References[1] R. F., Dashen, B., Hasslacher, and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons”, Phys. Rev.D 10, 4130 (1974).
[2] A. M., Polyakov, “Particle spectrum in the quantum field theory”, JETP Lett. 20, 194 (1974).
[3] T. H. R., Skyrme, “A nonlinear theory of strong interactions”, Proc. Roy. Soc. Lond.A 247, 260 (1958).
[4] T. H. R., Skyrme, “Particle states of a quantized meson field”, Proc. Roy. Soc. Lond.A 262, 237 (1961).
[5] P. M., Morse and H., Feshbach, Methods of Theoretical Physics (New York: McGraw-Hill, 1953), p. 734.
[6] J., Goldstone and R., Jackiw, “Quantization of nonlinear waves”, Phys. Rev.D 11, 1486 (1975).
[7] J.-L., Gervais and B., Sakita, “Extended particles in quantum field theories”, Phys. Rev.D 11, 2943 (1975).
[8] J.-L., Gervais, A., Jevicki, and B., Sakita, “Perturbation expansion around extended particle states in quantum field theory”, Phys. Rev.D 12, 1038 (1975).
[9] C. G., Callan Jr., and D. J., Gross, “Quantum perturbation theory of solitons”, Nucl. Phys.B 93, 29 (1975).
[10] N. H., Christ and T. D., Lee, “Quantum expansion of soliton solutions”, Phys. Rev.D 12, 1606 (1975).
[11] E., Tomboulis, “Canonical quantization of nonlinear waves”, Phys. Rev.D 12, 1678 (1975).
[12] M., Creutz, “Quantum mechanics of extended objects in relativistic field theory”, Phys. Rev.D 12, 3126 (1975).
[13] R., Rajaraman and E. J., Weinberg, “Internal symmetry and the semiclassical method in quantum field theory”, Phys. Rev.D 11, 2950 (1975).
[14] R., Jackiw and C., Rebbi, “Solitons with fermion number 1/2”, Phys. Rev.D 13, 3398 (1976).
[15] R., Jackiw and J. R., Schrieffer, “Solitons with fermion number 1/2 in condensed matter and relativistic field theories”, Nucl. Phys.B 190, 253 (1981).
[16] R., Rajaraman, “Intersoliton forces in weak coupling quantum field theories”, Phys. Rev.D 15, 2866 (1977).
[17] N. S., Manton, “The force between 't Hooft–Polyakov monopoles”, Nucl. Phys.B 126, 525 (1977).
[18] N. S., Manton, “An effective Lagrangian for solitons”, Nucl. Phys.B 150, 397 (1979).
[19] J. K., Perring and T. H. R., Skyrme, “A model unified field equation”, Nucl. Phys. 31, 550 (1962).
[20] R. F., Dashen, B., Hasslacher, and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. I. Semiclassical functional methods”, Phys. Rev.D 10, 4114 (1974).
[21] R. F., Dashen, B., Hasslacher, and A., Neveu, “The particle spectrum in model field theories from semiclassical functional integral techniques”, Phys. Rev.D 11, 3424 (1975).
[22] R., Easther, J. T., Giblin Jr, L., Hui, and E. A., Lim, “New mechanism for bubble nucleation: Classical transitions”, Phys. Rev.D 80, 123519 (2009).
[23] J. T., Giblin Jr, L., Hui, E. A., Lim, and I.-S., Yang, “How to run through walls: Dynamics of bubble and soliton collisions”, Phys. Rev.D 82, 045019 (2010).
[24] I. L., Bogolyubsky and V. G., Makhankov, “On the pulsed soliton lifetime in two classical relativistic theory models”, JETP Lett. 24, 12 (1976).
[25] M., Gleiser, “Pseudostable bubbles”, Phys. Rev.D 49, 2978 (1994).
[26] E. J., Copeland, M., Gleiser, and H.-R., Muller, “Oscillons: Resonant configurations during bubble collapse”, Phys. Rev.D 52, 1920 (1995).
[27] M., Gleiser and D., Sicilia, “General theory of oscillon dynamics”, Phys. Rev.D 80, 125037 (2009).
[28] M. A., Amin and D., Shirokoff, “Flat-top oscillons in an expanding universe”, Phys. Rev.D 81, 085045 (2010).
[29] M. P., Hertzberg, “Quantum radiation of oscillons”, Phys. Rev.D 82, 045022 (2010).
[30] A. B., Zamolodchikov and A. B., Zamolodchikov, “Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry”, Nucl. Phys.B 133, 525 (1978).
[31] A. B., Zamolodchikov and A. B., Zamolodchikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Annals Phys. 120, 253 (1979).
[32] W. E., Thirring, “A soluble relativistic field theory?”, Annals Phys. 3, 91 (1958).
[33] S., Coleman, “The quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev.D 11, 2088 (1975).
[34] S., Mandelstam, “Soliton operators for the quantized sine-Gordon equation”, Phys. Rev.D 11, 3026 (1975).
[35] G. H., Derrick, “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys. 5, 1252 (1964).
[36] A. M., Polyakov and A. A., Belavin, “Metastable states of two-dimensional isotropic ferromagnets”, JETP Lett. 22, 245 (1975).
[37] H. B., Nielsen and P., Olesen, “Vortex line models for dual strings”, Nucl. Phys.B 61, 45 (1973).
[38] B., Plohr, “The behavior at infinity of isotropic vortices and monopoles”, J. Math. Phys. 22, 2184 (1981).
[39] L., Perivolaropoulos, “Asymptotics of Nielsen–Olesen vortices”, Phys. Rev.D 48, 5961 (1993).
[40] L., Jacobs and C., Rebbi, “Interaction energy of superconducting vortices”, Phys. Rev.B 19, 4486 (1979).
[41] E. J., Weinberg, “Multivortex solutions of the Ginzburg–Landau equations”, Phys. Rev.D 19, 3008 (1979).
[42] C. H., Taubes, “Arbitrary N-vortex solutions to the first order Landau–Ginzburg equations”, Commun. Math. Phys. 72, 277 (1980).
[43] R., Jackiw and P., Rossi, “Zero modes of the vortex–fermion system”, Nucl. Phys.B 190, 681 (1981).
[44] E. J., Weinberg, “Index calculations for the fermion–vortex system”, Phys. Rev.D 24, 2669 (1981).
[45] E., Witten, “Superconducting strings”, Nucl. Phys.B 249, 557 (1985).
[46] C. G., Callan Jr., and J. A., Harvey, “Anomalies and fermion zero modes on strings and domain walls”, Nucl. Phys.B 250, 427 (1985).
[47] G., Lazarides and Q., Shafi, “Superconducting strings in axion models”, Phys. Lett. 151B, 123 (1985).
[48] A., Vilenkin and E. P. S., Shellard, Cosmic Strings and other Topological Defects (Cambridge University Press, 1994).
[49] N. D., Mermin, “The topological theory of defects in ordered media”, Rev. Mod. Phys. 51, 591 (1979).
[50] S., Coleman, “Classical lumps and their quantum descendants.” In Aspects of Symmetry, S., Coleman (Cambridge University Press, 1985).
[51] T., Vachaspati and A., Achucarro, “Semilocal cosmic strings”, Phys. Rev.D 44, 3067 (1991).
[52] M., Hindmarsh, “Existence and stability of semilocal strings”, Phys. Rev. Lett. 68, 1263 (1992).
[53] M., Hindmarsh, “Semilocal topological defects”, Nucl. Phys.B 392, 461 (1993).
[54] A., Achucarro, K., Kuijken, L., Perivolaropoulos, and T., Vachaspati, “Dynamical simulations of semilocal strings”, Nucl. Phys.B 388, 435 (1992).
[55] T., Vachaspati, “Vortex solutions in the Weinberg–Salam model”, Phys. Rev. Lett. 68, 1977 (1992).
[56] T., Vachaspati, “Electroweak strings”, Nucl. Phys.B 397, 648 (1993).
[57] M., James, L., Perivolaropoulos, and T., Vachaspati, “Detailed stability analysis of electroweak strings”, Nucl. Phys.B 395, 534 (1993).
[58] A. S., Schwarz, “Field theories with no local conservation of the electric charge”, Nucl. Phys.B 208, 141 (1982).
[59] M. G., Alford, K., Benson, S., Coleman, J., March-Russell, and F., Wilczek, “The interactions and excitations of non-Abelian vortices”, Phys. Rev. Lett. 64, 1632 (1990).
[60] M. G., Alford, K., Benson, S., Coleman, J., March-Russell, and F., Wilczek, “Zero modes of non-Abelian vortices”, Nucl. Phys.B 349, 414 (1991).
[61] M., Bucher, H.-K., Lo, and J., Preskill, “Topological approach to Alice electrodynamics”, Nucl. Phys.B 386, 3 (1992).
[62] M., Bucher, K.-M., Lee, and J., Preskill, “On detecting discrete Cheshire charge”, Nucl. Phys.B 386, 27 (1992).
[63] J., Preskill and L. M., Krauss, “Local discrete symmetry and quantum mechanical hair”, Nucl. Phys.B 341, 50 (1990).
[64] E., Cartan, “La topologie des espaces représentatifs des groupes de Lie”, Œuvres complètes I, 2 (Paris: Éditions du CNRS, 1984), p. 1307.
[65] G., 't Hooft, “Magnetic monopoles in unified gauge theories”, Nucl. Phys.B 79, 276 (1974).
[66] P. A. M., Dirac, “Quantized singularities in the electromagnetic field”, Proc. Roy. Soc. Lond.A 133, 60 (1931).
[67] D., Zwanziger, “Quantum field theory of particles with both electric and magnetic charges”, Phys. Rev. 176, 1489 (1968).
[68] J. S., Schwinger, “Sources and magnetic charge”, Phys. Rev. 173, 1536 (1968).
[69] E., Witten, “Dyons of charge еθ/2π”, Phys. Lett. 86B, 283 (1979).
[70] T. T., Wu and C. N., Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev.D 12, 3845 (1975).
[71] J. J., Thomson, “On momentum in the electric field”, Philos. Mag. 8, 331 (1904).
[72] I., Tamm, “Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles”, Z. Phys. 71, 141 (1931).
[73] T. T., Wu and C. N., Yang, “Dirac monopole without strings: Monopole harmonics”, Nucl. Phys.B 107, 365 (1976).
[74] H. A., Olsen, P., Osland, and T. T., Wu, “On the existence of bound states for a massive spin-one particle and a magnetic monopole”, Phys. Rev.D 42, 665 (1990).
[75] E. J., Weinberg, “Monopole vector spherical harmonics”, Phys. Rev.D 49, 1086 (1994).
[76] M. I., Monastyrsky and A. M., Perelomov, “Concerning the existence of monopoles in gauge field theories”, JETP Lett. 21, 43 (1975).
[77] H., Georgi and S. L., Glashow, “Unified weak and electromagnetic interactions without neutral currents”, Phys. Rev. Lett. 28, 1494 (1972).
[78] T. W., Kirkman and C. K., Zachos, “Asymptotic analysis of the monopole structure”, Phys. Rev.D 24, 999 (1981).
[79] K., Lee and E. J., Weinberg, “Nontopological magnetic monopoles and new magnetically charged black holes”, Phys. Rev. Lett. 73, 1203 (1994).
[80] E. J., Weinberg and A. H., Guth, “Nonexistence of spherically symmetric monopoles with multiple magnetic charge”, Phys. Rev.D 14, 1660 (1976).
[81] E. B., Bogomolny, “Stability of classical solutions”, Sov. J. Nucl. Phys. 24, 449 (1976).
[82] M. K., Prasad and C. M., Sommerfield, “An exact classical solution for the 't Hooft monopole and the Julia–Zee dyon”, Phys. Rev. Lett. 35, 760 (1975).
[83] E. J., Weinberg, “Parameter counting for multimonopole solutions”, Phys. Rev.D 20 (1979) 936.
[84] A., Jaffe and C., Taubes, Vortices and Monopoles (Boston: Birkhäuser, 1980).
[85] N. H., Christ, A. H., Guth, and E. J., Weinberg, “Canonical formalism for gauge theories with application to monopole solutions”, Nucl. Phys.B 114, 61 (1976).
[86] B., Julia and A., Zee, “Poles with both magnetic and electric charges in non-Abelian gauge theory”, Phys. Rev.D 11, 2227 (1975).
[87] R., Jackiw and C., Rebbi, “Spin from isospin in a gauge theory”, Phys. Rev. Lett. 36, 1116 (1976).
[88] P., Hasenfratz and G., 't Hooft, “Fermion–boson puzzle in a gauge theory”, Phys. Rev. Lett. 36, 1119 (1976).
[89] A. S., Goldhaber, “Spin and statistics connection for charge–monopole composites”, Phys. Rev. Lett. 36, 1122 (1976).
[90] C., Callias, “Index theorems on open spaces”, Commun. Math. Phys. 62, 213 (1978).
[91] V. A., Rubakov, “Adler–Bell–Jackiw anomaly and fermion number breaking in the presence of a magnetic monopole”, Nucl. Phys.B 203, 311 (1982).
[92] C. G., Callan Jr., “Disappearing dyons”, Phys. Rev.D 25, 2141 (1982).
[93] C. G., Callan Jr., “Dyon–fermion dynamics”, Phys. Rev.D 26, 2058 (1982).
[94] A. S., Blaer, N. H., Christ, and J.-F., Tang, “Anomalous fermion production by a Julia–Zee dyon”, Phys. Rev. Lett. 47, 1364 (1981).
[95] A. S., Blaer, N. H., Christ, and J.-F., Tang, “Fermion emission from a Julia–Zee dyon”, Phys. Rev.D 25, 2128 (1982).
[96] P., Klimo and J. S., Dowker, “Dirac monopoles for general gauge theories”, Int. J. Theor. Phys. 8, 409 (1973).
[97] F., Englert and P., Windey, “Quantization condition for 't Hooft monopoles in compact simple Lie groups”, Phys. Rev.D 14, 2728 (1976).
[98] P., Goddard, J., Nuyts, and D. I., Olive, “Gauge theories and magnetic charge”, Nucl. Phys.B 125, 1 (1977).
[99] E., Lubkin, “Geometric definition of gauge invariance”, Annals Phys. 23, 233 (1963).
[100] R. A., Brandt and F., Neri, “Stability analysis for singular non-Abelian magnetic monopoles”, Nucl. Phys.B 161, 253 (1979).
[101] S., Coleman, “The magnetic monopole fifty years later.” In The Unity of Fundamental Interactions, ed. A., Zichichi (New York: Plenum, 1983).
[102] A., Sinha, “SU(3) magnetic monopoles”, Phys. Rev.D 14, 2016 (1976).
[103] Yu. S., TyupkinV. A., Fateev, and A. S., Shvarts, “Existence of heavy particles in gauge field theories”, JETP Lett. 21, 41 (1975).
[104] E. J., Weinberg, D., London, and J. L., Rosner, “Magnetic monopoles with Zn charges”, Nucl. Phys.B 236, 90 (1984).
[105] C. P., Dokos and T. N., Tomaras, “Monopoles and dyons in the SU(5) model”, Phys. Rev.D 21, 2940 (1980).
[106] C. L., Gardner and J. A., Harvey, “Stable grand unified monopoles with multiple Dirac charge”, Phys. Rev. Lett. 52, 879 (1984).
[107] G., Lazarides and Q., Shafi, “The fate of primordial magnetic monopoles”, Phys. Lett. 94B, 149 (1980).
[108] A., Abouelsaood, “Are there chromodyons?”, Nucl. Phys.B 226, 309 (1983).
[109] P. C., Nelson and A., Manohar, “Global color is not always defined”, Phys. Rev. Lett. 50, 943 (1983).
[110] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Monopole topology and the problem of color”, Phys. Rev. Lett. 50, 1553 (1983).
[111] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Nonabelian monopoles break color. I. Classical mechanics”, Phys. Rev.D 29, 2919 (1984).
[112] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Nonabelian monopoles break color. II. Field theory and quantum mechanics”, Phys. Rev.D 29, 2936 (1984).
[113] P. A., Horvathy and J. H., Rawnsley, “Internal symmetries of nonabelian gauge field configurations”, Phys. Rev.D 32, 968 (1985).
[114] P. A., Horvathy and J. H., Rawnsley, “The problem of ‘global color’ in gauge theories”, J. Math. Phys. 27, 982 (1986).
[115] H., Guo and E. J., Weinberg, “Instabilities of chromodyons in SO(5) gauge theory”, Phys. Rev.D 77, 105026 (2008).
[116] V. A., Rubakov, “Superheavy magnetic monopoles and proton decay”, JETP Lett. 33, 644 (1981).
[117] C. G., Callan Jr., “Monopole catalysis of baryon decay”, Nucl. Phys.B 212, 391 (1983).
[118] F., Wilczek, “Remarks on dyons”, Phys. Rev. Lett. 48, 1146 (1982).
[119] S., Dawson and A. N., Schellekens, “Monopole catalysis of proton decay in SO(10) grand unified models”, Phys. Rev.D 27, 2119 (1983).
[120] A. H., Guth, “The inflationary universe: a possible solution to the horizon and flatness problems”, Phys. Rev.D 23, 347 (1981).
[121] D. A., Kirzhnits and A. D., Linde, “Macroscopic consequences of the Weinberg model”, Phys. Lett. 42B, 471 (1972).
[122] L. A., Dolan and R., Jackiw, “Symmetry behavior at finite temperature”, Phys. Rev.D 9, 3320 (1974).
[123] S., Weinberg, “Gauge and global symmetries at high temperature”, Phys. Rev.D 9, 3357 (1974).
[124] D. A., Kirzhnits and A. D., Linde, “Symmetry behavior in gauge theories”, Annals Phys. 101, 195 (1976).
[125] S., Coleman and E. J., Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking”, Phys. Rev.D 7, 1888 (1973).
[126] A. H., Guth and E. J., Weinberg, “Could the universe have recovered from a slow first-order phase transition?”, Nucl. Phys.B 212, 321 (1983).
[127] A. H., Guth and E. J., Weinberg, “Cosmological consequences of a first-order phase transition in the SU(5) grand unified model”, Phys. Rev.D 23, 876 (1981).
[128] T. W. B., Kibble, “Topology of cosmic domains and strings”, J. Phys.A 9, 1387 (1976).
[129] M. B., Einhorn, D. L., Stein, and D., Toussaint, “Are grand unified theories compatible with standard cosmology?”, Phys. Rev.D 21, 3295 (1980).
[130] A., Vilenkin, “Gravitational field of vacuum domain walls and strings”, Phys. Rev.D 23, 852 (1981).
[131] A., Vilenkin, “Gravitational field of vacuum domain walls”, Phys. Lett. 133B, 177 (1983).
[132] J., Ipser and P., Sikivie, “Gravitationally repulsive domain wall”, Phys. Rev.D 30, 712 (1984).
[133] Ya. B., Zeldovich, I. Yu., Kobzarev, and L. B., Okun, “Cosmological consequences of a spontaneous breakdown of a discrete symmetry”, JETP 40, 1 (1975).
[134] T., Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, 2006).
[135] N., Bevis, M., Hindmarsh, M., Kunz, and J., Urrestilla, “Fitting CMB data with cosmic strings and inflation”, Phys. Rev. Lett. 100, 021301 (2008).
[136] R., Battye and A., Moss, “Updated constraints on the cosmic string tension”, Phys. Rev.D 82, 023521 (2010).
[137] T. W. B., Kibble, “Cosmic strings reborn?”, [astro-ph/0410073].
[138] J., Polchinski, “Introduction to cosmic F- and D-strings”, [hep-th/0412244].
[139] Ya. B., Zeldovich and M. Y., Khlopov, “On the concentration of relic magnetic monopoles in the universe”, Phys. Lett. 79B, 239 (1978).
[140] J., Preskill, “Cosmological production of superheavy magnetic monopoles”, Phys. Rev. Lett. 43, 1365 (1979).
[141] E. N., Parker, “The origin of magnetic fields”, Astrophys. J. 160, 383 (1970).
[142] M. S., Turner, E. N., Parker, and T. J., Bogdan, “Magnetic monopoles and the survival of galactic magnetic fields”, Phys. Rev.D 26, 1296 (1982).
[143] F. C., Adams, M., Fatuzzo, K., Freese, G., Tarle, R., Watkins, and M. S., Turner, “Extension of the Parker bound on the flux of magnetic monopoles”, Phys. Rev. Lett. 70, 2511 (1993).
[144] Y., Rephaeli and M. S., Turner, “The magnetic monopole flux and the survival of intracluster magnetic fields”, Phys. Lett. 121B, 115 (1983).
[145] M., Ambrosio et al. [MACRO Collaboration], “Final results of magnetic monopole searches with the MACRO experiment”, Eur. Phys. J.C 25, 511 (2002).
[146] E. W., Kolb, S. A., Colgate, and J. A., Harvey, “Monopole catalysis of nucleon decay in neutron stars”, Phys. Rev. Lett. 49, 1373 (1982).
[147] S., Dimopoulos, J., Preskill, and F., Wilczek, “Catalyzed nucleon decay in neutron stars”, Phys. Lett. 119B, 320 (1982).
[148] K., Freese, M. S., Turner, and D. N., Schramm, “Monopole catalysis of nucleon decay in old pulsars”, Phys. Rev. Lett. 51, 1625 (1983).
[149] E. W., Kolb and M. S., Turner, “Limits from the soft X-ray background on the temperature of old neutron stars and on the flux of superheavy magnetic monopoles”, Astrophys. J. 286, 702 (1984).
[150] J. A., Harvey, “Monopoles in neutron stars”, Nucl. Phys.B 236, 255 (1984).
[151] K., Freese and E., Krasteva, “Bound on the flux of magnetic monopoles from catalysis of nucleon decay in white dwarfs”, Phys. Rev.D 59, 063007 (1999).
[152] J., Arafune, M., Fukugita, and S., Yanagita, “Monopole abundance in the Solar System and the intrinsic heat in the Jovian planets”, Phys. Rev.D 32, 2586 (1985).
[153] P., Langacker and S.-Y., Pi, “Magnetic monopoles in grand unified theories”, Phys. Rev. Lett. 45, 1 (1980).
[154] T. W. B., Kibble and E. J., Weinberg, “When does causality constrain the monopole abundance?”, Phys. Rev.D 43, 3188 (1991).
[155] E. J., Weinberg and P., Yi, “Magnetic monopole dynamics, supersymmetry, and duality”, Phys. Rept. 438, 65 (2007).
[156] S., Coleman, S. J., Parke, A., Neveu, and C. M., Sommerfield, “Can one dent a dyon?”, Phys. Rev.D 15, 544 (1977).
[157] C. H., Taubes, “The existence of a nonminimal solution to the SU(2) Yang–Mills–Higgs equations on R3.PartI”, Commun. Math. Phys. 86, 257 (1982).
[158] C. H., Taubes, “The existence of a nonminimal solution to the SU(2) Yang–Mills–Higgs equations on R3.PartII”, Commun. Math. Phys. 86, 299 (1982).
[159] J., Hong, Y., Kim, and P. Y., Pac, “On the multivortex solutions of the Abelian Chern–Simons–Higgs theory”, Phys. Rev. Lett. 64, 2230 (1990).
[160] R., Jackiw and E. J., Weinberg, “Self-dual Chern–Simons vortices”, Phys. Rev. Lett. 64, 2234 (1990).
[161] R., Jackiw, K., Lee, and E. J., Weinberg, “Self-dual Chern–Simons solitons”, Phys. Rev.D 42, 3488 (1990).
[162] C., Lee, K., Lee, and H., Min, “Self-dual Maxwell–Chern–Simons solitons”, Phys. Lett.B 252, 79 (1990).
[163] L., Brink, J. H., Schwarz, and J., Scherk, “Supersymmetric Yang–Mills theories”, Nucl. Phys.B 121, 77 (1977).
[164] E., Witten and D. I., Olive, “Supersymmetry algebras that include topological charges”, Phys. Lett. 78B, 97 (1978).
[165] C. M., Miller, K., Schalm, and E. J., Weinberg, “Nonextremal black holes are BPS”, Phys. Rev.D 76, 044001 (2007).
[166] H., Nastase, M. A., Stephanov, P., van Nieuwenhuizen, and A., Rebhan, “Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons”, Nucl. Phys.B 542, 471 (1999).
[167] N., Graham and R. L., Jaffe, “Energy, central charge, and the BPS bound for (1+1)-dimensional supersymmetric solitons”, Nucl. Phys.B 544, 432 (1999).
[168] M. A., Shifman, A. I., Vainshtein, and M. B., Voloshin, “Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry”, Phys. Rev.D 59, 045016 (1999).
[169] O., Bergman, “Three-pronged strings and 1/4 BPS states in N = 4 super-Yang–Mills theory”, Nucl. Phys.B 525, 104 (1998).
[170] O., Bergman and B., Kol, “String webs and 1/4 BPS monopoles”, Nucl. Phys.B 536, 149 (1998).
[171] K., Lee and P., Yi, “Dyons in N = 4 supersymmetric theories and three-pronged strings”, Phys. Rev.D 58, 066005 (1998).
[172] W., Nahm, “The construction of all self-dual multimonopoles by the ADHM method.” In Monopoles in Quantum Field Theory, eds. N.S., Craigie et al. (Singapore: World Scientific, 1982).
[173] W., Nahm, “Multimonopoles in the ADHM construction.” In Gauge Theories and Lepton Hadron Interactions, eds. Z., Horvath et al. (Budapest: Central Research Institute for Physics, 1982).
[174] W., Nahm, “All self-dual multimonopoles for arbitrary gauge groups.” In Structural Elements in Particle Physics and Statistical Mechanics, eds. J., Honerkamp et al. (New York: Plenum, 1983).
[175] W., Nahm, “Self-dual monopoles and calorons.” In Group Theoretical Methods in Physics, eds. G., Denardo et al. (Berlin: Springer-Verlag, 1984).
[176] N., Manton and P., Sutcliffe, Topological Solitons (Cambridge University Press, 2004).
[177] S. A., Brown, H., Panagopoulos, and M. K., Prasad, “Two separated SU(2) Yang–Mills–Higgs monopoles in the ADHMN Construction”, Phys. Rev.D 26, 854 (1982).
[178] P., Houston and L., O'Raifeartaigh, “On the charge distribution of static axial and mirror symmetric monopole systems”, Phys. Lett. 94B, 153 (1980).
[179] R. S., Ward, “A Yang–Mills–Higgs monopole of charge 2”, Commun. Math. Phys. 79, 317 (1981).
[180] P., Forgacs, Z., Horvath, and L., Palla, “Exact multimonopole solutions in the Bogomolny–Prasad–Sommerfield limit”, Phys. Lett. 99B, 232 (1981)
[180a] P., Forgacs, Z., Horvath, and L., Palla, “Exact multimonopole solutions in the Bogomolny–Prasad–Sommerfield limit”, Phys. Lett. 101, 457 (1981)].
[181] M. K., Prasad and P., Rossi, “Construction of exact Yang–Mills–Higgs multimonopoles of arbitrary charge”, Phys. Rev. Lett. 46, 806 (1981).
[182] C., Rebbi and P., Rossi, “Multimonopole solutions in the Prasad–Sommerfield limit”, Phys. Rev.D 22, 2010 (1980).
[183] N. J., Hitchin, N. S., Manton, and M. K., Murray, “Symmetric monopoles”, Nonlinearity 8, 661 (1995).
[184] C. J., Houghton and P. M., Sutcliffe, “Tetrahedral and cubic monopoles”, Commun. Math. Phys. 180, 343 (1996).
[185] C. J., Houghton and P. M., Sutcliffe, “Monopole scattering with a twist”, Nucl. Phys.B 464, 59 (1996).
[186] P. M., Sutcliffe, “Monopole zeros”, Phys. Lett.B 376, 103 (1996).
[187] C. J., Houghton and P. M., Sutcliffe, “Octahedral and dodecahedral monopoles”, Nonlinearity 9, 385 (1996).
[188] C. J., Houghton, N. S., Manton, and P. M., Sutcliffe, “Rational maps, monopoles and skyrmions”, Nucl. Phys.B 510, 507 (1998).
[189] N. S., Manton, “A remark on the scattering of BPS monopoles”, Phys. Lett. 110B, 54 (1982).
[190] P. J., Ruback, “Vortex string motion in the Abelian Higgs model”, Nucl. Phys.B 296, 669 (1988).
[191] N. S., Manton and T. M., Samols, “Radiation from monopole scattering”, Phys. Lett.B 215, 559 (1988).
[192] D., Stuart, “The geodesic approximation for the Yang–Mills–Higgs equations”, Commun. Math. Phys. 166, 149 (1994).
[193] N. S., Manton, “Monopole interactions at long range”, Phys. Lett. 154B, 397 (1985).
[194] G. W., Gibbons and N. S., Manton, “The moduli space metric for well separated BPS monopoles”, Phys. Lett.B 356, 32 (1995).
[195] M. F., Atiyah and N. J., Hitchin, “Low-energy scattering of non-Abelian magnetic monopoles”, Phil. Trans. Roy. Soc. Lond.A 315, 459 (1985).
[196] M. F., Atiyah and N. J., Hitchin, “Low-energy scattering of non-Abelian monopoles”, Phys. Lett. 107A, 21 (1985).
[197] M. F., Atiyah and N. J., Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University Press, 1988).
[198] G. W., Gibbons and N. S., Manton, “Classical and quantum dynamics of BPS monopoles”, Nucl. Phys.B 274, 183 (1986).
[199] E. J., Weinberg, “Fundamental monopoles and multimonopole solutions for arbitrary simple gauge groups”, Nucl. Phys.B 167, 500 (1980).
[200] E. J., Weinberg and P., Yi, “Explicit multimonopole solutions in SU(N) gauge theory”, Phys. Rev.D 58, 046001 (1998).
[201] S. A., Connell, “The dynamics of the SU(3) charge (1, 1) magnetic monopole”, University of South Australia preprint (1994).
[202] J. P., Gauntlett and D. A., Lowe, “Dyons and S-duality in N = 4 supersymmetric gauge theory”, Nucl. Phys.B 472, 194 (1996).
[203] K., Lee, E. J., Weinberg, and P., Yi, “Electromagnetic duality and SU(3) monopoles”, Phys. Lett.B 376, 97 (1996).
[204] K., Lee, E. J., Weinberg, and P., Yi, “The moduli space of many BPS monopoles for arbitrary gauge groups”, Phys. Rev.D 54, 1633 (1996).
[205] M. K., Murray, “A note on the (1, 1,…, 1) monopole metric”, J. Geom. Phys. 23, 31 (1997).
[206] G., Chalmers, “Multimonopole moduli spaces for SU(N) gauge group”, hep-th/9605182 (1996).
[207] C., Lu, “Two monopole systems and the formation of non-Abelian clouds”, Phys. Rev.D 58, 125010 (1998).
[208] E. J., Weinberg, “Fundamental monopoles in theories with arbitrary symmetry breaking”, Nucl. Phys.B 203, 445 (1982).
[209] K., Lee, E. J., Weinberg, and P., Yi, “Massive and massless monopoles with non-Abelian magnetic charges”, Phys. Rev.D 54, 6351 (1996).
[210] E. J., Weinberg, “A continuous family of magnetic monopole solutions”, Phys. Lett. 119B, 151 (1982).
[211] R. S., Ward, “Magnetic monopoles with gauge group SU(3) broken to U(2)”, Phys. Lett. 107B, 281 (1981).
[212] A. S., Dancer and R. A., Leese, “A numerical study of SU(3) charge-two monopoles with minimal symmetry breaking”, Phys. Lett.B 390, 252 (1997).
[213] A. S., Dancer, “Nahm data and SU(3) monopoles”, Nonlinearity 5, 1355 (1992).
[214] P., Irwin, “SU(3) monopoles and their fields”, Phys. Rev.D 56, 5200 (1997).
[215] C. J., Houghton and E. J., Weinberg, “Multicloud solutions with massless and massive monopoles”, Phys. Rev.D 66, 125002 (2002).
[216] A. S., Dancer, “Nahm's equations and hyper-Kähler geometry”, Commun. Math. Phys. 158, 545 (1993).
[217] A., Dancer and R., Leese, “Dynamics of SU(3) monopoles”, Proc. Roy. Soc. Lond.A 440, 421 (1993).
[218] X., Chen and E. J., Weinberg, “Scattering of massless and massive monopoles in an SU(N)theory”, Phys. Rev.D 64, 065010 (2001).
[219] C. M., Miller and E. J., Weinberg, “Interactions of massless monopole clouds”, Phys. Rev.D 80, 065025 (2009).
[220] X., Chen, H., Guo, and E. J., Weinberg, “Massless monopoles and the moduli space approximation”, Phys. Rev.D 64, 125004 (2001).
[221] C., Montonen and D. I., Olive, “Magnetic monopoles as gauge particles?”, Phys. Lett. 72B, 117 (1977).
[222] H., Osborn, “Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1”, Phys. Lett. 83B, 321 (1979).
[223] A., Sen, “Dyon–monopole bound states, self-dual harmonic forms on the multimonopole moduli space, and SL(2,Z) invariance in string theory”, Phys. Lett.B 329, 217 (1994).
[224] T., Banks, C. M., Bender, and T. T., Wu, “Coupled anharmonic oscillators. I. Equal-mass case”, Phys. Rev.D 8, 3346 (1973).
[225] T., Banks and C. M., Bender, “Coupled anharmonic oscillators. II. Unequal-mass case”, Phys. Rev.D 8, 3366 (1973).
[226] S., Coleman, “Fate of the false vacuum: Semiclassical theory”, Phys. Rev.D 15, 2929 (1977).
[227] A. A., Belavin, A. M., Polyakov, A. S., Shvarts, and Y. S., Tyupkin, “Pseudoparticle solutions of the Yang–Mills equations”, Phys. Lett. 59B, 85 (1975).
[228] S., Coleman, “The uses of instantons.” In Aspects of Symmetry, S., Coleman (Cambridge University Press, 1985).
[229] J. S., Langer, “Theory of the condensation point”, Annals Phys. 41, 108 (1967).
[230] C. G., Callan Jr., and S., Coleman, “Fate of the false vacuum. II. First quantum corrections”, Phys. Rev.D 16, 1762 (1977).
[231] S., Coleman, “Quantum tunneling and negative eigenvalues”, Nucl. Phys.B 298, 178 (1988).
[232] R. P., Feynman and A. R., Hibbs, Quantum Mechanics and Path Integrals (New York: McGraw-Hill, 1965).
[233] R., Jackiw and C., Rebbi, “Vacuum periodicity in a Yang–Mills quantum theory”, Phys. Rev. Lett. 37, 172 (1976).
[234] C. G., Callan Jr., R. F., Dashen, and D. J., Gross, “The structure of the gauge theory vacuum”, Phys. Lett. 63B, 334 (1976).
[235] C. W., Bernard and E. J., Weinberg, “The interpretation of pseudoparticles in physical gauges”, Phys. Rev.D 15, 3656 (1977).
[236] V. N., Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys.B 139, 1 (1978).
[237] R., Jackiw and C., Rebbi, “Conformal properties of a Yang–Mills pseudoparticle”, Phys. Rev.D 14, 517 (1976).
[238] G., 't Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle”, Phys. Rev.D 14, 3432 (1976).
[239] G., 't Hooft, unpublished
[240] R., Jackiw, C., Nohl, and C., Rebbi, “Conformal properties of pseudoparticle configurations”, Phys. Rev.D 15, 1642 (1977).
[241] A. S., Schwarz, “On regular solutions of Euclidean Yang–Mills equations”, Phys. Lett. 67B, 172 (1977).
[242] R., Jackiw and C., Rebbi, “Degrees of freedom in pseudoparticle systems”, Phys. Lett. 67B, 189 (1977).
[243] M. F., Atiyah, N. J., Hitchin, and I. M., Singer, “Deformations of instantons”, Proc. Nat. Acad. Sci. 74, 2662 (1977).
[244] L. S., Brown, R. D., Carlitz, and C., Lee, “Massless excitations in instanton fields”, Phys. Rev.D 16, 417 (1977).
[245] M. F., Atiyah and I. M., Singer, “The index of elliptic operators. 1”, Annals Math. 87, 484 (1968).
[246] M. F., Atiyah, N. J., Hitchin, V. G., Drinfeld, and Y. I., Manin, “Construction of instantons”, Phys. Lett. 65A, 185 (1978).
[247] V. G., Drinfeld and Y. I., Manin, “A description of instantons”, Commun. Math. Phys. 63, 177 (1978).
[248] N. H., Christ, E. J., Weinberg, and N. K., Stanton, “General self-dual Yang–Mills solutions”, Phys. Rev.D 18, 2013 (1978).
[249] E., Corrigan, D. B., Fairlie, S., Templeton, and P., Goddard, “A Green's function for the general self-dual gauge field”, Nucl. Phys.B 140, 31 (1978).
[250] E., Corrigan and P., Goddard, “Construction of instanton and monopole solutions and reciprocity”, Annals Phys. 154, 253 (1984).
[251] E., Witten, “Small instantons in string theory”, Nucl. Phys.B 460, 541 (1996).
[252] M. R., Douglas, “Gauge fields and D-branes”, J. Geom. Phys. 28, 255 (1998).
[253] A. A., Belavin and A. M., Polyakov, “Quantum fluctuations of pseudoparticles”, Nucl. Phys.B 123, 429 (1977).
[254] C. W., Bernard, N. H., Christ, A. H., Guth, and E. J., Weinberg, “Pseudoparticle parameters for arbitrary gauge groups”, Phys. Rev.D 16, 2967 (1977).
[255] J. S., Bell and R., Jackiw, “A PCAC puzzle: π0→ γγ in the σ-model”, Nuovo Cim.A 60, 47 (1969).
[256] S. L., Adler, “Axial vector vertex in spinor electrodynamics”, Phys. Rev. 177, 2426 (1969).
[257] W. A., Bardeen, “Anomalous Ward identities in spinor field theories”, Phys. Rev. 184, 1848 (1969).
[258] K., Fujikawa, “Path integral measure for gauge invariant fermion theories”, Phys. Rev. Lett. 42, 1195 (1979).
[259] C. G., Callan Jr., R. F., Dashen, and D. J., Gross, “Toward a theory of the strong interactions”, Phys. Rev.D 17, 2717 (1978).
[260] S., Weinberg, “The U(1) problem”, Phys. Rev.D 11, 3583 (1975).
[261] G., 't Hooft, “Symmetry breaking through Bell–Jackiw anomalies”, Phys. Rev. Lett. 37, 8 (1976).
[262] N. S., Manton, “Topology in the Weinberg–Salam theory”, Phys. Rev.D 28, 2019 (1983).
[263] F. R., Klinkhamer and N. S., Manton, “A saddle point solution in the Weinberg–Salam theory”, Phys. Rev.D 30, 2212 (1984).
[264] V. A., Rubakov and M. E., Shaposhnikov, “Electroweak baryon number nonconservation in the early universe and in high-energy collisions”, Usp. Fiz. Nauk 166, 493 (1996).
[265] K., Nakamura et al. [Particle Data Group Collaboration], “Review of particle physics”, J. Phys. G 37, 075021 (2010).
[266] R. J., Crewther, P. Di, Vecchia, G., Veneziano, and E., Witten, “Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics”, Phys. Lett. 88B, 123 (1979).
[267] R. D., Peccei and H. R., Quinn, “CP conservation in the presence of instantons”, Phys. Rev. Lett. 38, 1440 (1977).
[268] R. D., Peccei and H. R., Quinn, “Constraints imposed by CP conservation in the presence of instantons”, Phys. Rev.D 16, 1791 (1977).
[269] S., Weinberg, “A new light boson?”, Phys. Rev. Lett. 40, 223 (1978).
[270] F., Wilczek, “Problem of strong P and T invariance in the presence of instantons”, Phys. Rev. Lett. 40, 279 (1978).
[271] S., Coleman, V., Glaser, and A., Martin, “Action minima among solutions to a class of Euclidean scalar field equations”, Commun. Math. Phys. 58, 211 (1978).
[272] A., Kusenko, K., Lee, and E. J., Weinberg, “Vacuum decay and internal symmetries”, Phys. Rev.D 55, 4903 (1997).
[273] E. J., Weinberg, “Vacuum decay in theories with symmetry breaking by radiative corrections”, Phys. Rev.D 47, 4614 (1993).
[274] I., Affleck, “Quantum statistical metastability”, Phys. Rev. Lett. 46, 388 (1981).
[275] A. D., Linde, “Decay of the false vacuum at finite temperature”, Nucl. Phys.B 216, 421 (1983).
[276] S., Coleman and F., De Luccia, “Gravitational effects on and of vacuum decay”, Phys. Rev.D 21, 3305 (1980).
[277] A. R., Brown and E. J., Weinberg, “Thermal derivation of the Coleman–De Luccia tunneling prescription”, Phys. Rev.D 76, 064003 (2007).
[278] G. W., Gibbons and S. W., Hawking, “Cosmological event horizons, thermodynamics, and particle creation”, Phys. Rev.D 15, 2738 (1977).
[279] G. W., Gibbons and S. W., Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev.D 15, 2752 (1977).
[280] S. J., Parke, “Gravity, the decay of the false vacuum and the new inflationary universe scenario”, Phys. Lett. 121B, 313 (1983).
[281] L. G., Jensen and P. J., Steinhardt, “Bubble nucleation and the Coleman–Weinberg model”, Nucl. Phys.B 237, 176 (1984).
[282] L. G., Jensen and P. J., Steinhardt, “Bubble nucleation for flat potential barriers”, Nucl. Phys.B 317, 693 (1989).
[283] J. C., Hackworth and E. J., Weinberg, “Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime”, Phys. Rev.D 71, 044014 (2005).
[284] P., Batra and M., Kleban, “Transitions between de Sitter minima”, Phys. Rev.D 76, 103510 (2007).
[285] T., Banks, “Heretics of the false vacuum: Gravitational effects on and of vacuum decay. 2”, hep-th/0211160 (2002).
[286] S. W., Hawking and I. G., Moss, “Supercooled phase transitions in the very early universe”, Phys. Lett. 110B, 35 (1982).
[287] K., Lee and E. J., Weinberg, “Decay of the true vacuum in curved space-time”, Phys. Rev.D 36, 1088 (1987).
[288] L. F., Abbott and S., Deser, “Stability of gravity with a cosmological constant”, Nucl. Phys.B 195, 76 (1982).
[289] J. C., Hackworth, “Vacuum decay in de Sitter spacetime”, Ph. D. thesis, Columbia University (2006).
[290] G., Lavrelashvili, “The number of negative modes of the oscillating bounces”, Phys. Rev.D 73, 083513 (2006).
[291] T., Tanaka, “The no-negative mode theorem in false vacuum decay with gravity”, Nucl. Phys.B 556, 373 (1999).
[292] A., Khvedelidze, G. V., Lavrelashvili, and T., Tanaka, “On cosmological perturbations in closed FRW model with scalar field and false vacuum decay”, Phys. Rev.D 62, 083501 (2000).
[293] G. V., Lavrelashvili, “Negative mode problem in false vacuum decay with gravity”, Nucl. Phys. Proc. Suppl. 88, 75 (2000).
[294] S., Gratton and N., Turok, “Homogeneous modes of cosmological instantons”, Phys. Rev.D 63, 123514 (2001).
[295] S., Coleman and P. J., Steinhardt, unpublished.
[296] A. A., Starobinsky, “Stochastic de Sitter (inflationary) stage in the early universe.” In Field Theory, Quantum Gravity and Strings, eds. H. J., De Vega and N., Sanchez (New York: Springer-Verlag, 1986).
[297] A. S., Goncharov, A. D., Linde, and V. F., Mukhanov, “The global structure of the inflationary universe”, Int. J. Mod. Phys.A 2, 561 (1987).
[298] A. D., Linde, “Hard art of the universe creation (stochastic approach to tunneling and baby universe formation)”, Nucl. Phys.B 372, 421 (1992).
[299] A. D., Linde, “A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. 108B, 389 (1982).
[300] A., Albrecht and P. J., Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett. 48, 1220 (1982).
[301] J., Garriga and A., Megevand, “Coincident brane nucleation and the neutralization of Λ”, Phys. Rev.D 69, 083510 (2004).
[302] A., Masoumi and E. J., Weinberg, “Bounces with O(3)×O(2) symmetry.” (2012).
[303] S. W., Hawking, I. G., Moss, and J. M., Stewart, “Bubble collisions in the very early universe”, Phys. Rev.D 26, 2681 (1982).
[304] J., Garriga, A. H., Guth, and A., Vilenkin, “Eternal inflation, bubble collisions, and the persistence of memory”, Phys. Rev.D 76, 123512 (2007).
[305] S., Chang, M., Kleban, and T. S., Levi, “When worlds collide”, JCAP 0804, 034 (2008).
[306] S., Chang, M., Kleban, and T. S., Levi, “Watching worlds collide: effects on the CMB from cosmological bubble collisions”, JCAP 0904, 025 (2009).
[307] A., Aguirre, M. C., Johnson, and M., Tysanner, “Surviving the crash: Assessing the aftermath of cosmic bubble collisions”, Phys. Rev.D 79, 123514 (2009).
[308] B., Freivogel, M., Kleban, A., Nicolis, and K., Sigurdson, “Eternal inflation, bubble collisions, and the disintegration of the persistence of memory”, JCAP 0908, 036 (2009).
[309] J. J., Blanco-Pillado and M. P., Salem, “Observable effects of anisotropic bubble nucleation”, JCAP 1007, 007 (2010).
[310] L. F., Abbott and S., Coleman, “The collapse of an anti-de Sitter bubble”, Nucl. Phys.B 259, 170 (1985).
[311] J. E., Humphreys, Introduction to Lie Algebras and Representation Theory (New York: Springer-Verlag, 1972).
[312] P., Ramond, Group Theory (Cambridge University Press, 2010).
[313] H. J., de Vega and F. A., Schaposnik, “Classical vortex solution of the Abelian Higgs model”, Phys. Rev.D 14, 1100 (1976).
[314] J. E., Kiskis, “Fermions in a pseudoparticle field”, Phys. Rev.D 15, 2329 (1977).