Crossref Citations
This Book has been
cited by the following publications. This list is generated based on data provided by Crossref.
Duquesne, Sylvain
2001.
Integral Points on Elliptic Curves Defined by Simplest Cubic Fields.
Experimental Mathematics,
Vol. 10,
Issue. 1,
p.
91.
Simon, Denis
2002.
Computing the Rank of Elliptic Curves over Number Fields.
LMS Journal of Computation and Mathematics,
Vol. 5,
Issue. ,
p.
7.
Cremona, John E.
2002.
A solution for Note 84.35.
The Mathematical Gazette,
Vol. 86,
Issue. 505,
p.
66.
Gaál, István
Járási, István
and
Luca, Florian
2003.
A Remark on Prime Divisors of Lengths of Sides of Heron Triangles.
Experimental Mathematics,
Vol. 12,
Issue. 3,
p.
303.
Bennett, Michael A.
and
Reznick, Bruce
2004.
Positive Rational Solutions toxy=ymx: A Number-Theoretic Excursion.
The American Mathematical Monthly,
Vol. 111,
Issue. 1,
p.
13.
Elsenhans, Andreas-Stephan
and
Jahnel, Jörg
2005.
The Diophantine Equation 𝑥⁴+2𝑦⁴=𝑧⁴+4𝑤⁴.
Mathematics of Computation,
Vol. 75,
Issue. 254,
p.
935.
Bach, Eric
and
Ryan, Nathan C.
2007.
Efficient verification of Tunnell’s criterion.
Japan Journal of Industrial and Applied Mathematics,
Vol. 24,
Issue. 3,
Bugeaud, Yann
Mignotte, Maurice
Siksek, Samir
Stoll, Michael
and
Tengely, Szabolcs
2008.
Integral points on hyperelliptic curves.
Algebra & Number Theory,
Vol. 2,
Issue. 8,
p.
859.
Ziegler, Volker
2010.
On a family of Thue equations of degree 16.
Mathematics of Computation,
Vol. 79,
Issue. 272,
p.
2407.
Guzmán, J. R.
2011.
Computability of Digital Input Output Models.
Computational Economics,
Vol. 37,
Issue. 1,
p.
1.
ZIEGLER, VOLKER
2011.
THE ADDITIVE S-UNIT STRUCTURE OF QUADRATIC FIELDS.
International Journal of Number Theory,
Vol. 07,
Issue. 03,
p.
635.
Cvetič, M.
García‐Etxebarria, I.
and
Halverson, J.
2011.
On the computation of non‐perturbative effective potentials in the string theory landscape – IIB/F‐theory perspective –.
Fortschritte der Physik,
Vol. 59,
Issue. 3-4,
p.
243.
García-Selfa, Irene
and
Tornero, José M.
2012.
A complete diophantine characterization of the rational torsion of an elliptic curve.
Acta Mathematica Sinica, English Series,
Vol. 28,
Issue. 1,
p.
83.
Withers, Christopher S.
and
Nadarajah, Saralees
2012.
A solution to weighted sums of squares as a square.
International Journal of Mathematical Education in Science and Technology,
Vol. 43,
Issue. 8,
p.
1099.
Yokoyama, Shun’ichi
2012.
On Elliptic Curves with Everywhere Good Reduction over Certain Number Fields.
American Journal of Computational Mathematics,
Vol. 02,
Issue. 04,
p.
358.
Narkiewicz, Władysław
2012.
Rational Number Theory in the 20th Century.
p.
307.
Bocewicz, Grzegorz
Banaszak, Zbigniew A.
Nielsen, Peter
and
Dang, Quang-Vinh
2013.
Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services.
Vol. 397,
Issue. ,
p.
534.
Soldo, Ivan
2013.
On the extensibility of D(−1)-triples {1, b, c} in the ring \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mathbb{Z}\left[ {\sqrt { - t} } \right]\) \end{document}, t > 0.
Studia Scientiarum Mathematicarum Hungarica,
Vol. 50,
Issue. 3,
p.
296.
Freitas, Nuno
and
Siksek, Samir
2015.
The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields.
Compositio Mathematica,
Vol. 151,
Issue. 8,
p.
1395.
Tengely, Szabolcs
2015.
On the Lucas sequence equation $$\frac{1}{U_n}=\sum _{k=1}^{\infty }\frac{U_{k-1}}{x^k}$$ 1 U n = ∑ k = 1 ∞ U k - 1 x k.
Periodica Mathematica Hungarica,
Vol. 71,
Issue. 2,
p.
236.