References[1] Adams, D. R. 1975. A note on Riesz potentials. Duke Math. J. 42, 765–778.
[2] Alinhac, S. and Gérard, P. 2007. Pseudo-Differential Operators and the Nash-Moser Theorem. Graduate Studies in Mathematics, vol. 82, American Mathematical Society, Providence, RI.
[3] Antonov, N. Yu. 1996. Convergence of Fourier series. In Proc. XX Workshop on Function Theory (Moscow, 1995). East J. Approx. 2, 187–196.
[4] Auscher, P., Hofmann, S., Muscalu, C., Tao, T., and Thiele, C. 2002. Carleson measures, trees, extrapolation, and T(b) theorems. Publ. Mat. 46, 257–325.
[5] Bahouri, H., Chemin, J. -Y., and Danchin, R. 2001. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, Heidelberg.
[6] Beals, M., Fefferman, C., and Grossman, R. 1983. Strictly pseudoconvex domains in ℂn. Bull. Amer. Math. Soc. (New Series) 8, 125–322.
[7] Bergh, J. and Löfström, J. 1976. Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin–New York.
[8] Bonami, A. and Demange, B. 2006. Asurvey on uncertainty principles related to quadratic forms. Collect. Math., extra volume, 1–36.
[9] Bony, J.-M. 1981. Calcul symbolique et propagation des singularités pour les équations aux dériveés partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14, 209–246.
[10] Bourgain, J. 1989. Bounded orthogonal systems and the Λ(p)-set problem. Acta Math. 162, 227–245.
[11] Bourgain, J., Goldstein, M., and Schlag, W. 2001. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Comm. Math. Phys. 220, 583–621.
[12] Calderón|A.-P. 1958. Uniqueness in the Cauchy problem for partial differential equations. Amer. J. Math. 80, 16–36.
[13] Calderón, A.-P. 1966. Singular integrals. Bull. Amer. Math. Soc. 72, 427–465.
[14] Calderón, A.-P. and Vaillancourt, R. 1972. A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA 69, 1185–1187.
[15] Calderón, A. P. and Zygmund, A. 1952. On the existence of certain singular integrals. Acta Math. 88, 85–139.
[16] Carleson, L. 1966. On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157.
[17] Cazenave, T. 2003. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI.
[18] Chandrasekharan, K. 1989. Classical Fourier Transforms. Universitext, Springer-Verlag, Berlin.
[19] Chandrasekharan, K. 1996. A Course on Topological Groups. Texts and Readings in Mathematics, vol. 9, Hindustan Book Agency, New Delhi.
[20] Chow, Y. S. and Teicher, H. 1997. Probability Theory. Independence, Interchangeability, Martingales. Third edition. Springer Texts in Statistics, Springer-Verlag, New York.
[21] Christ, M. 1990. Lectures on Singular Integral Operators. CBMS Regional Conference Series in Mathematics, vol. 77, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI.
[22] Christ, M. and Fefferman, R. 1983. A note on weighted norm inequalities for the Hardy–Littlewood maximal operator. Proc. Amer. Math. Soc. 87, 447–448.
[23] Coifman, R. R., Jones, P. W., and Semmes, S. 1989. Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J. Amer. Math. Soc. 2, 553–564.
[24] Coifman, R. and Meyer, Y. 1997. Wavelets. Calderón–Zygmund and Multilinear Operators. Translated from the 1990 and 1991 French originals by David, Salinger. Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge.
[25] Cóordoba, A. 1979. A note on Bochner–Riesz operators. Duke Math. J. 46, 505–511.
[26] Cotlar, M. 1955. A combinatorial inequality and its application to L2 spaces. Rev. Math. Guyana 1, 41–55.
[27] David, G. and Journé, J.-L. 1984. A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2) 120, 371–397.
[28] Davis, K. M. and Chang, Y.-C. 1987. Lectures on Bochner Riesz Means. London Mathematical Society Lecture Note Series, vol. 114, Cambridge University Press, Cambridge.
[29] Dimassi, M. and Sjóstrand, J. 1999. Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge.
[30] Drury, S. W. 1970. Sur les ensembles de Sidon. C. R. Acad. Sci. Paris Sér. A, B 271, A162–A163.
[31] Duoandikoetxea, J. 2001. Fourier Analysis (English summary). Translated and revised from the 1995 Spanish original by David, Cruz-Uribe. Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI.
[32] Durrett, R. 2010. Probability: Theory and Examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge.
[33] Dym, H. and McKean, H. P. 1972. Fourier Series and Integrals. Probability and Mathematical Statistics, vol. 14, Academic Press, New York–London.
[34] Evans, L. C. 2010. Partial Differential Equations. Second edition. Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI.
[35] Evans, L. C. and Zworski, M. 2011. Lectures on Semiclassical Analysis, version 0.8, preprint.
[36] Fefferman, C. 1970. Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36.
[37] Fefferman, C. 1971. The multiplier problem for the ball. Ann. Math. (2) 94, 330–336.
[38] Fefferman, C. 1983. The uncertainty principle.Bull. Amer. Math. Soc. 9, 129–206.
[39] Fefferman, C. and Stein, E. M. 1972. Hp spaces of several variables. Acta Math. 129, 137–193.
[40] Folland, G. B. 1989. Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ.
[41] Folland, G. B. 1995. Introduction to Partial Differential Equations. Second edition. Princeton University Press, Princeton, NJ.
[42] Frank, R. and Seiringer, R. 2008. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430.
[43] Frazier, M., Jawerth, B., and Weiss, G. 1991. Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79, published for the Conference Board of the Mathematical Sciences, Washington, DC by the American Mathematical Society, Providence, RI.
[44] Füredi, Z. and Loeb, P. 1994. On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc. 121, 1063–1073.
[45] García-Cuerva, J. and Rubio de Francia, J. 1985. Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116; Notas de Matemática, vol. 104, North-Holland, Amsterdam.
[46] Garnett, J. B. 2007. Bounded Analytic Functions. Revised first edition. Graduate Texts in Mathematics. vol. 236, Springer, New York.
[47] Garnett, J. B. and Marshall, D. E. 2008. Harmonic Measure. Reprint of the 2005 original. New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge.
[48] Gilbarg, D. and Trudinger, N. 1983. Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin.
[49] Ginibre, J. and Velo, G. 1979. On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case. J. Func. Anal. 32, 33–71; 1985. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64, 363–401; 1985. The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189, 487–505; 1985. Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43, 399–442.
[50] Grigis, A. and Sjöstrand, J. 1994. Microlocal Analysis for Differential Operators. An Introduction. London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, Cambridge.
[51] Halmos, P. R. 1950. Measure Theory. Van Nostrand, New York.
[52] Han, Q. and Lin, F. 2011. Elliptic Partial Differential Equations. Second edition. Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI.
[53] Hassell, A., Tao, T., and Wunsch, J. 2006. Sharp Strichartz estimates on nontrapping asymptotically conic manifolds. Amer. J. Math. 128, 963–1024. 2005. A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds. Comm. Partial Diff. Eqs. 30, 157–205.
[54] Havin, V. and Jöricke, B. 1994. The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, p. 28. Springer-Verlag, Berlin.
[55] Hoffman, K. 1988. Banach Spaces of Analytic Functions. Reprint of the 1962 original. Dover Publications, New York.
[56] Hörmander, L. 1990. The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Second edition. Springer Study Edition, Springer-Verlag, Berlin.
[57] Hörmander, L. 2005. The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Reprint of the 1983 original. Classics in Mathematics, Springer-Verlag, Berlin.
[58] Hörmander, L. 2007. The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators. Reprint of the 1994 edition. Classics in Mathematics, Springer, Berlin.
[59] Hörmander, L. 2009. The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators. Reprint of the 1994 edition. Classics in Mathematics, Springer-Verlag, Berlin.
[60] Jaming, P. 2007. Nazarov's uncertainty principles in higher dimensions. J. Approx. Theory 149, 3041.
[61] Janson, S. 1978. Mean oscillation and commutators of singular integral operators. Ark. Mat. 16, 263–270.
[62] Jerison, D. 1990. An elementary approach to local solvability for constant coefficient partial differential equations. Forum Math. 2, 45–50.
[63] Kahane, J.-P. 1985. Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge.
[64] Katz, N. unpublished lecture notes.
[65] Katznelson, Y. 2004. An Introduction to Harmonic Analysis. Third edition. Cambridge University Press, Cambridge.
[66] Keel, M. and Tao, T. 1998. Endpoint Strichartz estimates, Amer. J. Math., 120, pp. 955–980.
[67] Kenig, C. E., Ponce, G., and Vega, L. 2007. The initial value problem for the general quasi-linear Schrödinger equation. In Recent Developments in Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 439, Amer. Math. Soc., Providence, RI.
[68] Knapp, A. W. and Stein, E. 1976. Intertwining operators for semi-simple groups. Ann. Math. 93, 489–578.
[69] Kolmogorov, A. N. 1923. Une série de Fourier–Lebesgue divergente presque partout. Fundamenta Mathematicae 4, 324–328.
[70] Konyagin, S. V. 2000. On the divergence everywhere of trigonometric Fourier series (in Russian). Mat. Sb. 191, 103–126. Translation in Sb. Math. 191, 97–120.
[71] Koosis, P. 1998. Introduction to Hp Spaces. Second edition. With two appendices by V. P., Havin. Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge.
[72] Kovrijkine, O. 2001. Some results related to the Logvinenko–Sereda theorem. Proc. Amer. Math. Soc. 129, 3037–3047.
[73] Lebedev, V. and OlevskiẐ, A, . 1994. C1 changes of variable: Beurling–Helson type theorem and Hörmander conjecture on Fourier multipliers. Geom. Funct. Anal. 4, 213–235.
[74] Lefèvre, P. and Rodríguez-Piazza, L. 2009. Invariant means and thin sets in harmonic analysis with applications to prime numbers. J. Lond. Math. Soc. (2) 80, 72–84.
[75] Levin, B. Ya. 1996. Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI.
[76] Li, D., Queffélec, H., and Rodríguez-Piazza, L. 2002. Some new thin sets of integers in harmonic analysis. J. Anal. Math. 86, 105–138; 2008. On some random thin sets of integers. Proc. Amer. Math. Soc. 136, 141–150.
[77] Lieb, E. H. and Loss, M. 2001. Analysis. Second edition. Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI.
[78] Lindblad, H. and Sogge, C. D. 1995. On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130, 357–426.
[79] Marcus, M. B. and Pisier, G. 1981. Random Fourier Series with Applications to Harmonic Analysis. Annals of Mathematics Studies, vol. 101, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo.
[80] Martinez, A. 2002. An Introduction to Semiclassical and Microlocal Analysis. Universitext, Springer-Verlag, New York.
[81] Marzuola, J., Metcalfe, J., Tataru, D., and Tohaneanu, M. 2010. Strichartz estimates on Schwarzschild black hole backgrounds. Comm. Math. Phys. 293, 37–83.
[82] Meyer, Y. 1989. Wavelets and Operators. In Analysis at Urbana I. London Mathematical Society Lecture Note Series, vol. 137, Cambridge University Press, Cambridge, pp. 256–365.
[83] Mockenhaupt, G., Seeger, A., and Sogge, C. D. 1992. Wave front sets, local smoothing and Bourgain's circular maximal theorem. Ann. Math. (2) 136, 207–218.
[84] Montgomery, H. L. 1994. Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. CMBS Lectures, vol. 84, American Mathematical Society, Providence, RI.
[85]Müller, P. F. X. 2005. Isomorphisms between H1 Spaces. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences Mathematical Monographs (New Series)], vol. 66, Birkhäuser, Basel.
[86] Nakanishi, K. and Schlag, W. 2011. Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. European Mathematical Society.
[87] Nazarov, F. L. 1993. Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. Algebra i Analiz 5, 3–66; 1994. Translation in St Petersburg Math. J. 5, 663–717.
[88] Nirenberg, L. 1972. Lectures on Linear PartialDifferential Equations. Expository lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, 22–26 May.
[89] Opic, B. and Kufner, A. 1990. Hardy-type Inequalities. Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical.
[90] Paley, R. E. A. C., Wiener, N., and Zygmund, A. 1933. Notes on random functions. Math. Z. 37, 647–668.
[91] Pommerenke, Ch. 1977. Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment. Math. Helv. 52, 591–602.
[92] Rider, D. 1966. Gap series on groups and spheres. Can. J. Math. 18, 389–398.
[93] Rider, D. 1975. Randomly continuous functions and Sidon sets. Duke Math. J. 42, 759–764.
[94] Rudin, W. 1960. Trigonometric series with gaps. J. Math. Mech. 9, 203–227.
[95] Rudin, W. 1962. Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, vol. 12, Interscience Publishers (a division of John Wiley and Sons), New York–London.
[96] Rudin, W. 1987. Real and Complex Analysis. Third edition. McGraw-Hill, New York.
[97] Rudin, W. 1991. Functional Analysis. Second edition. International Series in Pure and Applied Mathematics, McGraw-Hill, New York.
[98] Segovia, C. and Torrea, J. 1991. Weighted inequalities for commutators of fractional and singular integrals. In Proc. Conf. on Mathematical Analysis (El Escorial, 1989), Publ. Mat. 35, 209–235.
[99] Semmes, S. 1994. A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Comm. Partial Diff. Eqs. 19, 277–319.
[100] Shatah, J. and Struwe, M. 1998. Geometric Wave Equations. Courant Lecture Notes in Mathematics, vol. 2, American Mathematical Society, Providence, RI.
[101] Sinai, Y. G. 1992. Probability Theory. An Introductory Course. Translated from the Russian and with a preface by D., Haughton. Springer Textbook, Springer-Verlag, Berlin.
[102] Sjölin, P. 1969. An inequality of Paley and convergence a.e. of Walsh–Fourier series. Ark. Mat. 7, 551–570.
[103] Slavin, L. and Volberg, Al. 2007. Bellman function and the H1-BMO duality. In Harmonic Analysis, Partial Differential Equations, and Related Topics, Contemporary Mathematics, vol. 428, American Mathematical Society, Providence, RI, pp. 113–126.
[104] Sogge, C. D. 1991. Propagation of singularities and maximal functions in the plane. Invent. Math. 104, 349–376.
[105] Sogge, C. D. 1993. Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge.
[106] Sogge, C.D. 2008. Lectures on Non-Linear Wave Equations. Second edition. International Press, Boston, MA.
[107] Stein, E. M. 1961. On limits of sequences of operators. Ann. Math. (2) 74, 140–170.
[108] Stein, E. M. 1970. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ.
[109] Stein, E. M. 1970. Topics in Harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, vol. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo.
[110] Stein, E. M. 1986. Oscillatory integrals in Fourier analysis. In Beijing Lectures in Harmonic Analysis, Beijing, 1984, Annals of Mathematical Studies, vol. 112, Princeton University Press, Princeton, NJ, pp. 307–355.
[111] Stein, E. M. 1993. Harmonic Analysis: Real-VariableMethods, Orthogonality, and Oscillatory Integrals. With the assistance of T. S., Murphy. Princeton Mathematical Series, vol. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ.
[112] Stein, E. M. and Weiss, G. 1971. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ.
[113] Strichartz, R. S. 1977. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714.
[114] Sulem, C. and Sulem, P-L. 1999. The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York.
[115] Tao, T. 2004. Some recent progress on the restriction conjecture. In Applied Numerical Harmonic Analysis, Birkhäuser, Boston, MA, pp. 217–243.
[116] Tao, T. 2006. Nonlinear Dispersive Equations. Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106, American Mathematical Society, Providence, RI.
[117] Tataru, D. 2002. On the Fefferman–Phong inequality and related problems. Comm. Partial Diff. Eqs. 27, 2101–2138.
[118] Tataru, D. 2004. Phase Space Transforms and Microlocal Analysis. Phase Space Analysis of Partial Differential Equations, Vol. II, pp. 505–524, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa.
[119] Tataru, D. 2008. Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Amer. J. Math. 130, 571–634.
[120] Taylor, M. E. 1981. Pseudodifferential Operators. Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, NJ.
[121] Taylor, M. E. 1991. Pseudodifferential Operators and Nonlinear PDEs. Progress in Mathematics, vol. 100, Birkhäuser, Boston, MA.
[122] Taylor, M. E. 2000. Tools for PDEs. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI.
[123] Torchinsky, A. 1986. Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123, Academic Press, Orlando, FL.
[124] Uchiyama, A. 1982. A constructive proof of the Fefferman–Stein decomposition of BMO(Rn). Acta Math. 148, 215–241.
[125] Wojtaszczyk, P. 1991. Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge.
[126] Wolf, J. A. 2007. Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142, American Mathematical Society, Providence, RI.
[127] Wolff, T. H. 2001. A sharp bilinear cone restriction estimate. Ann. Math. (2) 153, 661–698.
[128] Wolff, T. H. 2003. Lectures on Harmonic Analysis. With a foreword by C., Fefferman and preface by I., Łaba. (eds. I., Łaba and C., Shubin). University Lecture Series, vol. 29, American Mathematical Society, Providence, RI.
[129] Yafaev, D. 1999. Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144.
[130] Zworski, M. 2012. Semiclassical Analysis, Graduate Studies in Mathematics, vol.138, American Mathematical Society, Providence, RI.
[131] Zygmund, A. 1971. Intégrales Singulières. Lecture Notes in Mathematics, vol. 204, Springer-Verlag, Berlin–New York.
[132] Zygmund, A. 1974. On Fourier coefficients and transforms of functions of two variables. Studia Math. 50, 189–201.
[133] Zygmund, A. 2002. Trigonometric Series. Vols. I and II. Third edition. With a foreword by Robert A., Fefferman. Cambridge Mathematical Library, Cambridge University Press, Cambridge.