Bagaria, J. and DiPrisco, C.A. (2009) Parameterized partition relations on the real numbers, Archive for Mathematical Logic 48, 201–226.
Balcar, B. and Simon, P. (1989) Disjoint refinement. In Handbook of Boolean Algebras. Amsterdam: North Holland, pp. 333–388.
Balcar, B., Jech, T. and Pazák, T. (2005) Complete CCC Boolean algebras, the order sequential topology, and a problem of von Neumann, Bulletin of the London Mathematical Society 37, 885–898.
Bartoszynski, T. and Judah, H. (1995) Set Theory: On the Structure ofthe Real Line. Wellesley, MA: A K Peters.
Becker, H. and Kechris, A. (1996) The Descriptive Set Theory of Polish Group Actions. London Mathematical Society Lecture Notes Series 232. Cambridge: Cambridge University Press.
Bell, J.L. (2005) Set Theory. Oxford Logic Guides 47. Oxford: Clarendon Press.
Blass, A. (1989) Applications of superperfect forcing and its relatives. In Set Theory and its Applications, Toronto 1987. Lecture Notes in Mathematics 1401. Berlin: Springer Verlag, pp. 18–40.
Brendle, J., Hjorth, G. and Spinas, O. (1995) Regularity properties for dominating projective sets, Annals of Pure and Applied Logic 72, 291–307.
Cichon, J., Morayne, M., Pawlikowski, J. and Solecki, S. (1991) Decomposing Baire functions, Journal of Symbolic Logic 56, 1273–1283.
Clemens, J. and Zapletal, J. (2012) Dichotomies for ideals, in preparation.
Connes, A., Feldman, J. and Weiss, B. (1981) An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems 1, 431–450.
Debs, G. (1995) Polar σ-ideals of compact sets, Transactions of the American Mathematical Society 347, 317–338.
Debs, G. and Saint-Raymond, J. (1987) Ensembles boréliens d'unicité et d'unicité au sens large, Annals de l'Institut Fourier (Grenoble) 37, 217–239.
Doucha, M. (2013) Ph.D. thesis, Charles University.
Erdős, P. and Rado, R. (1950) A combinatorial theorem, Journal of the London Mathematical Society 25, 249–255.
Farah, I. and Zapletal, J. (2004) Between Maharam's and von Neumann's problems, Mathematical Research Letters 11, 673–684.
Feldman, J. and Moore, C. C. (1977) Ergodic equivalence relations, cohomology and von Neumann algebras, Transactions ofthe American Mathematical Society 234, 289–324.
Foreman, M. and Magidor, M. (1995) Large cardinals and definable counterexamples to the continuum hypothesis, Annals of Pure and Applied Logic 76, 47–97.
Galvin, F. and Prikry, K. (1973) Borel sets and Ramsey's theorem, Journal of Symbolic Logic 38, 193–198.
Gao, S. (2009) Invariant Descriptive Set Theory. Boca Raton, CA: CRC Press.
Grigorieff, S. (1971) Combinatorics on ideals and forcing, Annals of Mathematical Logic 3, 363–394.
Groszek, M. (1987) Combinatorics of ideals and forcing with trees, Journal of Symbolic Logic 52, 582–593.
Groszek, M. (1994) as an initial segment of the c degrees, Journal of Symbolic Logic 59, 956–976.
Harrington, L., Kechris, A. S. and Louveau, A. (1990) A Glimm-Effros dichotomy for Borel equivalence relations, Journal of the American Mathematical Society 3, 903–928.
Harrington, L., Marker, D. and Shelah, S. (1988) Borel orderings, Transactions ofthe American Mathematical Society 310, 293–302.
Hjorth, G. (2000) Actions by the classical Banach spaces, Journal of Symbolic Logic 65, 392–420.
Humke, P. D. and Preiss, D. (1985) Measures for which σ -porous sets are null, Journal ofthe London Mathematical Society 32, 236–244.
Ishiu, T. (2005) α-properness and Axiom A, Fundamenta Mathematicae 186, 25–37.
Jech, T. (2002) Set Theory. New York: Springer Verlag.
Jech, T. and Balcar, B. (2006) Weak distributivity, a problem of von Neumann, and the mystery of measurability, Bulletin of Symbolic Logic 12, 241–265.
Jossen, S. and Spinas, O. (2005) A two-dimensional tree ideal. In Logic Colloquium 2000. Lecture Notes in Logic 19. Urbana, IL: Association for Symbolic Logic, pp. 294–322.
Judah, H., Roslanowski, A. and Shelah, S. (1994) Examples for souslin forcing, Fundamenta Mathematicae 144, 23–42. Math.LO/9310224.
Kanamori, A. (1994) The Higher Infinite. New York: Springer-Verlag.
Kanovei, V. (1999) On non-well-founded iterations of the perfect set forcing, Journal of Symbolic Logic 64, 191–207.
Kanovei, V. (2008) Borel Equivalence Relations. University Lecture Series 44. Providence, RI: American Mathematical Society.
Kanovei, V. and Reeken, M. (2000) New Radon-Nikodym ideals, Mathematika 47, 219–227.
Kechris, A. and Louveau, A. (1989) Descriptive Set Theory and the Structure of Sets of Uniqueness. Cambridge: Cambridge University Press.
Kechris, A. and Louveau, A. (1997) The structure of hypersmooth Borel equivalence relations, Journal of American Mathematical Society 10, 215–242.
Kechris, A. and Miller, B. (2004) Topics in Orbit Equivalence. Lecture Notes in Mathematics 1852. New York: Springer Verlag.
Kechris, A., Louveau, A. and Woodin, H. (1987) The structure of σ-ideals of compact sets, Transactions of the American Mathematical Society 301, 263–288.
Kechris, A. S. (1977) On a notion of smallness for subsets of the Baire space, Transactions of the American Mathematical Society 229, 191–207.
Kechris, A. S. (1994) Classical Descriptive Set Theory. New York: Springer Verlag.
Kellner, J. and Shelah, S. (2011) Saccharinity, Journal of Symbolic Logic 74, 1153–1183. Math.LO/0511330.
Klein, O. and Spinas, O. (2005) Canonical forms of Borel functions on the Milliken space, Transactions of the American Mathematical Society 357, 4739–4769.
Lindenstrauss, J., Preiss, D. and Tišer, J. (2012) Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces. Annals of Mathematics Studies 179. Princeton, NJ: Princeton University Press.
Martin, D. A. (1985) A purely inductive proof of Borel determinacy. In A., Nerode and R. A., Shore (eds), Recursion Theory. Proceedings of Symposia in Pure Mathematics 42. Providence, RI: American Mathematical Society, pp. 303–308.
Matet, P. (1988) Some filters of partitions, Journal of Symbolic Logic 53, 540–553.
Mathias, A. R. (1977) Happy families, Annals of Mathematical Logic 12, 59–111.
Mazur, K. (1991) Fσ -ideals and ω1ω1* gaps in the Boolean algebra P(ω)/I, Fundamenta Mathematicae 138, 103–111.
Miller, A.W. (1984) Rational perfect set forcing. In Axiomatic Set Theory. Contemporary Mathematics 31. Providence, RI: American Mathematical Society, pp. 143–159.
Mycielski, J. (1964) Independent sets in topological algebras, Fundamenta Mathematicae 55, 139–147.
Nešetril, J. (2005) Ramsey classes and homogeneous structures, Combinatorics, Probability and Computing 14, 171–189.
Pelant, J. and Zeleny, M. (2004) The structure of the σ-ideal of σ-porous sets, Commentationes Mathematicae Universitatis Carolinae 45, 37–72.
Pestov, V. (2006) Dynamics of Infinite-Dimensional Groups. University Lecture Series 40. Providence, RI: American Mathematical Society.
Pol, R. and Zakrzewski, P. (2012) On Borel mappings and σ-ideals generated by closed sets, Advances in Mathematics 231, 651–663.
Prömel, H.J. and Voigt, B. (1985) Canonical forms of Borel-measurable mappings Δ :[ω]ω → R, Journal of Combinatorial Theory Series A 40, 409–417.
Rajchman, A. (1922) Sur l'unicité du développement trigonométrique, Fundamenta Mathematicae 3, 287–302.
Rojas, D. (2006) Using determinacy to inscribe compact non-σ-porous sets into projective non-σ-porous sets, Real Analysis Exchange 32, 55–66.
Rosendal, C. (2005) Cofinal families of Borel equivalence relations and quasiorders, Journal of Symbolic Logic 70, 1325–1340.
Rosłanowski, A. (2006) n-localization property, Journal of Symbolic Logic 71, 881–902.
Sabok, M. (2009) σ-continuity and related forcings, Archive for Mathematical Logic 48, 449–464.
Sabok, M. (2012a) Forcing, games, and families of closed sets, Transactions of the American Mathematical Society 364, 4011–4039.
Sabok, M. (2012b) Complexity of Ramsey null sets, Advances in Mathematics 230, 1184–1195.
Sabok, M. and Zapletal, J. (2011) Forcing properties of ideals of closed sets, Journal of Symbolic Logic 76, 1075–1095.
Shelah, S. (1998) Proper and Improper Forcing. 2nd edn. New York: Springer Verlag.
Shelah, S. and Zapletal, J. (2011) Ramsey theorems for product of finite sets with submeasures, Combinatorica 31, 225–244.
Silver, J. (1970) Every analytic set is Ramsey, Journal of Symbolic Logic 35, 60–64.
Silver, J. (1980) Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Annals of Mathematical Logic 18, 1–28.
Solecki, S. (1994) Covering analytic sets by families of closed sets, Journal of Symbolic Logic 59, 1022–1031.
Solecki, S. (1999) Analytic ideals and their applications, Annals of Pure and Applied Logic 99, 51–72.
Solecki, S. and Spinas, O. (1999) Dominating and unbounded free sets, Journal of Symbolic Logic 64, 75–80.
Spinas, O. (2001a) Canonical behavior of Borel functions on superperfect rectangles, Journal of Mathematical Logic 1, 173–220.
Spinas, O. (2001b) Ramsey and freeness properties of Polish planes, Proceedings of the London Mathematical Society 82, 31–63.
Spinas, O. (2009) Proper products, Proceedings ofthe American Mathematical Society 137, 2767–2772.
Steprans, J. (1993) A very discontinuous Borel function, Journal of Symbolic Logic 58, 1268–1283.
Stern, J. (1984) On Lusin's restricted continuum problem, Annals of Mathematics 120, 7–37.
Taylor, A.D. (1976) A canonical partition relation for finite subsets of ω, Journal of Combinatorial Theory Series A 21, 137–146.
Todorcevic, S. (2010) Introduction to Ramsey Spaces. Annals of Mathematics Studies 174. Princeton, NJ: Princeton University Press.
Velickovic, B. and Woodin, W. H. (1998) Complexity of the reals in inner models of set theory, Annals of Pure and Applied Logic 92, 283–295.
Zajícek, L. (1987/1988) Porosity and σ-porosity, Real Analysis Exchange 13, 314–350.
Zajícek, L. and Zeleny, M. (2005) Inscribing compact non-σ-porous sets into analytic non-σ-porous sets, Fundamenta Mathematicae 185, 19–39.
Zapletal, J. (2003) Isolating cardinal invariants, Journal of Mathematical Logic 3, 143–162.
Zapletal, J. (2004) Descriptive Set Theory and Definable Forcing. Providence, RI: American Mathematical Society.
Zapletal, J. (2008) Forcing Idealized. Cambridge Tracts in Mathematics 174. Cambridge: Cambridge University Press.
Zapletal, J. (2009) Preservation of P-points and definable forcing, Fundamenta Mathematicae 204, 145–154.
Zapletal, J. (2011) Overspill and forcing, preprint.