Skip to main content Accessibility help
×
  • Cited by 5
Publisher:
Cambridge University Press
Online publication date:
February 2013
Print publication year:
2013
Online ISBN:
9781139410397

Book description

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

Reviews

Review of the set:'The two-volume set under review is a worthy addition to this tradition from two of the younger generation of researchers. It is remarkable that the authors have managed to fit all of this into [this number of] smaller-than-average pages without omitting to provide motivation and helpful intuitive remarks. Altogether, these books are a most welcome addition to the literature of harmonic analysis.'

Gerald B. Folland Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] Ablowitz, M. and Segur, H. 1981. Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, PA.
[2] Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., and Tchamitchian, Ph. 2002a. The solution of the Kato square root problem for second order elliptic operators in ℝn. Ann. Math. 156, 633–654.
[3] Auscher, P., Hofmann, S., Muscalu, C., Tao, T., and Thiele, C. 2002b. Carleson measures, trees, extrapolation and T(b) theorems. Publ. Mat. 46, 257–325.
[4] Bahouri, H., Chemin, J.-Y., and Danchin, R. 2001. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der MathematischenWissenschaften, vol. 343, Springer, Heidelberg.
[5] Bényi, A., Demeter, C., Nahmod, A., Thiele, C., Torres, R., and Villaroya, P. 2009. Modular invariant bilinear T(1) theorem. J. Anal. Math. 109, 279–352.
[6] Bernicot, F. 2008. Local estimates and global continuities in Lebesgue spaces for bilinear operators. Anal. PDE 1, 1–27.
[7] Bernicot, F. 2011. Lp estimates for non-smooth bilinear Littlewood–Paley square functions on ℝ. Math. Ann. 351, 1–49.
[8] Billard, P. 1966/1967. Sur la convergence presque partout des séries de Fourier–Walsh de fonctions de l'espace L2(0, 1). Studia Math. 28, 363–388.
[9] Bony, J. M. 1981. Calcul symbolique et equations non lineaires. Ann. Sci. Ecole Norm. Sup. 14, 209–246.
[10] Calderón, A. 1965. Commutators of singular integral operators. Proc. Nat. Acad. Sci. USA 53, 1092–1099.
[11] Calderón, A. 1978. Commutators, singular integrals on Lipschitz curves and applications. In Proc. Int. Congress of Math. (Helsinki), pp. 85–96.
[12] Carleson, L. 1966. On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157.
[13] Chang, S.-Y. A. and Fefferman, R. 1985. Some recent developments in Fourier analysis and Hp-theory on product domains. Bull. Amer. Math. Soc. 12, 1–43.
[14] Chow, Y. and Teicher, H. 1997. Probability Theory. Independency, Interchangeability and Martingales. Third edition. Springer Texts in Statistics, vol. 22, Springer, New York.
[15] Christ, M. 1990. Lectures on Singular Integral Operators. CBMS Regional Conference Series in Mathematics, vol. 77, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI.
[16] Christ, M. 2001. On certain elementary trilinear operators. Math. Res. Lett. 8, 43–56.
[17] Christ, M. and Journé, J. 1987. Polynomial growth estimates for multilinear singular integrals. Acta Math. 159, 51–80.
[18] Christ, M. and Kiselev, A. 2001a. Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425.
[19] Christ, M. and Kiselev, A. 2001b. WKB asymptotic behaviour of almost all generalized eigenfunctions of one-dimensional Schrödinger operators. J. Funct. Anal. 179, 426–447.
[20] Christ, M. and Weinstein, M. 1991. Dispersion of small amplitude solutions of the generalized KdV equation. J. Funct. Anal. 100, 87–109.
[21] Christ, M., Li, X., Tao, T., and Thiele, C. 2005. On multilinear oscillatory integrals, nonsingular and singular. Duke Math. J. 130, 321–351.
[22] Cohen, J. and Gosselin, J. 1986. A BMO estimate for multi-linear singular integrals. Illinois J. Math. 30, 445–465.
[23] Coifman, R. and Grafakos, L. 1992. Hardy space estimates for multilinear operators I. Revista Mat. Iberoamericana 8, 45–67.
[24] Coifman, R. and Meyer, Y. 1975. On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212, 315–331.
[25] Coifman, R. and Meyer, Y. 1978. Au delá des opérateurs pseudo-différentieles. Astérisque 57.
[26] Coifman, R. and Meyer, Y. 1997. Wavelets, Calderón Zygmund Operators and Multilinear Operators. Translated from the 1990 and 1991 French originals by David Salinger. Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge.
[27] Coifman, R. and Rochberg, R. 1980. Another characterization of BMO. Proc. Amer. Math. Soc. 79, 249–254.
[28] Coifman, R., Rochberg, R., and Weiss, G. 1976. Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635.
[29] Coifman, R., McIntosh, A., and Meyer, Y. 1982. L'integral de Cauchy définit un opérateur bourné sur le courbes Lipschitziennes. Ann. Math. 116, 361–387.
[30] Coifman, R., Jones, P., and Semmes, S. 1989a. Two elementary proofs of the L2-boundedness of the Cauchy integral on Lipschitz curves. J. Amer. Math. Soc. 2, 553–564.
[31] Coifman, R., Lions, P., Meyer, Y., and Semmes, S. 1989b. Compacité par compensation et espaces de Hardy. C.R. Acad. Sci. Paris 309, 945–949.
[32] Dahlberg, B. 1983. Real analysis and potential theory. In Proc. Int.CongressMathematics (Warszawa), 953–959.
[33] David, G. and Journé, J.-L. 1984. A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2)120, 371–397.
[34] Demeter, C. 2008. Divergence of some combinatorial averages and the unboundedness of the trilinear Hilbert transform. Ergodic Theory Dynam. Systems 28, 1453–1464.
[35] Demeter, C. and Thiele, C. 2010. On the two-dimensional bilinear Hilbert transform. Amer. J. Math. 132, 201–256.
[36] Demeter, C., Pramanik, M., and Thiele, C. 2010. Multilinear singular operators with fractional rank. Pacific J. Math. 246, 293–324.
[37] Do, Y., Muscalu, C., and Thiele, C. 2012. Variational estimates on paraproducts. Revista Math. Iberoamericana 28, 857–878.
[38] Egorov, Yu. V. 1975. Subelliptic operators. Uspekhi Mat. Nauk. 30, 57–104.
[39] Fefferman, C. 1971. On the divergence of multiple Fourier series. Bull. Amer. Math. Soc. 77, 191–195.
[40] Fefferman, C. 1973. Pointwise convergence of Fourier series. Ann Math. 98, 551–571.
[41] Fefferman, C. 1983. The uncertainty principle. Bull. Amer. Math. Soc. 9, 129–206.
[42] Fefferman, R. and Stein, E. 1982. Singular integrals on product spaces. Adv. Math. 45, 117–143.
[43] Ferguson, S. and Lacey, M. 2002. A characterization of product BMO by commutators. Acta Math. 189, 143–160.
[44] Frazier,, M. and Jawert, B. 1990. A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 190, 34–170.
[45] Germain, P., Masmoudi, N., and Shatah, J. 2012. Global solutions for the gravity water wave equation in dimension 3. Ann. Math. 175, 691–754.
[46] Germain, P., Masmoudi, N., and Shatah, J. 2010b. Global solutions for 2D quadratic Schrödinger equations. To appear in J. Analyse Math.
[47] Gilbert, J. and Nahmod, A. 2001. Bilinear operators with nonsmooth symbols I. J. Fourier Anal. Appl. 7, 435–467.
[48] Grafakos, L. 1992. Hardy space estimates for multilinear operators II. Revista Mat. Iberoamericana 8, 69–92.
[49] Grafakos, L. and Honzík P., 2006. Maximal transference and summability of multilinear Fourier series. J. Aust. Math. Soc. 80, 65–80.
[50] Grafakos, L. and Kalton, N. 2001. The Marcinkiewicz multiplier condition for bilinear operators. Studia Math. 146, 115–156.
[51] Grafakos, L. and Li, X. 2004. Uniform estimates for the bilinear Hilbert transform I. Ann. Math. 159, 889–933.
[52] Grafakos, L. and Li, X. 2006. The disc as a bilinear multiplier. Amer. J. Math. 128, 91–119.
[53] Grafakos, L. and Tao, T. 2003. Multilinear interpolation between adjoint operators. J. Funct. Anal. 199, 379–385.
[54] Grafakos, L. and Torres, R. 2002a. Discrete decompositions for bilinear operators and almost diagonal conditions. Trans. Amer. Math. Soc. 354, 1153–1176.
[55] Grafakos, L. and Torres, R. 2002b. Multilinear Calderón Zygmund theory. Adv. Math. 165, 124–164.
[56] Hunt, R. 1968. On the convergence of Fourier series. Orthogonal Expansions and their Continuous Analogues. Proc. Conf. Edwardsville, IL, 1967. Southern Illinois University Press, Carbondale, IL, pp. 235–255.
[57] Janson, S. 1988. On interpolation ofmultilinear operators. Lecture Notes in Mathematics, vol. 1302, Springer, pp. 290–302.
[58] Jerison, D. and Kenig, C. 1981. The Dirichlet problem in non-smooth domains. Ann. Math. 113, 367–382.
[59] Journé, J. L. 1985. Calderón–Zygmund operators on product spaces. Revista Mat. Iberoamericana 1, 55–91.
[60] Journé, J. L. 1986. A covering lemma for product spaces. Ann. Inst. Fourier 96, 593–598.
[61] Journé, J. L. 1988. Two problems of Calderón–Zygmund theory on product-spaces. Ann. Inst. Fourier 38, 111–132.
[62] Kato, T. and Ponce, G. 1988. Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907.
[63] Kenig, C. 1994. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Conference Series in Mathematics, vol.83, American Mathematical Society, Providence, RI.
[64] Kenig, C. 2004. On the local and global well-posedness theory for the KP-I equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 827–838.
[65] Kenig, C. and Stein, E. M. 1999. Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15.
[66] Kenig, C., Ponce, G., and Vega, L. 1989. On the (generalized) KdV equations. Duke Math. J. 59, 585–610.
[67] Kovać, V. 2010. Boundedness of the twisted paraproduct. arXiv: 1011:6140, 21 pp.
[68] Lacey, M. 1998. On the bilinear Hilbert transform. In Proc. ICM Berlin, pp. 647–656.
[69] Lacey, M. 2000. The bilinear maximal functions map into Lp for 2/3 < p ≤ 1. Ann. Math. 155, 35–57.
[70] Lacey, M. and Thiele, C. 1997. Lp estimates for the bilinear Hilbert transform. Ann. Math. 146, 693–724.
[71] Lacey, M. and Thiele, C. 1999. On Calderón's conjecture. Ann. Math. 150, 475–496.
[72] Lacey, M. and Thiele, C. 2000. A proof of boundedness of the Carleson operator. Math. Res. Lett. 7, 361–370.
[73] Lacey, M., Petermichl, S., Pipher, J., and Wick, B. 2009. Multiparameter Riesz commutators. Amer. J. Math. 131, 731–769.
[74] Li, X. 2006. Uniform estimates for the bilinear Hilbert transform II. Revista Mat. Iberoamericana 22, 1069–1126.
[75] Li, X. and Muscalu, C. 2007. Generalizations of the Carleson–Hunt theorem I. The classical singularity case. Amer. J. Math. 129, 983–1019.
[76] Lie, V. 2009. The (weak) L2 boundedness of the quadratic Carleson operator. Geom. Funct. Anal. 19, 457–497.
[77] Lie, V. 2011. The polynomial Carleson operator. arXiv:1105.4504, 37 pp.
[78] Linares, F. and Ponce, G. 2009. Introduction toNonlinearDispersive Equations. Springer, New York.
[79] Mitrea, M. 1994. Clifford wavelets, singular integrals and Hardy spaces. Lecture Notes in Mathematics, vol. 1575, Springer, New York.
[80] Murai, T. 1984. A Real Variable Method for the Cauchy Transform and Analytic Capacity. Lecture Notes in Mathematics, vol. 1307, Springer, New York.
[81] Muscalu, C. 2000. Ph. D. thesis. Brown University.
[82] Muscalu, C. 2003a. Unpublished notes I. IAS Princeton.
[83] Muscalu, C. 2003b. Unpublished notes II. IAS Princeton.
[84] Muscalu, C. 2007. Paraproducts with flag singularities I. A case study. Revista Mat. Iberoamericana 23, 705–742.
[85] Muscalu, C. 2010. Flag paraproducts. Contemp. Math. 505, 131–151.
[86] Muscalu, C. 2012a. Calderón commutators and the Cauchy integral on Lipschitz curves revisited I. First commutator and generalizations. arXiv:1201.3845, 23 pp.
[87] Muscalu, C. 2012b. Calderón commutators and the Cauchy integral on Lipschitz curves revisited II. Cauchy integral and generalizations. arXiv:1201.3850, 29 pp.
[88] Muscalu, C. 2012c. Calderón commutators and the Cauchy integral on Lipschitz curves revisited III. Polydisc extensions. arXiv:1201.3855, 25 pp.
[89] Muscalu, C., Tao, T., and Thiele, C. 2002a. Adiscrete model for the Bi-Carleson operator. Geom. Funct. Anal. 12, 1324–1364.
[90] Muscalu, C., Tao, T., and Thiele, C. 2002b. Multilinear multipliers given by singular symbols. J. Amer. Math. Soc. 15, 469–496.
[91] Muscalu, C., Tao, T., and Thiele, C. 2003a. A Carleson theorem for a Cantor group model of the scattering transform. Nonlinearity 16, 219–246.
[92] Muscalu, C., Tao, T., and Thiele, C. 2003b. A counterexample to a multilinear endpoint question of Christ and Kiselev. Math. Res. Lett. 10, 237–246.
[93] Muscalu, C., Pipher, J., Tao, T., and Thiele, C. 2004a. Bi-parameter paraproducts. Acta Math. 193, 269–296.
[94] Muscalu, C., Tao, T., and Thiele, C. 2004b. Lp estimates for the biest II. The Fourier case. Math. Ann. 329, 427–461.
[95] Muscalu, C., Tao, T., and Thiele, C. 2004c. The bi-Carleson operator. Geom. Funct. Anal. 16, 230–277.
[96] Muscalu, C., Pipher, J., Tao, T., and Thiele, C. 2006. Multi-parameter paraproducts. Revista Mat. Iberoamericana 22, 963–976.
[97] Muscalu, C., Tao, T., and Thiele, C. 2007. Multi-linear multipliers associated to simplexes of arbitrary length. arXiv:0712.2420, 52 pp.
[98] Oberlin, R., Seeger, A., Tao, T., Thiele, C., and Wright, J. 2009. A variation norm Carleson operator. arXiv:0910.1555, 41 pp.
[99] Palsson, E. 2011. Ph. D. thesis. Cornell University.
[100] Pipher, J. 1986. Journé's covering lemma and its extension to higher dimensions. Duke Math. J. 53, 683–690.
[101] Pipher, J. 2001. Personal communication. Mount Holyoke.
[102] Ponce, G. and Vega, L. 1988. Nonlinear small data for the gKdV equation. J. Funct. Anal. 90, 445–457.
[103] Rochberg, R. and Weiss, G. 1983. Derivatives of analytic families of Banach spaces. Ann. Math. 118, 315–347.
[104] Sjölin, P. 1971. Convergence almost everywhere of certain singular integrals andmultiple Fourier series. Ark. Mat. 9, 65–90.
[105] Stein, E. 1993. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton, NJ.
[106] Stein, E. and Wainger, S. 2001. Oscillatory integrals related to Carleson theorem. Math. Res. Lett. 8, 789–800.
[107] Strauss, W. 1974. Dispersion of low energy waves for two conservative equations. Arch. Rational Mech. Anal. 55, 110–133.
[108] Strichartz, R. 1969. A multilinear version of Marcinkiewicz interpolation theorem. Proc. Amer. Math. Soc. 21, 441–444.
[109] Tao, T. 2002. Lectures in harmonic analysis. Notes from UCLA.
[110] Tao, T. and Thiele, C. 2003. Nonlinear Fourier analysis. Lectures at Park City.
[111] Taylor, M. 1998. Tools for PDEs. Pseudodifferential Operators, Paradifferential Operators and Layer Potentials. Mathematical Surveys Monographs, vol. 10, American Mathematical Society, Providence, RI.
[112] Thiele, C. 1995. Ph. D. thesis. Yale University.
[113] Thiele, C. 2000. The quartile operator and pointwise convergence of Walsh series. Trans. Amer. Math. Soc. 351, 5745–5766.
[114] Thiele, C. 2002a. A uniform estimate. Ann. Math. 156, 519–563.
[115] Thiele, C. 2002b. Singular integrals meet modulation invariance. In Proc. ICM(Beijing), pp. 721–732.
[116] Thiele, C. 2006. Wave Packet Analysis. CBMS Conference Series in Mathematics, vol. 105, American Mathematical Society, Providence, RI.
[117] Verchota, G. 1984. Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59, 572–611.
[118] Verdera, J. 2001. L2 boundedness of theCauchy integral and Menger curvature. Contemp. Math. 277, 139–158.
[119] Workman, J. 2008. Ph. D. thesis. Cornell University.
[120] Wu, S. 2009. Almost global wellposedness of the 2D full water wave problem. Invent. Math. 177, 45–135.
[121] Wu, S. 2011. Global wellposedness of the 3D full water wave problem. Invent. Math. 184, 125–220.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.