, Mem. Amer. Math. Soc., 93 (1969).
[1] Khasminskii, R. Z.Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Th. Prob. Appl., 5, 179–196 (1960).
[2] Khasminskii, R. Z.Stochastic Stability of Differential Equations, SijthofTand Noordhoff, Alphen aan den Rijn, 1980.
[1] Kifer, Y. Brownian motion and positive harmonic functions on complete manifolds of non-positive curvature, in Elworthy [2], pp. 187–232.
[1] Kingman, J. F. C.Subadditive ergodic theory, Ann. Prob., 1, 883–909 (1973).
[2] Kingman, J. F. C.Completely random measures, Pacific J. Math., 21, 59–78 (1967).
[3] Kingman, J. F. C.Regenerative Phenomena, Wiley, New York, 1972.
[4] Kingman, J. F. C.Poisson Processes, Oxford University Press, Oxford, 1993.
[1] Knight, F. B.Note on regularisation of Markov processes, Illinois, J. Math., 9, 548–552 (1965).
[2] Knight, F. B.A reduction of continuous square-integrable martingales to Brownian motion, Martingales: A Report on a Meeting at Oberwolfach (ed. H., Dinges): Lecture Notes in Mathematics 190, Springer, Berlin, 1971, pp. 19–31.
[3] Knight, F. B.Random walks and the sojourn density process of Brownian motion, Trans. Amer. Math. Soc., 107, 56–86 (1963).
[1] Knight, F. B. and Pittenger, A.O.Excision of a strong Markov process, Z. Wahrscheinlichkeitstheorie, 23, 114–120 (1972).
[1] Kobayashi, S. and Nomizu, K.Foundations of Differential Geometry (two volumes) Wiley-Interscience, New York, 1963, 1969.
[1] Kolmogorov, A. N.The local structure of turbulence in an incompressible fluid at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 229–303 (1941).
[2] Kolmogorov, A. N.The distribution of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 19–21 (1941).
[1] Kozin, F. and Prodromou, S.Necessary and sufficient conditions for almost sure sample stability of linear Itô equations, SIAM J. Appl. Math., 21, 413–425 (1971).
[1] Krylov, N. V.Controlled Diffusion Processes, Springer, New York, 1980.
[1] Kuelbs, J.The law of the iterated logarithm for Banach space valued random variables, Probability in Banach Spaces: Lecture Notes in Mathematics 526, Springer, Berlin, 1976, pp. 131–142.
[1] Kunita, H.On the decomposition of the solutions of stochastic differential equations, Stochastic Integrals: Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 213–255.
[2] Kunita, H.On backward stochastic differential equations, Stochastics, 6, 293–313 (1982).
[3] Kunita, H.Stochastic differential equations and stochastic flows of homeomorphisms, Stochastic Analysis and Applications, Adv. Probab. Related Topics, 7, Dekker, New York, 1984, pp. 269–291.
[4] Kunita, H. Stochastic partial differential equations connected with nonlinear filtering, in Mitter and Moro [1].
[5] Kunita, H.Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.
[1] Kunita, H. and Watanabe, S.On square integrable martingales, Nagoya Math. J., 30, 209–245 (1967).
[1] Kunita, H. and Watanabe, T.Some theorems concerning resolvents over locally compact spaces, Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 2, University of California Press, Berkeley 1967, pp. 131–164.
[2] Kunita, H. and Watanabe, T.Markov processes and Martin boundaries, I, Illinois J. Math., 9, 485–526 (1965).
[3] Kunita, H. and Watanabe, T.On certain reversed processes and their application to potential theory and boundary theory, J. Math. Mech., 15, 393–434 (1966).
[1] Kusuoka, S. and Stroock, D.Applications of the Malliavin calculus, Part I, Proceedings of the 1982 Taniguchi Int. Symp. on Stochastic Analysis (ed. K., Itô), Kinokuniya–Wiley, 1984, 271–306.
[2] Kusuoka, S. and Stroock, D.Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo (IA), 32, 1–76 (1985).
[1] le Gall, J.-F.Applications du temps local aux equations différentielles stochastiques unidimensionelles, Séminaire de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 15–31.
[2] le Gall, J.-F.Sur la saucisse de Wiener et les points multiples du mouvement Brownien plan at la méthode de renormalization de Varadhan, Séminaire de Probabilités XIX: Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 314–331.
[4] le Gall, J.-F.Fluctuation results for the Wiener sausage, Ann. Prob., 16, 991–1018 (1988).
[5] le Gall, J.-F. The exact Hausdorff measure of Brownian multiple points, in Çinlar, Chung, and Getoor and Glover [1], pp. 107–137.
[6] le Gall, J.-F.Planar Brownian motion, cones and stable processes, C. R. Acad. Sci. Paris Ser. I, 302, 641–643 (1986).
[7] le Gall, J.-F.Une approche élémentaire des théorèmes de decomposition de Williams, Séminaire de Probabilités, XX, Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 447–464.
[1] le Gall, J.-F., Rosen, J. and Shieh, N. R.Multiple points of Lévy processes, Ann. Prob., 17, 503–515 (1989).
[1] le Gall, J.-F. and Yor, M.Etude asymptotique de certains mouvements browniens complexes avec drift, Prob. Th. Rel. Fields, 71, 183–229 (1986).
[2] le Gall, J.-F. and Yor, M.Etude asymptotique des enlacements due mouvement brownien autour des droites de l'espace, Prob. Th. Rel. Fields, 74, 617–635 (1987).
[1] le Jan, Y.Flots de diffusion dans Rd, C.R. Acad. Sci. Paris Ser. I, 294, 697–699 (1982).
[2] le Jan, Y.Equilibre et exposants de Lyapounov de certains flots Browniens, C.R. Acad. Sci. Paris Ser. I, 298, 361–364 (1984).
[3] le Jan, Y.Exposants de Lyapounov pour les mouvements Browniens isotropes, C. R. Acad. Sci. Paris Ser. I, 299, 947–949 (1984).
[4] le Jan, Y.On isotropic Brownian motions, Z. Wahrscheǐnlichkeitstheorie verw. Geb., 70, 609–620 (1985).
[1] le Jan, Y. and Watanabe, S.Stochastic flows of diffeomorphisms, Proceedings of the 1982 Taniguchi Int. Symp. on Stochastic Analysis, 1984, pp. 307–332.
[1] Lenglart, E., Lepingle, D. and Pratelli, M.Présentation unifiée de certaines inégalités de la théorie des martingales, Séminaire de Probabilités XIV: Lecture Notes in Mathematics 784, Springer, Berlin, 1980.
[1] Lévy, P.Théorie de l'Addition des Variables Aléatoires, Gauthier Villars, Paris, 1954.
[2] Lévy, P.Processus Stochastiques et Mouvement Brownien, Gauthier Villars, Paris, 1965.
[3] Lévy, P.Systèmes markoviens et stationnaires. Cas dènombrable, Ann. Ecole Norm. Sup. (3), 68, 327–381 (1951); 69, 203–212 (1952).
[4] Lévy, P.Processus markoviens et stationnaires du cinquième type (infinité dènombrable des états possibles, paramètre continu), C. R. Acad. Sci. Paris, 236, 1630–1632, (1953).
[5] Lévy, P.Processus markoviens et stationnaires. Cas dènombrable, Ann. Inst. H. Poincaré, 16, 7–25 (1958).
[1] Lewis, J. T.Brownian motion on a submanifold of Euclidean space, Bull. London Math. Soc., 18, 616–620 (1986).
[1] Liggett, T.Interacting Particle Systems, Springer, New York, 1985.
[1] Lindvall, T.On coupling of diffusion processes, J. Appl. Prob., 20, 82–93 (1983).
[1] Lipster, R. S. and Shiryayev, A. N.Statistics of Random Processes, I, Springer, Berlin, 1977.
[1] London, R. R., McKean, H. P., Rogers, L. C. G. and Williams, D.A martingale approach to some Wiener–Hopf problems, I, Séminaire de Probabilités XVI: Lecture Notes in Mathematics 920, Springer, Berlin, 1982, pp. 41–67.
[1] Lyons, T. J.Finely holomorphic functions, J. Funct. Anal., 37, 1–18 (1980).
[2] Lyons, T. J.Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains, J. Diff. Geom. 26, 33–66 (1987).
[3] Lyons, T. J. The critical dimension at which quasi-every path is self-avoiding, in D. G. Kendall [5], pp. 87–100.
[1] Lyons, T. J. and McKean, H. P.Windings of the plane Brownian motion, Adv. Math., 51, 212–225 (1984).
[1] McGill, P.Calculation of some conditional excursion formulae, Z. Wahrscheinlichkeitstheorie, 61, 255–260 (1982).
[2] McGill, P.Markov properties of diffusion local time: a martingale approach, Adv. Appl. Prob., 14, 789–810 (1980).
[3] McGill, P.Integral representation of martingales in the Brownian excursion filtration, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 465–502.
[1] McKean, H. P.Stochastic Integrals, Academic Press, New York, 1969.
[2] McKean, H. P.Excursions of a non-singular diffusion, Z. Wahrscheinlichkeitstheorie, 1, 230–239 (1963).
[3] McKean, H. P.Brownian local times, Adv. Math., 16, 91–111 (1975).
[4] McKean, H. P.Brownian motion with a several-dimensional time, Teor. Veroyatnost., 4(4), 357–378 (1963).
[1] McNamara, J. M.A regularity condition on the transition probability measure of a diffusion process. Stochastics, 15, 161–182 (1985).
[1] Maisonneuve, B.Systèmes régéneratifs, Astérisque, Soc. Mathématique de France, 15 (1974).
[1] Maisonneuve, B. and Meyer, P.-A.Ensembles aléatoires markoviens homogènes, Séminaire de Probabilités VIII: Lecture Notes in Mathematics 381, Springer, Berlin, 1974, pp. 172–261.
[1] Malliavin, M.P. and Malliavin, P.Factorisations, et lois limites de la diffusion horizontale au dessus d'un espace riemannien symmetrique, Lecture Notes in Mathematics 404, Springer, Berlin, 1974, pp. 166–217.
[1] Malliavin, P.Stochastic calculus of variation and hypo-elliptic operators, Proc. Int. Symp. Stock. Diff. Equations, Kyoto, 1976 (ed. K., Itô), Kinokuniya–Wiley, 1978, pp. 195–263.
[2] Malliavin, P.Ck-hypoellipticity with degeneracy, Stochastic Analysis (eds. A., Friedman and M., Pinksy), Academic Press, New York, 1978, pp. 199–214.
[3] Malliavin, P.Formula de la moyenne, calcul de perturbations et théorèmes d'annulation pour les formes harmoniques, J. Funct. Anal., 17, 274–291 (1974).
[1] Marcus, M.B. and Rosen, J.Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. Ann. Prob., 20, 1603–1684 (1992).
[1] Mandl, P.Analytic Treatment of One-Dimensional Markov Processes, Springer, Berlin, 1968.
[1] Meléard, S.Application du calcul stochastique à l'étude de processus de Markov réguliers sur [0, 1], Stochastics, 19, 41–82 (1986).
[1] Messulam, P. and Yor, M.On D. Williams' ‘pinching method’ and some applications, J. London Math. Soc., 26, 348–364 (1982).
[1] Metivier, M. and Pellaumail, J.Stochastic Integration, Academic Press, New York, 1979.
[1] Meyer, P. A.Un cours sur les intégrales stochastiques, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 245–400.
[2] Meyer, P. A.Probability and Potential, Blaisdell, Waltham, Mass., 1966.
[3] Meyer, P. A.Processus de Markov: Lecture Notes in Mathematics 26, Springer, Berlin, 1967.
[4] Meyer, P. A.Processus de Markov: la Frontière de Martin: Lecture Notes in Mathematics 77, Springer, Berlin, 1970.
[5] Meyer, P. A.Démonstration simplifiée d'un théorème de Knight, Séminaire de Probabilités V: Lecture Notes, in Mathematics 191, Springer, Berlin, 1971, pp. 191–195.
[6] Meyer, P. A.Démonstration probabiliste de certaines inégalités de Littlewood-Paley, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 125–183.
[7] Meyer, P. A.Flot d'un équation différentielle stochastique, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 103–117.
[8] Meyer, P. A.Sur la démonstration de prévisibilité de Chung and Walsh, Séminaire de Probabilités IX: Lecture Notes in Mathematics 465, Springer, Berlin, 1975, pp. 530–533.
[9] Meyer, P. A.Géométrie stochastique sans larmes, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 44–102.
[10] Meyer, P. A.Géométrie stochastique sans larmes (bis), Séminaire de Probabilités XVI: Supplément, Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 165–207.
[11] Meyer, P. A.Eléments de probabilités quantiques, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 186–312.
[12] Meyer, P. A.Quantum Theory for Probabilists, Lecture Notes in Mathematics 1538, Springer, Berlin, 1993.
[1] Mihlstein, G. N.Approximate integration of stochastic differential equations, Th. Prob. Appl., 19, 557–562 (1974).
[1] Millar, P. W.Random times and decomposition theorems, in Probability: Proc. Symp. Pure Math. XXXI, Amer. Math. Soc., Providence, RI, 1977, pp. 91–103.
[2] Millar, P. W.A path decomposition for Markov processes, Ann. Prob., 6, 345–348 (1978).
[1] Millar, P. W. and Tran, L. T.Unbounded local times, Z. Wahrscheinlichkeitstheorie verw. Geb., 30, 87–92 (1974).
[1] Mitro, J.Dual Markov processes: construction of a useful auxiliary process, Z. Wahrscheinlichkeitstheorie, 47, 139–156 (1979).
[2] Mitro, J.Dual Markov functions: applications of a useful auxiliary process, Z. Wahrscheinlichkeitstheorie, 48, 97–114 (1979).
[1] Mitter, S. K. Lectures on non-linear filtering and stochastic control, in Mitter and Moro [1], pp. 170–207.
[1] Mitter, S. K. and Moro, A. (editors) Non-linear Filtering and Stochastic Control: Lecture Notes in Mathematics 972, Springer, Berlin, 1982.
[1] Motoo, M.Application of additive functionals to the boundary problem of Markov processes (Lévy's system of U-processes), Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 2, Univ. of California Press, Berkeley, 1967, pp. 75–110.
[2] Motoo, M.Proof of the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math., 10, 21–28 (1959).
[1] Motoo, M.Watanabe, S.On a class of additive functionals of Markov processes, J. Math. Kyoto Univ., 4, 429–469 (1965).
[1] Nakao, S.On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9, 513–518 (1972).
[1] Nash, J. F.The imbedding problem for Riemannian manifolds, Ann. Math., 63, 20–63 (1956).
[1] Nelson, E.Dynamical Theories of Brownian Motion, Princeton University Press, 1967.
[2] Nelson, E.Quantum Fluctuations, Princeton University Press, 1984.
[1] Neveu, J.Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.
[2] Neveu, J.Sur les états d'entrée et les états fictifs d'un processus de Markov, Ann. Inst. Henri Poincaré, 17, 323–337 (1962).
[3] Neveu, J.Lattice methods and submarkovian processes, Proc. 4th Berkeley Symp. Math. Statist. Prob., Vol. 2, University of California Press, Berkeley, 1960, pp. 347–391.
[4] Neveu, J.Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg, 25, 36–61 (1961).
[5] Neveu, J.Entrance, exit and fictitious states for Markov chains, Proc. Aarhus Colloq. Combin Prob., 1962, pp. 64–68.
[1] Norris, J. R.Simplified Malliavin calculus, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 101–130.
[1] Norris, J. R., Rogers, L. C. G. and Williams, D.Brownian motion of ellipsoids, Trans. Amer. Math. Soc., 294, 757–765 (1986).
[2] Norris, J. R., Rogers, L. C. G. and Williams, D.Self-avoiding random walk: a Brownian motion model with local time drift, Prob. Th. Rel. Fields, 74, 271–287 (1987).
[1] Ocone, D.Malliavin's calculus and stochastic integral: representation of functionals of diffusion processes, Stochastics, 12, 161–185 (1984).
[1] Orihara, A.On random ellipsoid, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 17, 73–85 (1970).
[1] Pardoux, E.Stochastic differential equations and filtering of diffusion processes, Stochastics, 3, 127–167 (1979).
[2] Pardoux, E.Grossissement d'une filtration et retournement du temps d'une diffusion, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 48–55.
[3] Pardoux, E. Equations of non-linear filtering, and applications to stochastic control with partial observations, in Mitter and Moro [I], pp. 208–248.
[1] Pardoux, E. and Talay, D.Discretization and simulation of stochastic differential equations, Acta Appl. Math 3, 23–47 (1985).
[1] Parthasarathy, K. R.Probability Measures on Metric Spaces, Academic Press, New York, 1967.
[1] Pauwels, E. and Rogers, L. C. G.Skew-product decompositions of Brownian motions, Contemp. Math. 73, 237–262 (1988).
[1] Perkins, E.Local time and pathwise uniqueness for stochastic differential equations, Séminaire de Probabilités XVI: Lecture Notes in Mathematics 920, Springer, Berlin, 1982, pp. 201–208.
[2] Perkins, E.Local time is a semimartingale, Z. Wahrscheinlichkeitstheorie, 60, 79–117 (1982).
[1] Phelps, R. R.Lectures on Choquet's Theorem, Van Nostrand, Princeton, NJ, 1966.
[1] Pinsky, M. A. Homogenization and stochastic parallel displacement, in Williams [13], pp. 271–284.
[2] Pinsky, M. A.Stochastic Riemannian geometry, Probabilistic Analysis and Related Topics, 1 (ed. A. T., Bharucha-Reid), Academic Press, New York, 1978.
[1] Pitman, J. W.One-dimensional Brownian motion and the three-dimensional Bessel process, J. Appl. Prob., 7, 511–526 (1975).
[2] Pitman, J. W.Path decomposition for conditional Brownian motion, Inst. Math. Statist. Univ. Copenhagen, Preprint No. 11 (1974).
[3] Pitman, J. W. Lévy systems and path decompositions, in Çinlar, Chung and Getoor [1, 1981].
[1] Pitman, J. W. and Yor, M.Bessel processes and infinitely divisible laws, Stochastic Integrals (ed. D., Williams), Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 285–370.
[2] Pitman, J. W. and Yor, M.A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheorie, 59, 425–457 (1982).
[3] Pitman, J. W. and Yor, M.The asymptotic joint distribution of windings of planar Brownian motion, Bull. Amer. Math. Soc., 10, 109–111 (1984).
[4] Pitman, J. W. and Yor, M.Asymptotic laws of planar Brownian motion, Ann. Proh., 14, 733–779 (1986).
[1] Pittenger, A. O. and Shih, C. T.Coterminal families and the strong Markov property, Trans. Amer. Math. Soc., 182, 1–42 (1973).
[1] Poor, W. A.Differential Geometric Structures, McGraw-Hill, New York, 1981.
[1] Port, S. C. and Stone, C. J.Classical potential theory and Brownian motion, Proc. 6th Berkeley Symp. Math. Statist. Proh., Vol. 3, University of California Press, Berkeley, 1972, pp. 143–176.
[2] Port, S. C. and Stone, C. J.Logarithmic potentials and planar Brownian motion, Proc. 6th Berkeley Symp. Math. Statist. Proh., Vol. 3, University of California Press, Berkeley 1972, pp. 177–192.
[3] Port, S. C. and Stone, C. J.Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978.
[1] Price, G. C. and Williams, D.Rolling with ‘slipping’: I, Séminaire de Prohabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 194–297.
[1] Prohorov, Yu. V.Convergence of random processes and limit theorems in probability, Th. Prob. Appl., 1, 157–214 (1956).
[1] Protter, P.On the existence, uniqueness, convergence and explosions of solutions of stochastic differential equations, Ann. Prob., 5, 243–261 (1977).
[1] Rao, K. M.On decomposition theorems of Meyer, Math. Scand., 24, 66–78 (1969).
[2] Rao, K. M.Quasimartingales, Math. Scand., 24, 79–92 (1969).
[1] Ray, D. B.Resolvents, transition functions and strongly Markovian processes, Ann. Math., 70, 43–72 (1959).
[2] Ray, D. B.Sojourn times of a diffusion process, Illinois J. Math., 7, 615–630 (1963).
[1] Reuter, G. E. H.Denumerable Markov processes, II, J. London Math. Soc., 34, 81–91 (1959).
[1] Revuz, D.The Martin boundary of a recurrent random walk has one or two points, Probability: Proc Symp. Pure Math. XXXI, Amer. Math. Soc., Providence, RI, 1977, pp. 125–130.
[1] Revuz, D. and Yor, M.Continuous Martingales and Brownian Motion, Springer, Berlin, 1991.
[1] Rogers, L. C. G.Williams' characterization of the Brownian excursion law: proof and applications, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 227–250.
[2] Rogers, L. C. G.Itô excursion theory via resolvents, Z. Wahrscheinlichkeitstheorie, 63, 237–255 (1983).
[3] Rogers, L. C. G.Smooth transition densities for one-dimensional diffusions, Bull. London Math. Soc., 17, 157–161 (1985).
[4] Rogers, L. C. G.Continuity of martingales in the Brownian excursion filtration, Prob. Th. Rel. Fields 76, 291–298 (1987).
[5] Rogers, L. C. G.Multiple points of Markov processes in a complete metric space, Séminaire de Probabilités XXIII: Lecture Notes in Mathematics 1372, Springer, Berlin, 1989, pp. 186–197.
[6] Rogers, L. C. G.A new identity for real Lévy processes. Ann. Inst. Henri Poincaré, 20, 21–34 (1984).
[1] Rogers, L. C. G. and Pitman, J. W.Markov functions, Ann. Prob. 9, 573–582 (1981).
[1] Rogers, L. C. G. and Williams, D.Diffusions, Markov Process, and Martingales: Volume 2: Itô Calculus, Wiley, Chichester, 1987.
[2] Rogers, L. C. G. and Williams, D. Construction and approximation of transition matrix functions, in D. G. Kendall [5], pp. 133–160.
[1] Rogozin, B. A.On the distribution of functionals related to boundary problems for processes with independent increments, Th. Prob. Appl., 11, 580–591 (1966).
[1] Rosen, J.A local time approach to self-intersections of Brownian paths in space, Comm. Math. Phys., 88, 327–338 (1983).
[1] Schwartz, L.Géometrie différentielle du 2ième ordre, semimartingales et équations différentielles stochastiques sur une variété différentielle, Séminaire de Probabilités XVI, Supplément: Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 1–148.
[1] Sharpe, M. J.General Theory of Markov Processes, Academic Press, New York, 1988.
[1] Sheppard, P.On the Ray–Knight property of local times, J. London Math. Soc., 31, 377–384 (1985).
[1] Shiga, T. and Watanabe, S.Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie, 27, 37–46 (1973).
[1] Shigekawa, I.Derivatives of Wiener functionals and absolute continuity of induced measure, J. Math. Kyoto Univ., 20, 263–289 (1980).
[1] Shimura, M.Excursions in a cone for two-dimensional Brownian motion, J. Math. Kyoto Univ., 25, 433–443 (1985).
[1] Silverstein, M. L.Symmetric Markov Processes: Lecture Notes in Mathematics 426, Springer, Berlin, 1974.
[2] Silverstein, M. L.Boundary Theory for Symmetric Markov Processes: Lecture Notes in Mathematics 516, Springer, Berlin, 1976.
[1] Simon, B.Functional Integration and Quantum Physics, Academic Press, New York, 1979.
[2] Simon, B.Semiclassical analysis of low-lying eigenvalues, II. Tunneling, Ann. Math. 120, 89–118 (1984).
[1] Skorokhod, A. V.Limit theorems for stochastic processes, Th. Prob. Appl. 1, 261–290 (1956).
[2] Skorokhod, A. V.Limit theorems for Markov processes, Th. Prob. Appl. 3, 202–246 (1958).
[1] Spitzer, F.Principles of Random Walk, Van Nostrand, Princeton, NJ, 1964.
[2] Spitzer, F.Some theorems concerning two-dimensional Brownian motion, Trans. Amer. Math. Soc., 87, 187–197 (1958).
[1] Strassen, V.An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie, 3, 211–226 (1964).
[2] Strassen, V.Almost sure behaviour of sums of independent random variables and martingales, Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 1, University of California Press, Berkeley, 1966, pp. 315–343.
[1] Stroock, D. W.The Malliavin calculus and its applications to second-order parabolic differential operators I, II, Math. System Theory, 14, 25–65, 141-171 (1981).
[2] Stroock, D. W.The Malliavin calculus; a functional analytical approach, J. Funct. Anal., 44, 217–257 (1981).
[3] Stroock, D. W.Diffusion processes associated with Lévy generators, Z. Wahrscheinlichkeitstheorie, 32, 209–244 (1975).
[4] Stroock, D. W.An Introduction to the Theory of Large Deviations, Springer, Berlin, New York, 1984.
[1] Stroock, D. W. and Varadhan, S. R. S.Multidimensional Diffusion Processes, Springer, New York, 1979.
[2] Stroock, D. W. and Varadhan, S. R. S.On the support of diffusion processes with applications to the strong maximum principle, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, Berkeley, 1972, pp. 333–359.
[3] Stroock, D. W. and Varadhan, S. R. S.Diffusion processes with boundary conditions, Comm. Pure Appl. Math., 24, 147–225 (1971).
[1] Stroock, D. W. and Yor, M.Some remarkable martingales, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 590–603.
[1] Sussmann, H. J.On the gap between deterministic and stochastic ordinary differential equations, Ann. Prob., 6, 19–41 (1978).
[1] Symanzik, K.Euclidean quantum field theory, Local Quantum Theory (ed. R., Jost), Academic Press, New York, 1969.
[1] Talagrand, M.Regularity of Gaussian processes, Acta Math., 159, 99–149 (1987).
[1] Taylor, G. I.Statistical theory of turbulence, Proc. Roy. Soc. London A, 151, 421–478 (1935).
[1] Taylor, H. M.A stopped Brownian motion formula, Ann. Prob., 3, 234–246 (1975)
[1] Taylor, S. J.Sample path properties of processes with stationary independent increments, Stochastic Analysis (eds. D. G., Kendall and E. F., Harding), Wiley, New York, 1973, pp. 387–414.
[1] Thorin, O.On the infinite divisibility of the lognormal distribution, Scand. Actuarial J., 121–148 (1977).
[1] Tsirel'son, B. S.An example of the stochastic equation having no strong solution, Teoria Verojatn. i Primenen., 20, 427–430 (1975).
[1] Van Den Berg, M. and Lewis, J. T.Brownian motion on a hypersurface, Bull. London Math. Soc., 17, 144–150 (1985).
[1] Varadhan, S. R. S.Large Deviations and Applications, SIAM, Philadelphia, 1984.
[1] Varadhan, S. R. S. and Williams, R. J.Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math., 38, 405–443 (1985).
[1] Walsh, J. B. Excursions and local time, in Azema and Yor [2], pp. 159–192.
[2] Walsh, J. B. Stochastic integration with respect to local time, in Çinlar, Chung and Getoor [1, 1983].
[3] Walsh, J. B.An introduction to stochastic partial differential equations, Ecole d'Eté de Probabilités de St Flour XIV–1984, Lecture Notes in Mathematics 1180, Springer, Berlin, 1986.
[1] Warner, F. W.Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin 1983.
[1] Watanabe, S.On discontinuous additive functionals and Lévy measures of a Markov process, Jap. J. Math., 34, 53–79 (1964).
[1] Watson, G. N.A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966.
[1] Whitney, H.Geometric Integration Theory, Princeton University Press, Princeton, NJ, 1957.
[1] Whittle, P.Optimization over Time (two volumes), Wiley, Chichester, 1982, 1983.
[1] Williams, D.Brownian motions and diffusions as Markov processes, Bull. London Math. Soc., 6, 257–303 (1974).
[2] Williams, D.Some basic theorems on harnesses, Stochastic Analysis (eds. D. G., Kendall and E. F., Harding), Wiley, New York, 1973, pp. 349–366.
[3] Williams, D.On Lévy's downcrossing theorem, Z. Wahrscheinlichkeitstheorie, 40, 157–158 (1977).
[4] Williams, D.Path decomposition and continuity of local time for one-dimensional diffusions, I, Proc. London Math. Soc., Ser. 3, 28, 738–768 (1974).
[5] Williams, D.On the stopped Brownian motion formula of H. M. Taylor, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 235–239.
[6] Williams, D.Markov properties of Brownian local time, Bull. Amer. Math. Soc., 75, 1035–1036 (1969).
[7] Williams, D.Decomposing the Brownian path, Bull. Amer. Math. Soc., 76, 871–873 (1970).
[8] Williams, D.The Q-matrix problem for Markov chains, Bull. Amer. Math. Soc., 81, 1115–1118 (1975).
[9] Williams, D.The Q-matrix problem, Séminaire de Probabilités X: Lecutre Notes in Mathematics 511, Springer, Berlin, 1976, pp. 216–234.
[10] Williams, D.A note on the Q-matrices of Markov chains, Z. Wahrscheinlichkeitstheorie, 7, 116–121 (1967).
[11] Williams, D.Some Q-matrix problems, Probability: Proc. Symp. Pure Math. XXXI, Amer. Math. Soc., Providence, RI, 1977, pp. 165–169.
[12] Williams, D.Diffusions. Markov Processes, and Martingales, Volume 1: Foundations, Wiley, Chichester, 1979.
[13] Williams, D. (editor) Stochastic Integrals: Proceedings, LMS Durham Symposium, Lecture Notes in Mathematics 851, Springer, Berlin, 1981.
[14] Williams, D.Conditional excursion theory, Séminaire de Probabilités XIII: Lecture Notes in Mathematics 721, Springer, Berlin, 1979, pp. 490–494.
[15] Williams, D.(= [W]) Probability with Martingales, Cambridge University Press, Cambridge, 1991.
[1] Yaglom, A. M.Some classes of random fields in n-dimensional space, related to stationary random processes, Th. Prob. Appl., 2, 273–319 (1957).
[1] Yamada, T.On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ., 13, 497–512 (1973).
[1] Yamada, T. and Ogura, Y.On the strong comparison theorems for solutions of stochastic differential equations, Z. Wahrscheinlichkeitstheorie, 56, 3–19 (1981).
[1] Yamada, T. and Watanabe, S.On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 155–167 (1971).
[1] Yor, M.Sur certains commutateurs d'une filtration, Séminaires de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 526–528.
[2] Yor, M. Sur la continuité des temps locaux associés à certaines semimartingales, in Azéma and Yor [2], pp. 23–35.
[3] Yor, M. Rappel et préliminaires généraux, in Azéma and Yor [2], pp. 17–22.
[4] Yor, M.Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement Brownien dans ℝ2, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 532–542.
[5] Yor, M.Sur la réprésentation comme intégrales stochastique des temps d'occupation du mouvement Brownien dans ℝd, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 543–552.
[1] Yamada, T.Functional Analysis, Springer, Berlin, 1965.
[2] Yamada, T.Brownian motion in homogeneous Riemannian space, Pacific J. Math., 2, 263–296. (1952).
[1] Zakai, M.The Malliavin calculus, Acta Appl. Math., 3, 175–207 (1985).
[1] Zheng, W. A. and Meyer, P.-A.Quelques résultats de ‘méchanique stochastique’, Séminaire de Probabilités XVIII: Lecture Notes in Mathematics 1059, Springer, Berlin, 1984, pp. 223–244.
[1] Zvonkin, A. K.A transformation of the phase space of a diffusion process that removes the drift, Math. USSR Sbornik, 22, 129–149 (1974).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.