Skip to main content Accessibility help
×
  • Cited by 22
Publisher:
Cambridge University Press
Online publication date:
July 2016
Print publication year:
2016
Online ISBN:
9781316480663

Book description

This book presents a detailed and contemporary account of the classical theory of convergence of semigroups and its more recent development treating the case where the limit semigroup, in contrast to the approximating semigroups, acts merely on a subspace of the original Banach space (this is the case, for example, with singular perturbations). The author demonstrates the far-reaching applications of this theory using real examples from various branches of pure and applied mathematics, with a particular emphasis on mathematical biology. The book may serve as a useful reference, containing a significant number of new results ranging from the analysis of fish populations to signaling pathways in living cells. It comprises many short chapters, which allows readers to pick and choose those topics most relevant to them, and it contains 160 end-of-chapter exercises so that readers can test their understanding of the material as they go along.

Reviews

'This book is excellent in many respects. It is beautifully written, it contains many new and clever arguments, and it is a long, connected story told by a masterful storyteller. … Operator semigroup theory continues to grow and thrive and new and unexpected applications continue to lead to new theory. There is a large textbook/monograph literature including the early book by Hille and by Hille and Phillips, and later books by, alphabetically, Cialdea and Maz’ya, Davies, Dunford and Schwartz, Engel and Nagel, Fattorini, Goldstein, Kato, Krein, Lax, Nagel et al., Pazy, and Yosida. Bobrowski’s book stands with these as books which contain information about theory and applications which could not be found elsewhere at the time of publication. Bobrowski’s superb exposition and his wide scope and new applications will keep the semigroup community busy. We can all be grateful.'

Jerome A. Goldstein Source: Semigroup Forum

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 3



Page 1 of 3


References
[1] A. D., Aczel, Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem, A Delta Book, New York, Dell Publishing, 1997 Google Scholar. (Cited on page 183.)
[2] R. A., Adams and J. J. F., Fournier, Sobolev Spaces, second ed., Pure and Applied Mathematics, vol. 140, Elsevier/Academic Press, Amsterdam, 2003 Google Scholar. (Cited on page 228.)
[3] U., Alon, An Introduction to Systems Biology. Design Principles of Biological Circuts, Chapman and Hall/CRC, Boca Raton, 2007 Google Scholar. (Cited on pages 150, 216, and 286.)
[4] A., Alonso and B., Simon, The Birman–Kreĭn–Vishik theory of self-adjoint extensions of semibounded operators, J. Oper. Th. 4 (1980 Google Scholar), no. 2, 251–270. (Cited on page 36.)
[5] S. S., Andrews, Accurate particle-based simulation of adsorption, desorption, and partial transmission, Phys. Biol. (2010 Google Scholar), no. 6, 046015. (Cited on page 66.)
[6] W., Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987 Google Scholar), 327–352. (Cited on page 82.)
[7] W., Arendt, Semigroups and Evolution Equations: Functional Calculus, Regularity, and Kernel Estimates, Evolutionary Equations Vol. 1 (C. M., Dafermos and E., Feireisl, eds.), Handbook of Differential Equations, Elsevier B.V., 2004 Google Scholar, pp. 1– 85. (Cited on pages 179 and 180.)
[8] W., Arendt, Heat Kernels – Manuscript of the 9th Internet Seminar, 2006 Google Scholar, Freely available at http://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/ arendt/downloads/internetseminar.pdf. (Cited on pages 32 and 35.)
[9] W., Arendt, C. J. K., Batty, M., Hieber, and F., Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2001 Google Scholar. (Cited on pages xi, 1, 3, 4, 29, 87, 89, 141, 157, 159, 179, 180, 250, 398, and 402.)
[10] W., Arendt, A., Driouich, and O., El-Mennaoui, On the infinite product of C0- semigroups, J. Functional Analysis 160 (1998 Google Scholar), 524–542. (Cited on pages 86, 87, and 91.)
[11] O., Arino, E., Sanchez, R., Bravo de la Parra, and P., Auger, A singular perturbation in an age-structured population, SIAM J. Appl. Math. 60 (1999 Google Scholar–2000), no. 2, 408–436. (Cited on pages 304, 305, and 345.)
[12] F., Aristizabal and M. I., Glavinovic, Simulation and parameter estimation of dynamics of synaptic depression, Biol. Cybern. 90 (2004 Google Scholar), 3–18. (Cited on pages 189, 190, and 192.)
[13] R., Bafico and P., Baldi, Small random perturbations of Peano phenomena, Stochastics 6 (1982 Google Scholar), 279–292. (Cited on page xiii.)
[14] J., Banasiak, Singularly perturbed linear and semilinear hyperbolic systems: Kinetic theory approach to some folks theorems, Acta Applicandae Mathematica 49 (1997 Google Scholar), no. 2, 199–228. (Cited on page 73.)
[15] J., Banasiak, Global classical solutions of coagulation fragmentation equations with unbounded coagulation rates, Nonlinear Analysis: Real World Applications 13 (2012 Google Scholar), no. 1, 91–105. (Cited on page 221.)
[16] J., Banasiak and L., Arlotti, Perturbations of Positive Semigroups with Applications, Springer, 2006 Google Scholar. (Cited on pages 77, 80, 219, 227, and 301.)
[17] J., Banasiak and A., Bobrowski, Interplay between degenerate convergence of semigroups and asymptotic analysis: a study of a singularly perturbed abstract telegraph system, J. Evol. Equ. 9 (2009 Google Scholar), no. 2, 293–314. (Cited on pages 54, 70, 73, 137, 341, 342, and 344.)
[18] J., Banasiak and A., Bobrowski, A semigroup related to a convex combination of boundary conditions obtained as a result of averaging other semigroups, J. Evol. Equ. 15 (2015 Google Scholar), no. 1, 223–237. (Cited on pages 345 and 352.)
[19] J., Banasiak, A., Falkiewicz, and P., Namayanja, Asymptotic state lumping in transport and diffusion problems on networks, ArXiv e-prints (2015 Google Scholar), 1–32. (Cited on page 203.)
[20] J., Banasiak, A., Falkiewicz, and P., Namayanja, Semigroup approach to diffusion and transport problems on networks, ArXiv e-prints (2015 Google Scholar), 1–16. (Cited on page 203.)
[21] J., Banasiak and A., Goswami, Singularly perturbed population models with reducible migration matrix. 1. Sova–Kurtz theorem and the convergence to the aggregated model, DCDS-A 35 (2015 Google Scholar), 617–635. (Cited on pages 258, 345, and 359.)
[22] J., Banasiak, A., Goswami, and S., Shindin, Aggregation in age and space structured population models: an asymptotic analysis approach, J. Evol. Equ. 11 (2011 Google Scholar), 121–154. (Cited on pages 304, 342, 345, and 359.)
[23] J., Banasiak, A., Goswami, and S., Shindin, Singularly perturbed population models with reducible migration matrix: 2. Asymptotic analysis and numerical simulations, Mediterr. J. Math. 11 (2014 Google Scholar), no. 2, 533–559. (Cited on pages 304, 345, and 359.)
[24] J., Banasiak and M., Lachowicz, Around the Kato generation theorem for semigroups, Studia Mathematica 179 (2007 Google Scholar), no. 3, 217–238. (Cited on pages 75 and 148.)
[25] J., Banasiak and M., Lachowicz, Methods of Small Parameter in Mathematical Biology, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, 2014 Google Scholar. (Cited on pages xiii, 344, 345, and 359.)
[26] J., Banasiak and W., Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl. 391 (2012 Google Scholar), no. 1, 312–322. (Cited on page 221.)
[27] J., Banasiak and J. R., Mika, Singularly perturbed telegraph equations with applications in the random walk theory, J. Appl. Math. Stochastic Anal. 11 (1998 Google Scholar), no. 1, 9–28. (Cited on page 73.)
[28] A., Bátkai, P., Csomós, B., Farkas, and G., Nickel, Operator splitting for nonautonomous evolution equations, J. Functional Analysis 260 (2011 Google Scholar), 2163– 2190. (Cited on page 123.)
[29] A., Bátkai, I., Kiss, E., Sikolya, and P. L., Simon, Differential equation approximations of stochastic network processes: an operator semigroup approach, Networks and Heterogeneous Media 7 (2012 Google Scholar), no. 1, 43–58. (Cited on page 337.)
[30] C. J. K., Batty, Derivations on compact spaces, Proc. London Math. Soc. (3) 42 (1981 Google Scholar), no. 2, 299–330. (Cited on page 302.)
[31] C. J. K., Batty, Derivations on the line and flows along orbits, Pacific J. Math. 126 Google Scholar (1987), no. 2, 209–225. (Cited on page 302.)
[32] C. J. K., Batty and A. F. M. ter., Elst, On series of sectorial forms, J. Evol. Equ. 14 (2014 Google Scholar), no. 1, 29–47. (Cited on page 365.)
[33] F. A., Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972 Google Scholar), 1134–1167. (Cited on page xiii.)
[34] A., Bielecki, Une remarque sur la méthode de Banach–Cacciopoli–Tikhonov, Bull. Polish Acad. Sci. 4 (1956 Google Scholar), 261–268. (Cited on pages 114, 122, 211, and 225.)
[35] A., Bielecki and P., Kalita, Model of neurotransmitter fast transport in axon terminal of presynaptic neuron, J. Math. Biol. 56 (2008 Google Scholar), 559–576. (Cited on pages 190, 191, and 192.)
[36] S., Bjon, On an integral transform of R. S. Phillips, Cent. Eur. J. Math. 8 (2010 Google Scholar), no. (1), 98–113. (Cited on page 399.)
[37] D., Blackwell, Another countable Markov process with only instantaneous states, Ann. Math. Statist. 29 (1958 Google Scholar), 313–316. (Cited on page 90.)
[38] Ph., Blanchard, Ph., Combe, M., Sirugue, and M., Sirugue-Collin, Jump processes related to the two-dimensional Dirac equation, Stochastic Processes– Mathematics and Physics, II, (Bielefeld, 1985), Lecture Notes in Mathematics 1250, Springer, 1985 Google Scholar, pp. 1–13. (Cited on page 130.)
[39] Ph., Blanchard, Ph., Combe, M., Sirugue, and M., Sirugue-Collin, Path integral representation of the Dirac equation in presence of an external electromagnetic field, Path Integrals frommeV to MeV (Bielefeld, 1985), Bielefeld Encount. Phys. Math., VII, World Scientific, 1985 Google Scholar, pp. 396–413. (Cited on page 130.)
[40] Ph., Blanchard, Ph., Combe, M., Sirugue, and M., Sirugue-Collin, Stochastic jump processes associated with Dirac equation, Stochastic Processes in Classical and Quantum System (Ascona, 1985 Google Scholar), Lecture Notes in Physics 262, Springer, 1986, pp. 87–104. (Cited on page 130.)
[41] Ph., Blanchard, Ph., Combe, M., Sirugue, and M., Sirugue-Collin, Jump processes. An introduction and some applications to quantum physics, Rend. Circ. Mat. Palermo (2) Suppl. (1987), no. 17, 47–104 (1988), Functional integration with emphasis on the Feynman integral (Sherbrooke Google Scholar, PQ, 1986). (Cited on page 130.)
[42] H., Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935 Google Scholar), no. 1, 263–282. (Cited on page 406.)
[43] A., Bobrowski, Some remarks on the two-dimensional Dirac equation, Semigroup Forum 45 (1992 Google Scholar), 77–91. (Cited on pages 121, 123, and 130.)
[44] A., Bobrowski, Degenerate convergence of semigroups, Semigroup Forum 49 (1994 Google Scholar), no. 3, 303–327. (Cited on pages 60, 70, 71, and 171.)
[45] A., Bobrowski, Integrated semigroups and the Trotter–Kato theorem, Bull. Polish Acad. Sci. 41 (1994 Google Scholar), 297–304. (Cited on page 82.)
[46] A., Bobrowski, On the Yosida approximation and the Widder–Arendt theorem, Studia Mathematica 124 (1997 Google Scholar), no. 3, 281–290. (Cited on pages 83, 398, and 399.)
[47] A., Bobrowski, The Widder–Arendt theorem on inverting of the Laplace transform, and its relationships with the theory of semigroups of operators, Methods Funct. Anal. Topology 3 (1997 Google Scholar), no. 4, 1–39. (Cited on pages 83, 109, and 384.)
[48] A., Bobrowski, A note on convergence of semigroups, Ann. Polon. Math. 69 (1998 Google Scholar), no. 2, 107–127. (Cited on pages 157, 171, and 250.)
[49] A., Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005 Google Scholar, An introduction. (Cited on pages xiv, 1, 17, 29, 38, 39, 71, 73, 83, 89, 93, 96, 98, 100, 112, 116, 152, 199, 264, 331, 365, and 405.)
[50] A., Bobrowski, Degenerate convergence of semigroups related to a model of stochastic gene expression, Semigroup Forum 73 (2006 Google Scholar), no. 3, 345–366. (Cited on pages 283 and 335.)
[51] A., Bobrowski, On a semigroup generated by a convex combination of two Feller generators, J. Evol. Equ. 7 (2007 Google Scholar), no. 3, 555–565. (Cited on pages 293 and 299.)
[52] A., Bobrowski, On limitations and insufficiency of the Trotter–Kato theorem, Semigroup Forum 75 (2007 Google Scholar), no. 2, 317–336. (Cited on pages 145 and 335.)
[53] A., Bobrowski, Generation of cosine families via Lord Kelvin's method of images, J. Evol. Equ. 10 (2010 Google Scholar), no. 3, 663–675. (Cited on page 386.)
[54] A., Bobrowski, Lord Kelvin's method of images in the semigroup theory, Semigroup Forum 81 (2010 Google Scholar), 435–445. (Cited on pages 186, 195, 248, 349, 358, and 386.)
[55] A., Bobrowski, From diffusions on graphs to Markov chains via asymptotic state lumping, Ann. Henri Poincare 13 (2012 Google Scholar), 1501–1510. (Cited on pages 203, 204, 205, and 208.)
[56] A., Bobrowski, Emergence of Freidlin–Wentzell's transmission conditions as a result of a singular perturbation of a semigroup, Semigroup Forum 92 (2016 Google Scholar), no. 1, 1–22. (Cited on pages 362 and 370.)
[57] A., Bobrowski, Families of operators describing diffusion through permeable membranes, Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Arendt, W., Chill, R., Tomilov, Y. eds. Birkhauser, 2015 Google Scholar, pp. 87–105. (Cited on pages 24 and 65.)
[58] A., Bobrowski, On a somewhat forgotten condition of Hasegawa and on Blackwell's example, Archiv der Mathematik 104 (2015 Google Scholar), no. 3, 237–246. (Cited on page 95.)
[59] A., Bobrowski, Singular perturbations involving fast diffusion, J. Math. Anal. Appl. 427 (2015 Google Scholar), no. 2, 1004–1026. (Cited on pages 236, 243, 327, and 328.)
[60] A., Bobrowski and R., Bogucki, Semigroups generated by convex combinations of several Feller generators in models of mathematical biology, Studia Mathematica 189 (2008 Google Scholar), 287–300. (Cited on pages 283 and 293.)
[61] A., Bobrowski and R., Bogucki, Two theorems on singularly perturbed semigroups with applications to models of applied mathematics, Discr.Cont. Dyn. Syst.B 17 (2012 Google Scholar), no. 3, 735–757. (Cited on pages 263, 271, and 287.)
[62] A., Bobrowski and W., Chojnacki, Cosine families and semigroups really differ, J. Evol. Equ. 13 (2013 Google Scholar), no. 4, 897–916. (Cited on pages 4, 388, 390, and 392.)
[63] A., Bobrowski and W., Chojnacki, Isolated points of the set of bounded cosine families on a Banach space, Studia Mathematica 217 (2013 Google Scholar), no. 3, 219–241. (Cited on pages 41, 42, 43, 44, and 109.)
[64] A., Bobrowski, W., Chojnacki, and A., Gregosiewicz, On close-to-scalar oneparameter cosine families, J. Math. Anal. Appl. 429 (2015 Google Scholar), no. 1, 383–394. (Cited on page 43.)
[65] A., Bobrowski and M., Kimmel, A random evolution related to a Fisher–Wright– Moran model with mutation, recombination, and drift, Mathematical Methods in the Applied Sciences 2003 (2003 Google Scholar), no. 26, 1587–1599. (Cited on pages 311, 313, 315, and 317.)
[66] A., Bobrowski and M., Kimmel, An Operator Semigroup in Mathematical Genetics, Springer Briefs in Applied Sciences and Technology.Mathematical Methods, Springer, 2015 Google Scholar. (Cited on pages 119 and 152.)
[67] A., Bobrowski, M., Kimmel, R., Chakraborty, and O., Arino, Asemigroup representation and asymptotic behavior of the Fisher–Wright–Moran coalescent, Chapter 8 in Handbook of Statistics 19: Stochastic Processes: Theory and Methods, C.R., Rao and D.N., Shanbhag, eds., Elsevier Science, Amsterdam, 2001 Google Scholar. (Cited on page 152.)
[68] A., Bobrowski, M., Kimmel, and T., Wojdyła, Asymptotic behavior of a Moran model with mutations, drift, and recombinations among multiple loci, J. Math. Biol. 61 (2010 Google Scholar), 455–473. (Cited on pages 318 and 326.)
[69] A., Bobrowski, T., Lipniacki, K., Pichór, and R., Rudnicki, Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression, J. Math. Anal. Appl. 333 (2007 Google Scholar), 753–769. (Cited on page 283.)
[70] A., Bobrowski and K., Morawska, From a PDE model to an ODE model of dynamics of synaptic depression, Discr. Cont. Dyn. Syst.B 17 (2012 Google Scholar), no. 7, 2313–2327. (Cited on pages 190, 193, and 194.)
[71] A., Bobrowski and D., Mugnolo, On moments-preserving cosine families and semigroups in C[0, 1], J. Evol. Equ. 13 (2013 Google Scholar), no. 4, 715–735. (Cited on pages 37, 184, and 186.)
[72] R., Bogucki, Convergence of semigroups of operators related to piece-wise deterministic Markov processes, with applications, PhD thesis (in Polish), Institute of Mathematics, Polish Academy of Sciences, 2014 Google Scholar, pp. 1–103. (Cited on pages 293 and 310.)
[73] M., Boulanouar, A mathematical study for a Rotenberg model, J. Math. Anal. Appl. 265 (2002 Google Scholar), no. 2, 371–394. (Cited on page 30.)
[74] B.M., Brown, D., Elliot, and D.F., Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theor. 49 (1987 Google Scholar), 196–199. (Cited on page 264.)
[75] G.C., Brown and B.N., Kholodenko, Spatial gradients of cellular phosphoproteins, FEBS Letters 457 (1999 Google Scholar), no. 3, 452–454. (Cited on pages 241 and 242.)
[76] P., Cannarsa and G., Da Prato, On a functional analysis approach to parabolic equations in infinite dimensions, J. Functional Analysis 118 (1993 Google Scholar), 22–42. (Cited on page 86.)
[77] C., Canzi and G., Guerra,Asimple counterexample related to the Lie–Trotter product formula, Semigroup Forum 84 (2012 Google Scholar), no. 3, 499–504. (Cited on page 103.)
[78] N., L. Carothers, A Short Course on Banach Space Theory, London Mathematical Society Student Texts, vol. 64, Cambridge University Press, 2004 Google Scholar. (Cited on pages 90, 139, and 222.)
[79] J., A. Carrillo, S., Cuadrado, and B., Perthame, Adaptive dynamics via Hamilton– Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci. 205 (2007 Google Scholar), 137–161. (Cited on page xiii.)
[80] V., Casarino, K.-J., Engel, R., Nagel, and G., Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory 47 (2003 Google Scholar), no. 3, 289–306. (Cited on page 249.)
[81] R., Chander and H., Singh, On the measurability and continuity properties of the cosine operator, Indian J. Pure Appl. Math. 12 (1981 Google Scholar), no. 1, 81–83. (Cited on pages 390 and 391.)
[82] P., R. Chernoff, Elements of a normed algebra whose 2nth powers lie close to the identity, Proc. Amer. Math. Soc. 23 (1969 Google Scholar), no. 2, 386–387. (Cited on page 44.)
[83] P., R. Chernoff, Universally commutatable operators are scalars, Michigan Math. J. 20 (1973 Google Scholar), 101–107. (Cited on page 104.)
[84] R., Chill and E., Fašangová, Gradient Systems. 13th International Internet Seminar, Matfyzpress, Prague, 2010 Google Scholar. (Cited on page 228.)
[85] R., Chill and A., Haraux, An optimal estimate for the time singular limit of an abstract wave equation, Funkcial. Ekvac. 47 (2004 Google Scholar), no. 2, 277–290. (Cited on page 73.)
[86] R., Chill, V., Keyantuo, and M., Warma, Generation of cosine families on Lp(0, 1) by elliptic operators with Robin boundary conditions, Functional Analysis and Evolution Equations. The Günter Lumer Volume, Birkhäuser, Basel, 2007, Amann, H Google Scholar. et al. (eds.), pp. 113–130. (Cited on page 386.)
[87] R., Chill and Y., Tomilov, Operators L1(R+) → X and the norm continuity problem for semigroups, J. Functional Analysis 256 (2009 Google Scholar), no. 2, 352–384. (Cited on page 253.)
[88] W., Chojnacki, On the equivalence of a theorem of Kisyński and the Hille–Yosida generation theorem, Proc. Amer. Math. Soc. 126 (1998 Google Scholar), no. 2, 491–497. (Cited on page 83.)
[89] W., Chojnacki, On cosine families close to scalar cosine families, Journal of the Australian Mathematical Society FirstView (2015 Google Scholar), 1–9. (Cited on page 43.)
[90] K., L. Chung, Markov Chains with Stationary Transition Probabilities, Springer, 1960 Google Scholar. (Cited on page 258.)
[91] K., L. Chung, On the exponential formulas of semigroup theory, Math. Scand. 10 (1962 Google Scholar), 153–162. (Cited on page 110.)
[92] G., M. Coclite, A., Favini, C. G., Gal, G. R., Goldstein, J. A., Goldstein, E., Obrecht, and S., Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, Advances in Nonlinear Analysis: Theory Methods and Applications, Math. Probl. Eng. Aerosp. Sci., vol. 3, Camb. Sci. Publ., Cambridge, 2009 Google Scholar, pp. 277–289. (Cited on page 18.)
[93] G. M., Coclite, A., Favini, G. R., Goldstein, J. A., Goldstein, and S., Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Studia Mathematica 77 (2008 Google Scholar), 101–108. (Cited on page 18.)
[94] G. M., Coclite, A., Favini, G. R., Goldstein, J. A., Goldstein, and S., Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Appl. Anal. 13 (2014 Google Scholar), no. 1, 419–433. (Cited on page 18.)
[95] E., Conway, D., Hoff, and J., Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978 Google Scholar), 1–16. (Cited on page 228.)
[96] R. H., Cox, Matrices all of whose powers lie close to the identity (Abstract), Amer. Math. Monthly 73 (1966 Google Scholar), 813. (Cited on page 44.)
[97] E., Crooks, B., Kaźmierczak, and T., Lipniacki, A spatially extended model of kinase-receptor interaction, SIAM J. Appl. Math. 73 (2013 Google Scholar), no. 1, 374–400. (Cited on page 241.)
[98] D. J., Daley and D., Vere-Jones, An Introduction to the Theory of Point Processes, Springer, 1998 Google Scholar. (Cited on page 271.)
[99] R., Dautray and J.-L., Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2, Springer-Verlag, Berlin, 1988 Google Scholar, Functional and variational methods, with the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cessenat, Jean Michel Combes, Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily, Translated from the French by Ian N. Sneddon. (Cited on page 32.)
[100] R., Dautray and J.-L., Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990 Google Scholar, Spectral theory and applications, with the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. (Cited on page 190.)
[101] R., Dautray and J.-L., Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5, Springer-Verlag, Berlin, 1992 Google Scholar, Evolution problems. I, with the collaboration of Michel Artola, Michel Cessenat, and Hélène Lanchon, Translated from the French by Alan Craig. (Cited on pages xi, 1, and 95.)
[102] E. B., Davies, A model for absorption or decay, Helv. Phys. Acta 48 (1975 Google Scholar), no. 3, 365–382. (Cited on page 365.)
[103] E. B., Davies, One-parameter Semigroups,Academic Press, London, 1980 Google Scholar. (Cited on page 1.)
[104] M. H. A., Davis, Lectures on Stochastic Control and Nonlinear Filtering, Springer, 1984 Google Scholar. (Cited on page 271.)
[105] M. H. A., Davis, Piece-wise deterministic Markov processes, J. Royal Statistical Soc., Ser. B. 46 (1984 Google Scholar), 353–388. (Cited on page 271.)
[106] M. H. A., Davis, Markov Processes and Optimization, Chapman and Hall, 1993 Google Scholar. (Cited on page 271.)
[107] L., Debnath and P., Mikusiński, Introduction to Hilbert Spaces with Applications, 3rd ed., Elsevier, Amsterdam, 2005 Google Scholar. (Cited on pages 8, 32, and 39.)
[108] A., Defant and K., Floret, Tensor Norms and Operator Ideals, North Holland, Amsterdam, 1993 Google Scholar. (Cited on pages 153, 318, 327, and 330.)
[109] R., deLaubenfels, Well-behaved derivations on C[0, 1], Pacific J. Math. 115 (1984 Google Scholar), no. 1, 73–80. (Cited on page 302.)
[110] R., deLaubenfels, Correction to: “Well-behaved derivations on C[0, 1]” [Pacific J. Math. 115 (1984), no. 1, 73-80], Pacific J. Math. 130 (1987 Google Scholar), no. 2, 395-396. (Cited on page 302.)
[111] R., deLaubenfels, Existence Families, Functional Calculi, and Evolution Equations, Lecture Notes in Mathematics, vol. 1570, Springer Verlag, Berlin, 1994 Google Scholar. (Cited on page 139.)
[112] N., Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall, Inc., Englewood Cliffs., 1974 Google Scholar. (Cited on page 203.)
[113] O., Diekmann, P.-E., Jabin, S., Mischler, and B., Perthame, The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol. 67 (2005 Google Scholar), no. 4, 257-271. (Cited on page xiii.)
[114] R. L., Dobrushin, An example of a countable homogeneous Markov process all states of which are instantaneous, Teor. Veroyatnost. i Primenen. 1 (1956 Google Scholar), 481∧85. (Cited on page 90.)
[115] J. L., Doob, Stochastic Processes, Wiley, 1953 Google Scholar. (Cited on page xi.)
[116] B., Dorroh, Contraction semigroups in a function space, Pacific J. Math. 19 (1966 Google Scholar), 35-38. (Cited on pages 299 and 300.)
[117] R. M., Dudley, Real Analysis and Probability, Cambridge University Press, Cambridge, 2003 Google Scholar, Second edition. (Cited on pages 215 and 263.)
[118] N., Dunford and J. T., Schwartz, Linear Operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988 Google Scholar, General theory, with the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley- Interscience Publication. (Cited on page 1.)
[119] R., Durret, Probability Models for DNA Sequence Evolution, Springer, New York, 2002 Google Scholar. (Cited on page 311.)
[120] R., Durrett and S., Kruglyak, A new stochastic model of microsatellite evolution, J. Appl. Prob. (1999 Google Scholar), no. 36, 621-631. (Cited on page 152.)
[121] E. B., Dynkin, Infinitesimal Operators of Markov random processes, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955 Google Scholar), 206-209. (Cited on page 20.)
[122] E. B., Dynkin, Markov Processes. Vols. I, II, Translated with the authorization and assistance of the author by J., Fabius, V., Greenberg, A., Maitra, G., Majone. Die Grundlehren der Mathematischen Wissenschaften, Bände 121, vol. 122, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965 Google Scholar. (Cited on pages 1 and 20.)
[123] E. B., Dynkin, Selected papers of E. B. Dynkin with Commentary, American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2000, Edited by A. A., Yushkevich, G. M., Seitz, and A. L., Onishchik Google Scholar. (Cited on page 20.)
[124] E. B., Dynkin and A.A., Yushkevich, Markov Processes. Theorems and Problems, Plenum Press, New York, 1969 Google Scholar. (Cited on pages 20, 22, and 183.)
[125] R. E., Edwards, Functional Analysis. Theory and Applications, Dover Publications, 1995 Google Scholar. (Cited on pages 114, 122, 211, and 225.)
[126] T., Eisner, Stability of Operators and Operator Semigroups, Birkhäuser, 2010 Google Scholar. (Cited on page 177.)
[127] E. Yu., Emel'yanov, Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Operator Theory: Advances and Applications, vol. 173, Birkhäuser Verlag, Basel, 2007 Google Scholar. (Cited on pages 1, 80, 154, and 179.)
[128] K.-J., Engel and R., Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000 Google Scholar. (Cited on pages xi, 1, 29, 87, 89, 98, 114, 123, 137, 159, 178, 179, 201, 250, 299, 300, 349, and 358.)
[129] K.-J., Engel and R., Nagel, A Short Course on Operator Semigroups, Springer, New York, 2006 Google Scholar. (Cited on pages 1, 29, 199, and 349.)
[130] R., Erban and S. J., Chapman, Reactive boundary conditions for stochastic Simulation of reaction-diffusion processes, Phys. Biol. (2007), no. 4 Google Scholar, 16-28. (Cited on page 66.)
[131] J., Esterle, Bounded cosine functions close to continuous scalar-bounded cosine functions, ArXiv e-prints (2015 Google Scholar), 1-11. (Cited on page 43.)
[132] S. N., Ethier and T. G., Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986 Google Scholar. (Cited on pages xi, 1, 15, 17,53,73,89, 112, 114, 133, 253, 255, 266, 301, and 331.)
[133] S. N., Evans and R. B., Sowers, Pinching and twisting Markov processes, Ann. Probat. 31 (2003), no. 1 Google Scholar, 486-527. (Cited on page xiii.)
[134] W. J., Ewens, Mathematical Population Genetics, Springer, New York, 2004 Google Scholar, Second edition. (Cited on pages 20, 96, 119, and 195.)
[135] H. O., Fattorini, Ordinary differential equations in linear topological Spaces. I,/. Differential Equations 5 (1969 Google Scholar), 72-105. (Cited on pages 390 and 402.)
[136] H. O., Fattorini, Ordinary differential equations in linear topological Spaces. II, /. Differential Equations 6 (1969 Google Scholar), 50-70. (Cited on page 402.)
[137] H. O., Fattorini, Singular perturbation and boundary layer for an abstract Cauchy problem, /. Math. Anal. Appl. 97 (1983), no. 2 Google Scholar, 529-571. (Cited on page 73.)
[138] H. O., Fattorini, On the Schrödinger singular perturbation problem, SIAMJ. Math. Anal. 16 (1985), no. 5 Google Scholar, 1000-1019. (Cited on page 73.)
[139] H. O., Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland, Amsterdam, 1985 Google Scholar. (Cited on pages 4, 70, 73, and 390.)
[140] H. O., Fattorini, The hyperbolic singular perturbation problem: an Operator theoretic approach, /. Differential Equations 70 (1987), no. 1 Google Scholar, 1-41. (Cited on page 73.)
[141] W., Feller, An Introduction to Probability Theory and Its Applications, vol. 1, Wiley, New York, 1950 Google Scholar, Third edition, 1970. (Cited on page 96.)
[142] W., Feller, Diffusion processes in genetics, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 Google Scholar (Berkeley and Los Angeles), University of California Press, 1951, pp. 227-246. (Cited on page 20.)
[143] W., Feller, Two singular diffusion problems, Ann. Math. 54 (1951 Google Scholar), 173-182. (Cited on page 195.)
[144] W., Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc. 11 (1952), no. 1 Google Scholar, 468-519. (Cited on pages 17 and 20.)
[145] W., Feller, The parabolic differential equations and the associated semigroups of transformations, Ann. Math. 55 (1952 Google Scholar), 468-519. (Cited on pages 20 and 359.)
[146] W., Feller, An Introduction to Probability Theory and Its Applications, vol. 2, Wiley, New York, 1966 Google Scholar, Second edition, 1971. (Cited on pages 166, 181, 183, 187, and 297.)
[147] W., Feller and H. P., McKean, Jr., A diffusion equivalent to a countable Markov chain, Proc. Nat. Acad. Sei. U.S.A. 42 (1956 Google Scholar), 351-354. (Cited on page 90.)
[148] E., Fieremans, D. S, Novikov, J. H., Jensen, and J. A., Helpern, Monte Carlo study of a two-compartment exchange model of diffusion, NMR in Biomedicine (2010), no. 23 Google Scholar, 711–724. (Cited on page 66.)
[149] W. H., Fleming and Q., Zhang, Risk-sensitive production planning of a stochastic manufacturing system, SIAM J. Control Optim. 36 (1998 Google Scholar), 1147–1170. (Cited on page 287.)
[150] D., Freedman, Markov Chains, Holden-Day, Inc., 1971 Google Scholar. (Cited on page 90.)
[151] M. I., Freidlin and A. D., Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Math. 21 (1993 Google Scholar), 2215–2245. (Cited on pages 327 and 361.)
[152] M. I., Freidlin and A. D., Wentzell, Diffusion processes on an open book and the averaging principle, Stochastic Processes and their Applications 113 (2004 Google Scholar), no. 1, 101–126. (Cited on page xiii.)
[153] M. I., Freidlin and A. D., Wentzell, Random Perturbations of Dynamical Systems, third ed., Grundlehren der MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer, Heidelberg, 2012 Google Scholar, Translated from the 1979 Russian original by Joseph Szücs. (Cited on pages 327 and 361.)
[154] Y., Fujita, A probabilistic approach to Volterra equations in Banach spaces, Diff. Int. Eqs. 5 (1992 Google Scholar), 769–776. (Cited on page 4.)
[155] F. R., Gantmacher, Applications of the Theory of Matrices, Interscience Publishers, Inc. New York, 1959 Google Scholar. (Cited on page 305.)
[156] J. H., Gillespie, The Causes of Molecular Evolution, Oxford University Press, New York, 1991 Google Scholar. (Cited on page 311.)
[157] C., Goffman and R. E., Zink, Concerning themeasurable boundaries of a real function, Fund. Math. 48 (1959/1960 Google Scholar), 105–111. (Cited on page 407.)
[158] G. R., Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations 11 (2006 Google Scholar), no. 4, 457–480. (Cited on page 20.)
[159] J. A., Goldstein, A Lie product formula for one parameter groups of isometries on Banach spaces, Math. Ann. 186 (1970 Google Scholar), 299–306. (Cited on page 104.)
[160] J. A., Goldstein, On the convergence and approximation of cosine functions, Aequationes Math. 11 (1974 Google Scholar), 201–205. (Cited on page 384.)
[161] J. A., Goldstein, Semigroup-theoretic proofs of the central limit theorem and other theorems of analysis, Semigroup Forum 12 (1976 Google Scholar), no. 3, 189–206. (Cited on page 110.)
[162] J. A., Goldstein, Cosine functions and the Feynman–Kac formula, Quart. J. Math. Oxford Ser. (2) 33 (1982 Google Scholar), no. 131, 303–307. (Cited on page 104.)
[163] J. A., Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985 Google Scholar. (Cited on pages xi, 1, 125, 127, 137, 337, 384, and 402.)
[164] A., Gomilko and Y., Tomilov, On convergence rates in approximation theory for operator semigroups, J. Functional Analysis 266 (2014 Google Scholar), no. 5, 3040–3082. (Cited on pages 44 and 110.)
[165] R. L., Graham, D. E., Knuth, and O., Patashnik, Concrete Mathematics, Addison- Wesley, 1994 Google Scholar, second edition. (Cited on pages 116 and 325.)
[166] A., Gregosiewicz, Asymptotic behaviour of diffusions on graphs, Probability in Action, Banek,, T., Kozlowski,, E., eds., Lublin University of Technology, 2014 Google Scholar, pp. 83–96. (Cited on page 208.)
[167] G., Greiner, Perturbing the boundary conditions of a generator, Houston J. Math. 13 (1987 Google Scholar), no. 2, 213–229. (Cited on pages 345 and 346.)
[168] R. J., Griego and R., Hersh, Random evolutions, Markov chains, and systems of partial differential equations, Proc. Nat. Acad. Sci. U.S.A. 62 (1969 Google Scholar), 305–308. (Cited on page 271.)
[169] R. J., Griego and R., Hersh, Theory of random evolutions with applications to partial differential equations, Trans. Amer. Math. Soc. 156 (1971 Google Scholar), 405–418. (Cited on page 271.)
[170] K., Gustafson, A note on left multiplication of semigroup generators, Pacific J. Math. 24 (1968 Google Scholar), 463–465. (Cited on page 299.)
[171] M., Hasegawa, A note on convergence of semigroups of operators, Proc. Japan Acad. 40 (1964 Google Scholar), 262–266. (Cited on page 85.)
[172] B., Hat, P., Paszek,M., Kimmel, K., Piechór, and T., Lipniacki, How the number of alleles influences gene expression, J. Statist. Phys. 128 (2007 Google Scholar), no. 1/2, 511– 533. (Cited on page 283.)
[173] A., Haurie, A two-timescale stochastic game framework for climate change policy assessment, Dynamic Games: Theory and Applications (ed. A., Haurie, G., Zaccour), Springer, 2005 Google Scholar. (Cited on page 289.)
[174] A., Haurie and F., Moresino, Singularly perturbed piecewise deterministic games, SIAM J. Control Optim. 47 (2008 Google Scholar), no. 1, 73–91. (Cited on pages 288 and 289.)
[175] J., Hein, M. H., Schierup, and C., Wiuf, Gene Genealogies, Variation, and Evolution, Oxford University Press, Oxford, 2006 Google Scholar. (Cited on page 311.)
[176] B., Hennig andF., Neubrander, On representations, inversions, and approximations of Laplace transform in Banach spaces, Appl. Anal. 49 (1993 Google Scholar), 151–170. (Cited on pages 397 and 398.)
[177] D., Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1981 Google Scholar. (Cited on page 210.)
[178] H., Heyer, Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin-New York, 1977 Google Scholar, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 94. (Cited on pages 95 and 297.)
[179] E., Hille, Une généralisation du problème de Cauchy, Ann. Inst. Fourier (Grenoble) 4 (1952 Google Scholar), 31–48. (Cited on page 402.)
[180] E., Hille and R. S., Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R. I., 1957 Google Scholar. (Cited on pages xi, 1, 75, 152, 157, 160, 297, 390, 392, 399, 412, and 413.)
[181] R. A., Hirschfeld, On semigroups in Banach algebras close to the identity, Proc. Japan Acad. 44 (1968 Google Scholar), 755. (Cited on page 44.)
[182] F., Hoppensteadt, Stability in systems with parameter, J. Math. Anal. Appl. 18 (1967 Google Scholar), 129–134. (Cited on page 268.)
[183] G. A., Hunt, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956 Google Scholar), 264–293. (Cited on pages 95 and 297.)
[184] M., Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematical Monographs 7, Giardini Editori E Stampatori, Pisa, 1995 Google Scholar. (Cited on pages 304, 308, 349, and 358.)
[185] A. M., Il'in, R. Z., Khasminskii, and G., Yin, Asymptotic expansions of solutions of integro-differential equations for transition densities of singularly perturbed switching diffusions: rapid switchings, J. Math. Anal. Appl. 238 (1999 Google Scholar), 516–539. (Cited on page 298.)
[186] M., Iosifescu, Finite Markov Processes and Their Applications,Wiley, New York, 1980 Google Scholar. (Cited on page 323.)
[187] A., Irle and J., Kauschke, Diffusion approximation of birth and death process with applications in financial market herding models, working paper, August 2008 Google Scholar, pp. 1–13. (Cited on pages 133 and 135.)
[188] K., Itô and McKean, Jr. H. P., Diffusion Processes and Their Sample Paths, Springer,Berlin, 1996 Google Scholar, Repr. of the 1974 ed. (Cited on pages 20 and 333.)
[189] J., Janas, An extension of Berezin's approximation method, J. Oper. Th. 29 (1993 Google Scholar), no. 1, 43–56. (Cited on page xiii.)
[190] N. L., Johnson,A. W., Kemp, and S., Kotz, Univariate Discrete Distributions, Wiley, 1992 Google Scholar. (Cited on page 114.)
[191] P. E. T., Jørgensen, Monotone convergence of operator semigroups and the dynamics of infinite particle systems, J. Approx. Theor. 43 (1985 Google Scholar), 205–230. (Cited on page 15.)
[192] M., Kac, Some Stochastic Problems in Physics and Mechanics, Colloq. Lect. 2, Magnolia Petrolum Co., 1956 Google Scholar. (Cited on pages 71 and 73.)
[193] O., Kallenberg, Foundations of Modern Probability, Springer, 1997 Google Scholar. (Cited on pages 1, 20, 112, 297, 301, and 331.)
[194] N., Kalton, S., Montgomery-Smith, K., Oleszkiewicz, and Y., Tomilov, Powerbounded operators and related norm estimates, J. London Math. Sci. (2) (2004 Google Scholar), no. 70, 463–478. (Cited on page 44.)
[195] I., Karatzas and S. E., Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991 Google Scholar. (Cited on page 20.)
[196] S., Karlin and H. M., Taylor, A Second Course in Stochastic Processes, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981 Google Scholar. (Cited on pages 20, 114, and 266.)
[197] T., Kato, On the semigroups generated by Kolmogoroff's differential equations, J. Math. Soc. Japan 6 (1954 Google Scholar), 1–15. (Cited on page 75.)
[198] T., Kato, On the Trotter–Lie product formula, Proc. Japan Acad. 50 (1974 Google Scholar), 694–698. (Cited on page 149.)
[199] T., Kato, Singular perturbation and semigroup theory, Turbulence and Navier– Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975), Springer, Berlin, 1976, pp. 104–112. Lecture Notes in Math., Vol. 565 Google Scholar. (Cited on pages xii and 15.)
[200] T., Kato, Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups, Topics in Functional Analysis, Adv.Math. Suppl. Stud., vol. 3, Academic Press, New York, 1978 Google Scholar, Essays dedicated to M. G. Krein on the occasion of his 70th birthday, pp. 185–195. (Cited on page 149.)
[201] T., Kato, Perturbation Theory for Linear Operators, Classics in Mathematics Series, Springer, 1995 Google Scholar, reprint of the 1980 edition. (Cited on pages 1, 32, 34, 36, 37, 38, 39, 62, 87, 159, 250, and 365.)
[202] B., Kaźmierczak and T., Lipniacki, Regulation of kinase activity by diffusion and feedback, J. Theor. Biol. 259 (2009 Google Scholar), 291–296. (Cited on pages 241, 242, 243, and 248.)
[203] J. P., Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math. 59 (1978 Google Scholar), no. 1, 1–23. (Cited on page 236.)
[204] T. B., Kepler and T. C., Elston, Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations, Biophysical J. 81 (2001 Google Scholar), 3116–3136. (Cited on pages 281, 282, and 296.)
[205] J., Kevorkian and J. D., Cole, Multiple Scale and Singular Perturbation Methods, Applied Mathematical Sciences, vol. 114, Springer-Verlag, New York, 1996 Google Scholar. (Cited on page xiii.)
[206] R. Z., Khasminskii, Principle of averaging for parabolic and elliptic equations for Markov processes with small parameter, Teor. Veroyatnost. i Primenen. 8 (1963 Google Scholar), 1–21. (Cited on page 327.)
[207] J. F. C., Kingman, The coalescent, Stoch. Proc. Appl. 13 (1982 Google Scholar), 235–248. (Cited on page 118.)
[208] J. F. C., Kingman, Exchangeability and the evolution of large populations, Exchangeability in Probability and Statistics, Koch, G., Spizzichino, F., eds., North-Holland, 1982 Google Scholar, pp. 97–112. (Cited on page 119.)
[209] J. F. C., Kingman, On the genealogy of large populations, J. Appl. Prob. 19A (1982 Google Scholar), 27–43. (Cited on page 118.)
[210] J., Kisyński, Sur les équations hyperboliques avec petit paramètre, Colloq. Math. 10 (1963 Google Scholar), no. 2, 331–343. (Cited on page 73.)
[211] J., Kisyński, A proof of the Trotter–Kato theorem on approximation of semigroups, Colloq. Math. 18 (1967 Google Scholar), 181–184. (Cited on pages xi and 82.)
[212] J., Kisyński, On second order Cauchy's problem in a Banach space, Bull. Acad. Polon. Sci. Ser. des. Sci. Math. Astr. et Phys. 18 (1970 Google Scholar), no. 7, 371–374. (Cited on pages 71 and 73.)
[213] J., Kisyński, On cosine operator functions and one-parameter groups of operators, Studia Mathematica 44 (1972 Google Scholar), 93–105. (Cited on page 4.)
[214] J., Kisyński, On M. Kac's probabilistic formula for the solutions of the telegraphist's equation, Ann. Polon. Math. 29 (1974 Google Scholar), 259–272. (Cited on page 71.)
[215] J., Kisyński, Semigroups of Operators and Some of Their Applications to Partial Differential Equations, Control Theory and Topics in Functional Analysis (Internat. Sem., Internat. Centre Theoret. Phys., Trieste, 1974), vol. III Google Scholar, International Atomic Energy Agency, Vienna, 1976, pp. 305–405. (Cited on pages 1, 32, 35, and 102.)
[216] J., Kisyński, Around Widder's characterization of the Laplace transform of an element of L∞(ℝ+), Ann. Polon. Math. 74 (2000 Google Scholar), 161–200, Dedicated to the memory of Bogdan Ziemian. (Cited on page 83.)
[217] J., Kisyński, On Fourier transforms of distribution semigroups, J. Functional Analysis 242 (2007 Google Scholar), 400–441. (Cited on page 50.)
[218] Y., Konishi, Cosine functions of operators in locally convex spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971/1972 Google Scholar), 443–463. (Cited on page 384.)
[219] V. S., Korolyuk and Turbin, A. F., Mathematical Foundations of the State Space Lumping of Large Systems, Kluwer Academic, 1993 Google Scholar. (Cited on page 298.)
[220] V. S., Korolyuk and Limnios, N., Stochastic Systems in Merging Phase Space, World Scientific, 2005 Google Scholar. (Cited on page 298.)
[221] V. S., Korolyuk and Korolyuk, V. V., Stochastic Models of Systems, Kluwer Academic, 1999 Google Scholar. (Cited on page 298.)
[222] M., Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Rec. Math. [Mat. Sbornik] N.S. 20(62) (1947 Google Scholar), 431–495. (Cited on page 36.)
[223] S. G., Krein, Linear Differential Equations in Banach Space, Transl. of Math. Monographs, vol 29, Amer. Math. Soc., Providence, 1971 Google Scholar. (Cited on page 122.)
[224] C. S., Kubrusly, The Elements of Operator Theory, second ed., Birkhäuser/ Springer, New York, 2011 Google Scholar. (Cited on page 366.)
[225] M., Kuczma, An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality, Birkhäuser, Basel, 2009, Edited by A., Gilányi Google Scholar. (Cited on page 405.)
[226] F., Kühnemund and M., Wacker, The Lie–Trotter product formula does not hold for arbitrary sums of generators, Semigroup Forum 60 (1999 Google Scholar), no. 3, 478–485. (Cited on page 103.)
[227] S., Kurepa, A cosine functional equation in Hilbert space, Canad. J. Math. 12 (1960 Google Scholar), 45–50. (Cited on pages 405 and 408.)
[228] S., Kurepa, Semigroups and cosine functions, Functional Analysis (Dubrovnik, 1981), Lecture Notes in Math., vol. 948, Springer, Berlin, 1982 Google Scholar, pp. 47–72. (Cited on page 390.)
[229] T. G., Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Functional Analysis 3 (1969 Google Scholar), 354–375. (Cited on pages xi, 15, 45, and 137.)
[230] T. G., Kurtz,Ageneral theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970 Google Scholar), 23–32. (Cited on pages 82 and 86.)
[231] T. G., Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Prob. 8 (1971 Google Scholar), no. 2, 344–356. (Cited on page 338.)
[232] T. G., Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Functional Analysis 12 (1973 Google Scholar), 55–67. (Cited on pages 54 and 253.)
[233] T. G., Kurtz, Applications of an abstract perturbation theorem to ordinary differential equations, Houston J. Math. 3 (1977 Google Scholar), no. 1, 67–82. (Cited on pages 253 and 263.)
[234] A., Lasota and M. C., Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Springer, 1994 Google Scholar. (Cited on pages 24 and 80.)
[235] P. D., Lax, Functional Analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002 Google Scholar. (Cited on page 366.)
[236] P. D., Lax, Linear Algebra and Its Applications, Wiley, 2007 Google Scholar. (Cited on pages 150, 277, 279, and 280.)
[237] P. D., Lax and Phillips, R.S., Scattering Theory, Academic Press, 1967 Google Scholar. (Cited on page 5.)
[238] J. P., Lehoczky, Real-time queueing theory, Proceedings of the IEEE Real- Time Systems Symposium, IEEE, New York, 1996 Google Scholar, pp. 186–195. (Cited on page 57.)
[239] A., Lejay, The snapping out Brownian motion, hal–00781447, December 2013 Google Scholar. (Cited on page 66.)
[240] T. M., Liggett, Continuous Time Markov Processes. An Introduction, Amer. Math. Soc., 2010 Google Scholar. (Cited on pages 90, 98, and 121.)
[241] T., Lipniacki, P., Paszek, A. R., Brasier, B., Luxon, and M., Kimmel, Stochastic regulation in early immune response, Biophys. J. 90 (2006 Google Scholar), 725–742. (Cited on page 283.)
[242] T., Lipniacki, P., Paszek, A., Marciniak-Czochra, A. R., Brasier, and M., Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006 Google Scholar), 348– 367. (Cited on pages 283 and 284.)
[243] J. H., Liu, Singular perturbations of integro-differential equations in Banach space, Proc. Amer. Math. Soc. 122 (1994 Google Scholar), no. 3, pp. 791–799. (Cited on page 73.)
[244] C., Lizama and H., Prado, Singular perturbations of integro-differential equations, Applied Mathematics and Computation 175 (2006 Google Scholar), no. 2, 1582–1595. (Cited on page 73.)
[245] G. G., Lorentz, Bernstein Polynomials, University of Toronto Press, 1953, Second edition, New York 1986 Google Scholar. (Cited on page 264.)
[246] A., Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995 Google Scholar. (Cited on page 159.)
[247] P., Mandl, Analytical Treatment ofOne-Dimensional Markov Processes, Springer, 1968 Google Scholar. (Cited on pages 20, 21, 106, 297, and 301.)
[248] A., Marciniak-Czochra, S., Harting, G., Karch, and K., Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation, arXiv:1307.6236 (2013 Google Scholar). (Cited on page 240.)
[249] A., Marciniak-Czochra and M., Kimmel, Modeling of early lung cancer progression: influence of growth factor production and cooperation between partially transformed cells, Math. Mod. Meth. Appl. Sci. 17 (2007 Google Scholar), 1693–1719. (Cited on page 216.)
[250] A., Marciniak-Czochra and M., Kimmel, Reaction-diffusion model of early carcinogenesis: the effects of influx of mutated cells, Math. Model. Nat. Phenom. 3 (2008 Google Scholar), no. 7, 90–114. (Cited on page 216.)
[251] A., Marciniak-Czochra and M., Ptashnyk, Derivation of a macroscopic receptorbased model using homogenization techniques, SIAM J. Math. Anal. 40 (2008 Google Scholar), 215–237. (Cited on page 55.)
[252] J. L., Massera, On Liapounoff's conditions of stability, Ann. Math. 50 (1949 Google Scholar), 705–721. (Cited on page 269.)
[253] T., Mátrai, Resolvent norm decay does not characterize norm continuity, Israel J. Math. 168 (2008 Google Scholar), 1–28. (Cited on page 253.)
[254] K., Maurin, Methods of Hilbert Spaces, Translated from the Polish by Andrzej Alexiewicz and Waclaw Zawadowski. Monografie Matematyczne, Tom 45, Pa´nstwowe Wydawnictwo Naukowe, Warsaw, 1967 Google Scholar. (Cited on page 366.)
[255] S., McAllister, F., Neubrander, A., Reiser, and Y., Zhuang, Stabilizations of the Trotter–Kato theorem and the Chernoff product formula, Semigroup Forum 86 (2013 Google Scholar), 511–524. (Cited on pages 139 and 140.)
[256] A. C., McBride, Semigroups of Linear operators: An Introduction, Pitman Research Notes in Mathematics Series, vol. 156, Longman Scientific & Technical, Harlow; JohnWiley & Sons, Inc., New York, 1987 Google Scholar. (Cited on pages 1 and 95.)
[257] A. C., McBride, A. L., Smith, and W., Lamb, Strongly differentiable solutions of the discrete coagulation fragmentation equation, Physica D: Nonlinear Phenomena 239 (2010 Google Scholar), no. 15, 1436–1445, Evolution Equations in Pure and Applied Sciences. (Cited on pages 219, 225, and 227.)
[258] H. P., McKean, Jr., Chapman–Enskog–Hilbert expansion for a class of solutions of the telegraph equation, J. Mathematical Phys. 8 (1967 Google Scholar), 547–552. (Cited on page 73.)
[259] M. A., McKibben, Discovering Evolution Equations with Applications. Volume 1: Deterministic Equations, CRC Press, 2011 Google Scholar. (Cited on page 1.)
[260] R., McVinish and P. K., Pollett, The deterministic limit of a stochastic logistic model with individual variation, Math. Biosci. 241 (2013 Google Scholar), 109–114. (Cited on page 338.)
[261] R. E., Megginson, An Introduction to Banach Space Theory, Springer, 1998 Google Scholar. (Cited on page 279.)
[262] C., Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000 Google Scholar. (Cited on page 274.)
[263] J. R., Mika and J., Banasiak, Singularly Perturbed Equations with Applications to Kinetic Theory, Series on Advances in Mathematics for Applied Sciences, vol. 34, World Scientific, Singapore, 1995 Google Scholar. (Cited on pages xiii, 341, 342, and 344.)
[264] W., Mlak, Hilbert Spaces and Operator Theory,Mathematics and Its Applications (East European Series), vol. 51, Kluwer Academic Publishers Group, Dordrecht; PWN—Polish Scientific Publishers, Warsaw, 1991, Translated from the fourth Polish edition by Marcin E., Kuczma Google Scholar. (Cited on pages 38 and 365.)
[265] D., Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014 Google Scholar. (Cited on page 203.)
[266] D., Mugnolo, Some remarks on the Krein–von Neumann extension of different Laplacians, Semigroups of Operators – Theory and Applications (J., Banasiak, A., Bobrowski, and M., Lachowicz, eds.), Springer Proceedings in Mathematics & Statistics, vol. 113, Springer International Publishing, 2015 Google Scholar, pp. 69–87 (English). (Cited on page 36.)
[267] D., Mugnolo and R., Nittka, Convergence of operator semigroups associated with generalized elliptic forms, J. Evol. Equ. 12 (2012 Google Scholar), 593–619. (Cited on pages 18 and 39.)
[268] J. D., Murray, Mathematical Biology, Springer, 1993 Google Scholar, Second, corrected edition. (Cited on page 304.)
[269] R., Nagel (ed.), One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, vol. 1184, Springer, 1986 Google Scholar. (Cited on pages 42, 80, 87, 146, 154, 179, and 312.)
[270] M., Nagisa and S., Wada, Averages of operators and their positivity, Proc. Amer. Math. Soc. 126 (1998 Google Scholar), no. 2, 499–506. (Cited on page 44.)
[271] M., Nakamura and M., Yoshida, On a generalization of a theorem of Cox, Proc. Japan Acad. 43 (1967 Google Scholar), 108–110. (Cited on page 44.)
[272] J., Nedoma, Cauchy problem for the hyperbolic equation with the small parameter, Časopis pro pěstování matematiky 092 (1967 Google Scholar), no. 4, 392–417 (In Czech). (Cited on page 73.)
[273] E., Neher and R. S., Zucker, Multiple calcium-dependent process related to secretion in bovine chromaffin cells, Neuron 10 (1993 Google Scholar), 2–30. (Cited on page 189.)
[274] E., Nelson, Topics in Dynamics. I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969 Google Scholar. (Cited on page 104.)
[275] G., Nickel, Evolution semigroups and product formulas for nonautonomous Cauchy problems, Math. Nachr. 212 (2000 Google Scholar), 101–116. (Cited on page 123.)
[276] G., Nickel, A semigroup approach to dynamic boundary value problems, Semigroup Forum 69 (2004 Google Scholar), no. 2, 159–183. (Cited on page 249.)
[277] R., Nittka, Approximation of the semigroup generated by the Robin Laplacian in terms of the Gaussian semigroup, J. Functional Analysis 257 (2009 Google Scholar), no. 5, 1429–1444. (Cited on pages 108, 149, and 150.)
[278] J. R., Norris, Markov Chains, Cambridge University Press, Cambridge, 1997 Google Scholar. (Cited on pages 152 and 258.)
[279] A., Ochab-Marcinek and M., Tabaka, Bimodal gene expression in noncooperative regulatory systems, Proc. Nat. Acad. Sci. U.S.A. 107 (2010 Google Scholar), no. 51, 22096– 22101. (Cited on page 28.)
[280] R. E., O'Malley, Historical Developments in Singular Perturbations, Springer, Cham, 2014 Google Scholar. (Cited on page xiii.)
[281] H. G., Othmer and T., Hillen, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math. 61 (2000 Google Scholar), no. 3, 751–775. (Cited on page 73.)
[282] E. M., Ouhabaz, Analysis of Heat Equations on Domains, Lond. Math. Soc. Monograph Series, vol. 30, Princeton Univ. Press, Princeton, 2005 Google Scholar. (Cited on pages 32 and 35.)
[283] E., Pardoux and Yu., Veretennikov, Averaging of backward stochastic differential equations with applications to semi-linear PDEs, Stochastics and Stochastics Reports 60 (1997 Google Scholar), 255–270. (Cited on page 235.)
[284] A., Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983 Google Scholar. (Cited on pages xi, 1, 137, 159, 210, 211, 250, and 301.)
[285] B., Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007 Google Scholar. (Cited on page xiii.)
[286] R. S., Phillips, An inversion formula for the Laplace transform and semigroups of linear operators, Ann. Math. 59 (1954 Google Scholar), 325–356. (Cited on page 399.)
[287] V. Q., Phóng, Stability of semigroups commuting with a compact operator, Proc. Amer. Math. Soc. 124 (1996 Google Scholar), no. 10, 3207–3209. (Cited on page 154.)
[288] M. A., Pinsky, Lectures on Random Evolutions,World Scientific, Singapore, 1991 Google Scholar. (Cited on page 73.)
[289] S., Piskarev and S.-Y., Shaw, On certain operator families related to cosine operator functions, Taiwanese J. Math. 1 (1997 Google Scholar), no. 4, 527–546. (Cited on page 390.)
[290] G., Da Prato and F., Giusti, Una carracterizzazione dei generatori di funzioni coseno astratte, Bull. Un. Mat. Ital. 22 (1967 Google Scholar), 357–362. (Cited on page 4.)
[291] G., Da Prato and E., Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987 Google Scholar), no. 4, 285–344. (Cited on pages 52 and 159.)
[292] J., Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, 1993 Google Scholar. (Cited on page 4.)
[293] M., Rausand and A., Høyland, System Reliability Theory: Models and Statistical Methods, Wiley, 2004 Google Scholar. (Cited on page 287.)
[294] M., Reed and B., Simon, Methods of Modern Mathematical Physics. I, second ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980 Google Scholar, Functional analysis. (Cited on pages 15, 38, and 39.)
[295] M. I., Reiman, Some diffusion approximations with state-space collapse, Proceedings of International Seminar on Modeling and Performance Evaluation Methodology, Lecture Notes in Control and Inform. Sci. 60, Springer, Berlin, 1983 Google Scholar, pp. 209–240. (Cited on pages xiii and 57.)
[296] D., Revuz and M., Yor, Continuous Martingales and Brownian Motion, Springer, 1999 Google Scholar, Third edition. (Cited on pages 17, 20, 195, 242, 299, 300, and 333.)
[297] D. W., Robinson, The Thermodynamic Pressure in Quantum Statistical Mechanics, Springer-Verlag, Berlin-New York, 1971, Lecture Notes in Physics, Vol. 9 Google Scholar. (Cited on page 365.)
[298] L. C. G., Rogers andD., Williams, Diffusions,Markov Processes, and Martingales, Vol. 1, Foundations, Cambridge University Press, Cambridge, 2000 Google Scholar. (Cited on pages 121 and 299.)
[299] M., Rotenberg, Transport theory for growing cell populations, J. Theor. Biol. 103 (1983 Google Scholar), no. 2, 181–199. (Cited on page 30.)
[300] F., Rothe, Global Solutions of Reaction-Diffusion Systems, LectureNotes in Mathematics, vol. 1072, Springer-Verlag, Berlin, 1984 Google Scholar. (Cited on page 240.)
[301] R., Rudnicki, Models of Population Dynamics and Their Applications in Genetics, From Genetics to Mathematics. M., Lachowicz and J., Miekisz (eds.), Ser. Adv. Math. Appl. Sci., vol. 79,World Sci. Publ., Hackensack, NJ, 2009 Google Scholar, pp. 103–147. (Cited on page 308.)
[302] R., Rudnicki, Models and Methods of Mathematical Biology, Institute of Mathematics of the Polish Academy of Sciences, 2014 Google Scholar, (in Polish). (Cited on pages 304 and 308.)
[303] R., Rudnicki and M., Tyran-Kamińska, Piecewise deterministic Markov processes in biological models, Semigroups of Operators – Theory and Applications (J., Banasiak, A., Bobrowski, andM., Lachowicz, eds.), Springer Proceedings in Mathematics & Statistics, vol. 113, Springer International Publishing, 2015 Google Scholar, pp. 235–255 (English). (Cited on page 166.)
[304] R. A., Ryan, Introduction to Tensor Products of Banach Spaces, Springer, 2002 Google Scholar. (Cited on pages 153, 318, 327, 330, and 331.)
[305] L., Saloff-Coste, Lectures on Finite Markov Chains, Lectures on Probability Theory and Statistics, Lecture Notes in Mathematics 1665, Springer, Berlin, 1997 Google Scholar. (Cited on pages 278 and 280.)
[306] E., Sanchez, R., Bravo de la Parra, P., Auger, and P., Gomez-Mourelo, Time scales in linear delayed differential equations, J. Math. Anal. Appl. 323 (2006 Google Scholar), 680–699. (Cited on page 304.)
[307] V. V., Sarafyan and A. V., Skorohod, On fast switching dynamical systems, Theory Probab. Appl. 32 (1987 Google Scholar), 595–607. (Cited on page 298.)
[308] F., Schwenninger and H., Zwart, Less than one, implies zero, arXiv:1310.6202 (2013 Google Scholar), 1–12. (Cited on pages 43 and 44.)
[309] F., Schwenninger and H., Zwart, Zero-two law for cosine families, J. Evol. Equ. 15 (2015 Google Scholar), no. 3, 559–569. (Cited on page 43.)
[310] S., Sethi, H., Zhang, and Q., Zhang, Average-Cost Control of Stochastic Manufacturing Systems, Springer, 2005 Google Scholar. (Cited on page 287.)
[311] E., Shchepakina, V., Sobolev, and M. P., Mortell, Singular Perturbations, Lecture Notes in Mathematics, vol. 2114, Springer, Cham, 2014 Google Scholar, Introduction to system order reduction methods with applications, with a foreword by Robert O'Malley. (Cited on page xiii.)
[312] W., Sierpiński, Infinite Operations, Mathematical Monographs, Czytelnik, 1948 Google Scholar. (In Polish.) (Cited on page 92.)
[313] B., Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Functional Analysis 28 (1978 Google Scholar), no. 3, 377–385. (Cited on page 365.)
[314] E., Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985 Google Scholar), 16–66. (Cited on page 159.)
[315] P. F., Slade, Simulation of ‘hitch-hiking’ genealogies, J. Math. Biol. 42 (2001 Google Scholar), 41–70. (Cited on page 313.)
[316] D. R., Smith, Singular-Perturbation Theory, Cambridge University Press, Cambridge, 1985 Google Scholar, An introduction with applications. (Cited on page xiii.)
[317] J. A., Smoller, Singular perturbations of Cauchy's problem, Comm. Pure Appl. Math. 18 (1965 Google Scholar), 665–677. (Cited on page 73.)
[318] J. A., Smoller, Shock-Waves and Reaction-Diffusion Equations, Springer, 1994 Google Scholar. (Cited on pages 210, 215, and 228.)
[319] M., Sova, Cosine operator functions, Rozprawy Mat. 49 (1966 Google Scholar), 47. (Cited on page 4.)
[320] M., Sova, Convergence d'opérations linéaires non bornées, Rev. Roumaine Math. Pures Appl. 12 (1967 Google Scholar), 373–389. (Cited on pages 15 and 45.)
[321] M., Sova, Équations hyperboliques avec petit paramètre dans les éspaces de Banach généraux, Colloq. Math. 21 (1970 Google Scholar), no. 2, 303–320. (Cited on page 73.)
[322] R. B., Stein, A theoretical analysis of neuronal variability, Biophys. J. 5 (1965 Google Scholar), 173–194. (Cited on page 166.)
[323] R. B., Stein, Some models of neuronal variability, Biophys. J. 7(1) (1967 Google Scholar), 37–68. (Cited on page 166.)
[324] K., Taira, Semigroups, Boundary Value Problems, and Markov Processes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004 Google Scholar. (Cited on pages 1 and 21.)
[325] F., Tajima, Evolutionary relationship of DNA sequences in finite populations, Genetics 105 (1983 Google Scholar), 437–460. (Cited on page 118.)
[326] H., Tanabe, Equations of Evolution, Pitman, 1979 Google Scholar. (Cited on page 122.)
[327] M. E., Taylor, Partial Differential Equations I. Basic Theory, second ed., Applied Mathematical Sciences, vol. 115, Springer, New York, 2011 Google Scholar. (Cited on page 338.)
[328] A. N., Tikhonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sb. 31 (1952 Google Scholar), 575–586. (Cited on pages 267 and 268.)
[329] E. C., Titchmarsh, The Theory of Functions, Oxford Scientific Publications, 1939 Google Scholar. (Cited on page 175.)
[330] J., van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Operator Theory: Advances and Applications, vol. 88, Birkhäuser Verlag, Basel, 1996 Google Scholar. (Cited on page 179.)
[331] V. V., Vasilev and S. I., Piskarev, Differential equations in Banach spaces. II. Theory of cosine operator functions, J. Math. Sci. (N. Y.) 122 (2004 Google Scholar), no. 2, 3055– 3174. (Cited on page 390.)
[332] A. B., Vasileva and B. F., Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka,Moscow, 1973 Google Scholar. (Cited on pages 267 and 268.)
[333] F., Verhulst, Methods and Applications of Singular Perturbations, Texts in Applied Mathematics, vol. 50, Springer, New York, 2005 Google Scholar, Boundary layers and multiple timescale dynamics. (Cited on page xiii.)
[334] I. I., Vrabie, C0-semigroups and Applications, North-Holland Mathematics Studies, vol. 191, North-Holland Publishing Co., Amsterdam, 2003 Google Scholar. (Cited on pages xi and 1.)
[335] J., Wakeley, Coalescent Theory, Ben Roberts Publishing, 2008 Google Scholar. (Cited on page 311.)
[336] L. J., Wallen, On the magnitude of xn − 1 in a normed algebra, Proc. Amer. Math. Soc. 18 (1967 Google Scholar), no. 5, 956. (Cited on pages 44 and 84.)
[337] W., Walter, Differential and Integral Inequalities, Ergebnise d. Mathematik u. ihrer Granzgebiete, vol. 55, Springer, New York, 1970 Google Scholar. (Cited on pages 214 and 263.)
[338] W., Walter, Differential inequalities and maximum principles: theory, new methods, and applications, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), vol. 30, 1997 Google Scholar, pp. 4695–4711. (Cited on pages 214 and 263.)
[339] W., Walter, Ordinary Differential Equations, Springer, 1998 Google Scholar. (Cited on pages 263 and 277.)
[340] G. F., Webb, A representation formula for strongly continuous cosine families, Aequationes Math. 21 (1980 Google Scholar), no. 1, 251–256. (Cited on page 103.)
[341] G. F., Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 89, Marcel Dekker Inc., New York, 1985 Google Scholar. (Cited on page 304.)
[342] G. F., Webb, Structured population dynamics, Mathematical Modeling of Population Dynamics, R. Rudnicki ed., Banach Center Publ., vol. 63, Polish Acad. Sci., Warsaw, 2004 Google Scholar, pp. 123–163. (Cited on page 304.)
[343] A. D., Wentzell, A Course in the Theory of Stochastic Processes, McGraw-Hill International Book Co., New York, 1981 Google Scholar, Translated from the Russian by S. Chomet, with a foreword by K. L. Chung. (Cited on pages 1 and 95.)
[344] W., Wharton, Birdy, Knopf, 1978 Google Scholar. (Cited on page 262.)
[345] D. V., Widder, The Laplace Transform Google Scholar, Princeton Univ. Press, 1946. (Cited on page 397.)
[346] W. J., Wilbur and J., Rinzel, An analysis of Stein's model for stochastic neuronal excitation, Biol. Cybern. 45 (1982 Google Scholar), no. 2, 107–114. (Cited on pages 166 and 167.)
[347] D., Williams, Probability with Martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991 Google Scholar. (Cited on page 93.)
[348] W., Wils, On semigroups near the identity, Proc. Amer. Math. Soc. 21 (1969 Google Scholar), 762–763. (Cited on page 44.)
[349] M., Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations 248 (2010 Google Scholar), no. 12, 2889–2905. (Cited on page 240.)
[350] G., Yin, On limit results for a class of singularly perturbed switching diffusions, J. Theor. Probab. 14 (2001 Google Scholar), 673–697. (Cited on page 298.)
[351] G., Yin and M., Kniazeva, Singularly perturbed multidimensional switching diffusions with fast and slow switchings, J. Math. Anal. Appl. 229 (1999 Google Scholar), 605–630. (Cited on page 298.)
[352] G. G., Yin and Q., Zhang, Continuous-Time Markov Chains and Applications. A Singular Perturbation Approach, Springer, NewYork, 1998 Google Scholar. (Cited on pages 258, 262, and 287.)
[353] K., Yosida, Functional Analysis, Springer, 1965 Google Scholar. (Cited on pages xi, 1, 87, and 301.)
[354] T., Zastawniak, Path integrals for the telegraphers and Dirac equations: the analytic family of measures and the underlying Poisson process, Bull. Polish Acad. Sci. Math. 36 (1988 Google Scholar), 341–356. (Cited on page 130.)
[355] M., Zlámal, Sur ľéquation des télégraphistes avec un petit paramètre, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 27 (1959 Google Scholar), no. 8, 324–332. (Cited on page 73.)
[356] P.J., Zuk, M., Kochańczyk, J., Jaruszewicz,W., Bednorz, and T., Lipniacki, Dynamics of a stochastic spatially extended system predicted by comparing deterministic and stochastic attractors of the corresponding birth-death process, Phys. Biol. 9 (2012 Google Scholar), no. 5, 055002 (12pp). (Cited on page 233.)
[357] H., Zwart, Three line proof: less than one law, Ulmer Seminar (2014 Google Scholar), p. 341. (Cited on page 42.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8000 *
Loading metrics...

Book summary page views

Total views: 8102 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.