Skip to main content Accessibility help
×
  • Cited by 64
Publisher:
Cambridge University Press
Online publication date:
September 2010
Print publication year:
1987
Online ISBN:
9780511758850

Book description

The study of sets of uniqueness for trigonometric series has a long history, originating in the work of Riemann, Heine, and Cantor in the mid-nineteenth century. Since then it has been a fertile ground for numerous investigations involving real analysis, classical and abstract harmonic analysis, measure theory, functional analysis and number theory. In this book are developed the intriguing and surprising connections that the subject has with descriptive set theory. These have only been discovered recently and the authors present here this novel theory which leads to many new results concerning the structure of sets of uniqueness and include solutions to some of the classical problems in this area. In order to make the material accessible to logicians, set theorists and analysts, the authors have covered in some detail large parts of the classical and modern theory of sets of uniqueness as well as the relevant parts of descriptive set theory. Thus the book is essentially self-contained and will make an excellent introduction to the subject for graduate students and research workers in set theory and analysis.

Reviews

"Of all the work that has been done in recent years on connections between descriptive set theory and analysis, the results contained in this book are the deepest and most significant." Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.