Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T17:10:31.005Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 December 2013

Robert Leonard
Affiliation:
Université du Québec à Montréal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Von Neumann, Morgenstern, and the Creation of Game Theory
From Chess to Social Science, 1900–1960
, pp. 347 - 380
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, Gerald. (1974), Not Only Chess, London: George Allen & UnwinGoogle Scholar
d'Abro, A. (1939), Decline of Mechanism, New York: DoverGoogle Scholar
Adelman, Irma (1987), “Fellner, William John (1905–1983)”, in The New Palgrave: A Dictionary of Economics, Volume 2, edited by Eatwell, John, Milgate, Murray, and Newman, Peter, New York: Stockton Press, 1987, p. 301Google Scholar
Albers, Donald J. and Anderson, G. L. (eds.) (1985), Mathematical People, Boston: Birkhauser
Alexanderson, G. L., et al (1987), “Obituary of George Pólya”, Bulletin of the London Mathematical Society, Vol. 19, pp. 559–608Google Scholar
Allen, Robert Loring (1990), Opening Doors: The life and work of Joseph Schumpeter, Transactions
Alt, Franz (1936), “Über die Messbarkeit des Nutzens”, Zeitschrift fur Nationalökonomie, Vol. 7, pp. 161–69CrossRefGoogle Scholar
Alt, Franz (1997), Interview with Seymour Kass, Bert Schweitzer, Abe Sklar, and Mrs. Annice Alt, May 17, New York
Arány, Daniel (1924), “Note sur ‘Le troisième problème de jeu’”, Acta Scientiarum Mathematicarum (Acta Universitatis Szegediensis), Vol. 2, pp. 39–42Google Scholar
Arány, Daniel (1927), “Verallgemeinerung des problems der Spieldauer für de fall von drei Spielern”, Mathematikai és Physikai Lapok, Vol. 34, pp. 96–105 (in Hungarian). Reviewer: D. König, Budapest
Arány, Daniel (1928), “Sur la Généralisation du Problème de la Durée du Jeu pour Trois Joueurs”, International Congress of Mathematicians, Bologna, pp. 73–75Google Scholar
Arány, Daniel (1929a), “Considerations sur le problème de la durée du jeu”, Tohoku Mathematical Journal, Vol. 30, pp. 157–81Google Scholar
Arány, Daniel (1929b), “Note sur le ‘Seconde problème de la durée de jeu dans le cas de trois joueurs’”, Association Francaise pour l'Avancement des Sciences, Vol. 53, pp. 33–35Google Scholar
Arány, Daniel (1933a), “Le problème des parcours”, Tohoku Mathematical Journal, Vol. 37, pp. 17–22Google Scholar
Arány, Daniel (1933b), “Le problème des parcours”, Assocation Française pour l'Avancement des Sciences, pp. 20–23Google Scholar
Armatte, Michel (1997), “Les Mathématiques sauraient-elles nous sortir de la crise économique? X-Crise au fondement de la technocratie”, Actes du Colloque Mathématiques sociales et expertise, Besançon, 30–31 octobre
Arrow, K., Blackwell, D., and Girschick, M. (1949), “Bayes and Minimax Solutions of Sequential Decision Problems”, Econometrica, Vol. 17, pp. 213–44CrossRefGoogle Scholar
Asch, Mitchell (1995) Gestalt Psychology in German Culture, 1890–1967, Cambridge and New York: Cambridge University PressGoogle Scholar
Aspray, William (1990), John von Neumann and the Origins of Modern Computing, Cambridge, Massachusetts: MIT PressGoogle Scholar
Aspray, William, et al (1989), “Discussion: John von Neumann – A Case Study of Scientific Creativity”, Annals of the History of Computing, Vol. 11, No. 3, pp. 165–69CrossRefGoogle Scholar
Auman, R. (1985), “What is Game Theory Trying to Accomplish?” in Arrow, and Honkapohja, (eds.), Frontiers in Economics, Oxford: Basil BlackwellGoogle Scholar
Aumann, R. (1989), “Game Theory” in Eatwell, , et al (eds.) The New Palgrave Dictionary of Economics, New York: W. W. Norton, pp. 460–82Google Scholar
Aumann, R. (1989), Lectures on Game Theory, Boulder, Colorado: Westview PressGoogle Scholar
Aumann, R. (1991), Letter to R. Leonard, November 30
Bales, R. F., Flood, M. M., and Householder, A. S. (1952), “Some Group Interaction Models”, RAND RM-953, October 10
Barber, William J. (1981), “The United States: Economists in a Pluralistic Polity”, History of Political Economy, Vol. 13, No. 3, pp. 513–47CrossRefGoogle Scholar
Bassett, Gilbert W. (1987), “The St. Petersburg Paradox and Bounded Utility”, History of Political Economy, Vol. 19, No. 4, pp. 517–23CrossRefGoogle Scholar
Batterson, Steve (2006), Pursuit of Genius: Flexner, Einstein and the Early Faculty at the Institute for Advanced Study, Wellesley, Massachusetts: A. K. PetersCrossRefGoogle Scholar
Baum, Claude (1981), The System Builders: The Story of SDC, Santa Monica, California: Systems Development CorporationGoogle Scholar
Baumol, W. J. and Goldfeld, S. (eds.) (1968), Precursors in Mathematical Economics, LSE Series Reprints of Scarce Works on Political Economy, No. 19, London: LSE
Bauschinger, Sigrid (1999), “The Berlin Moderns: Else Lasker-Schüler and Café Culture”, in Bilski, Emily D. (ed.) (1999), Berlin Metropolis: Jews and the New Culture, 1890–1918, Berkeley: University of California Press, pp. 58–83Google Scholar
Baxter, James Phinney (1946), Scientists Against Time, Boston: Little BrownGoogle Scholar
Bellman, Richard, et al (1949), “Application of Theory of Games to Identification of Friend and Foe”, RAND RM-197-PR, July
Bellman, Richard and Blackwell, D. (1949a), “A Bomber–Fighter Duel”, RAND RM-165-PR, June
Bellman, Richard and Blackwell, D. (1949b), “Some Two-Person Games Involving Bluffing”, RAND P-84, May
Bellman, Richard and Blackwell, D. (1950), “On Games Involving Bluffing”, RAND P-168, August
Benacerraf, P. and Putnam, H. (eds.) (1991) (1964), Philosophy of Mathematics, Selected Readings, 2nd. ed., Cambridge and New York: Cambridge University Press
Berchtold, Jacques (ed.) (1998), Echiquiers d'encre. Le jeu d’échecs et les lettres (XIXe-XXe siècles), prologue de George Steiner, Genève: Droz
Bergson, Henri (1902), “L'Effort intellectuel”, Rev. Phil. de la France et de l’étranger, Vol. 13, pp. 1–27Google Scholar
Berkley, George E. (1988), Vienna and Its Jews: The Tragedy of Success, 1880s–1980s, Cambridge, Massachusetts: Abt Books; Lanham, MD: Madison BooksGoogle Scholar
Bertrand, J. (1883), “Théorie mathématique de la richesse sociale”, Bulletin des Sciences Mathématiques et Astronomiques, première partie, pp. 293–303Google Scholar
Beveridge, W. H. (1921), “Weather and Harvest Cycles”, Economic Journal, Vol. 31, pp. 429–52Google Scholar
Beveridge, W. H. (1922), “Wheat Prices and Rainfall in Western Europe’, Journal of the Royal Statistical Society, Vol. 85, pp. 412–78CrossRefGoogle Scholar
Biel, W. C., et al (1957), “The Systems Research Laboratory's Air Defense Experiments”, RAND P-1202, October 23
Binet, Alfred (1894), Psychologie des grands calculateurs et des jouers d’échecs, Paris, Genève: Slatkin, republished in 1981 with an introduction by François Le LionnaisGoogle Scholar
Binet, Alfred (1969), The Experimental Psychology of Alfred Binet: Selected Papers. Edited by Pollack, Robert H. and Brenner, Margaret W.; translated by Zetland, Frances K. and Ellis, Claire. New York: Springer Publishing Co. (republished 1995)Google Scholar
Binet, Alfred (2004 [1906]) La Graphologie. Les Révélations de l’écriture d'après un contrôle scientifique, Introduction de Serge Nicolas. Paris: l'HarmattanGoogle Scholar
Birkhoff, G. (1940), Lattice Theory, Providence, Rhode Island: American Mathematical SocietyCrossRefGoogle Scholar
Birkhoff, G. (1958), “Von Neumann and Lattice Theory”, Bulletin of the American Mathematical Society, Vol. 64, No. 3, pt. 2, 50–56CrossRefGoogle Scholar
Blackwell, D. and Girschick, M. A. (1954), Theory of Games and Statistical Decisions, New York: WileyGoogle Scholar
Böhm, David (1952), “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II”, Physical Review, Vol. 85, No. 2, pp. 166–93CrossRef
von Böhm-Bawerk, Eugen (1896), Karl Marx and the Close of His System, reprinted as “Unresolved Contradiction in the Marxian Economic System”, in Shorter Classics of Eugen von Böhm-Bawerk, Vol. I, South Holland, IL: Libertarian Press, 1961, pp. 201–301Google Scholar
von Böhm-Bawerk, Eugen (1914), Macht und okonomisches Gesetz, Wien: Manzsche k. u. k. Hof-Verlags und Universitats-Buchhandlung, pp. 205–71Google Scholar
Bohnenblust, H. F., et al (1948), “Mathematical Theory of Zero-Sum Two-Person Games with a Finite Number or a Continuum of Strategies”, Santa Monica, California: The RAND Corporation (no RAND document number), September 3
Bohnenblust, H. F., Shapley, L. S., and Sherman, S. (1949), “Reconnaissance in Game Theory”, RAND RM-208, August 12.
Borch, K (1973), “The Place of Uncertainty in the Theories of the Austrian School”, in Hicks, J. R. and Weber, W. (eds.), Carl Menger and the Austrian School of Economics, Oxford: Clarendon, pp. 61–74Google Scholar
Borel, Émile (1908), “Le calcul des probabilités et la méthode des majorités”, L’Année psychologique, Vol. 14, pp. 125–51, reprinted in (1972) Oeuvres de Émile Borel, 4 vols., Vol. 2, Paris: Centre National de Recherche Scientifique, pp. 1005–31CrossRefGoogle Scholar
Borel, Émile (1914), Le Hasard, Paris: AlcanGoogle Scholar
Borel, Émile (1921), “La théorie du jeu et les équations intégrales à noyau symétrique”, Comptes Rendus, Académie des Sciences, Vol. 173, pp. 1304–08. Translated in Maurice Fréchet (1953), “Emile Borel, Initiator of the Theory of Psychological Games and its Application”, Econometrica, Vol. 21, pp. 95–127Google Scholar
Borel, Émile (1923), “Sur les jeux où interviennent l'hasard et l'habileté des joueurs”, Association Française pour l'Avancement des Sciences, Vol. 177, pp. 79–85Google Scholar
Borel, Émile (1924a), “Sur les jeux où l'hasard se combine avec l'habileté des joueurs”, Comptes Rendus de l'Académie des Sciences, Vol. 178, pp. 24–25Google Scholar
Borel, Émile (1924b), “Sur les jeux où interviennent l'hasard et l'habileté des joueurs”, Eléments de la théorie des probabilités, Paris: Librairie Scientifique Hermann, pp. 204–24Google Scholar
Borel, Émile (1926), “Un Théoreme sur les systèmes de formes linéaires à detérminant symétrique gauche”, Comptes Rendus, Académie des Sciences, Vol. 183, pp. 925–27, avec erratum p. 996Google Scholar
Borel, Émile (1927), “Sur le système de formes linéaires à déterminant symétrique gauche et la théorie générale du jeu”, in “Algèbre et Calcul des Probabilités”, Comptes Rendus, Académie des Sciences, Vol. 184, pp. 52–53Google Scholar
Borel, Émile (1936), “Quelques remarques sur l'application du calcul des probabilités aux jeux de hasard”, Congrès international de mathématiciens, Oslo, Tome 2, pp. 187–90, reprinted in (1972) Oeuvres de Émile Borel, 4 vols., Vol. 2, Paris: Centre National de Recherche ScientifiqueGoogle Scholar
Borel, Émile et al (1938), Traité du Calcul des Probabilités et de ses Applications, Tome IV, Fasc. 2, Applications aux Jeux de Hasard, Paris: Gauthier-VillarsGoogle Scholar
Borel, Émile (1965), (1950), Elements of the Theory of Probability, Englewood Cliffs: Prentice-Hall. Translated by John E. FreundGoogle Scholar
Borel, Émile and Painlevé, Paul, 1910, L'Aviation, Paris: AlcanGoogle Scholar
Born, Max 1978, My Life, New York: Scribner'sGoogle Scholar
Botz, Gerhard (1987), “The Jews of Vienna from the Anschluss to the Holocaust” in Oxaal, , et al (eds.) (1987), pp. 185–204
Braham, Randolph L. (1981), The Politics of Genocide: the Holocaust in Hungary, Vol. I, New York: Columbia University PressGoogle Scholar
Brewer, Garry and Shubik, M. (1979), The War Game, Cambridge, Massachusetts; Harvard University PressGoogle Scholar
Brodie, Bernard (1949), “Strategy as a Science”, World Politics, Vol. 1, July, pp. 467–88CrossRefGoogle Scholar
Broos, Kees (1979), Symbolen voor onderwijs en statistiek, Symbols for Education and Statistics. 1928–1965 Vienna-Moscow-The Hague, The Hague: Mart SpruijtGoogle Scholar
Brouwer, L. E. J. (1905a), Leven, Kunst en Mystiek, Delft: J. WaltmanGoogle Scholar
Brouwer, L. E. J. (1905b), “Over moraal, Propria Cures”, Jg 16, No. 10, p. 16, translated and quoted in Van Stigt, “L. E. J. Brouwer, The Signific Interlude”, in Troelstra, A. S. and Dalen, D. Van (eds.) (1982), The L. E. J. Brouwer Centenary Symposium, proceedings of the conference held in Noordwijkerhout, 8–13 June 1981 (Amsterdam: North Holland), pp. 505–12Google Scholar
Brown, G. W. and Neumann, J. von (1950), “Solutions of Games by Differential Equations”, in Kuhn and Tucker (eds.) (1950), Contributions to the Theory of Games I. Annals of Mathematics Studies 24. Princeton University Press, Princeton, pp. 73–79Google Scholar
Buckley, Wm. F. and Bozell, L. Brent (1954), McCarthy and his Enemies, Chicago: Henry RegneryGoogle Scholar
Bulmer, Martin and Bulmer, Joan (1981), “Philanthropy and Social Science in the 1920's: Beardsley Ruml and the Laura Spelman Rockefeller Memorial, 1922–29”, Minerva, XIX, Autumn, p. 385ffGoogle Scholar
Burns, Eve (1929), “Statistics and Economic Forecasting”, Journal of the American Statistical Association, Vol. 24, pp. 152–63CrossRefGoogle Scholar
Bush, R.R. and Mosteller, C.F. (1951), “A Mathematical Model for Simple Learning”, Psychological Review, Vol. 58, pp. 313–23CrossRefGoogle ScholarPubMed
Caldwell, Bruce (1988), “Hayek's Transformation”, History of Political Economy, Vol. 20, No. 4, Winter, pp. 513–41CrossRefGoogle Scholar
Caldwell, Bruce (2004), Hayek's Challenge: An Intellectual Biography of F. Hayek, Chicago: University of Chicago PressGoogle Scholar
Carnap, Rudolf (1928), Der Logische Aufbau der Welt, Berlin: Weltkreis-Verlag. Translated as The Logical Structure of the World and Pseudoproblems of Philosophy, London: Routledge & Kegan Paul, 1967Google Scholar
Carnap, Rudolf (1928), Der Logische Aufbau der Welt, Leipzig: Felix Meiner Verlag. Translated as The Logical Structure of the World: Pseudoproblems in Philosophy. Berkeley: University of California Press, 1967Google Scholar
Carnap, Rudolf (1934), Logische Syntax der Sprache. Translated as The Logical Syntax of Language, New York: Humanities, 1937CrossRefGoogle Scholar
Carsten, Francis L. (1977), Fascist Movements in Austria: From Schönerer to Hitler, London and Beverley Hills: SAGEGoogle Scholar
Cartwright, N., et al (1996), Otto Neurath: Philosophy between Science and Politics, Cambridge and New York: Cambridge University PressCrossRefGoogle Scholar
Cassel, Gustav (1918), Theoretische Sozialökonomie. Translated as A Theory of Social Economy, 1924, New York: Harcourt Brace, xiv, 654 pp.Google Scholar
Caywood, T. E. and Thomas, C. J. (1955), “Applications of Game Theory in Fighter Versus Bomber Combat”, Journal of the Operations Research Society of America, Vol. 3, pp. 402–11CrossRefGoogle Scholar
Chamberlin, E. H. (1933), The Theory of Monopolistic Competition, Cambridge, Massachusetts: Harvard University PressGoogle Scholar
Champernowne, D. (1945), “A Note on J. v. Neumann's Article on ‘A Model of Economic Equilibrium’”, Review of Economic Studies, Vol. 13, pp. 10–18CrossRefGoogle Scholar
Chapman, Robert L. (1952), “The Systems Research Laboratory and Its Program”, RAND RM-890, Jan. 7
Chapman, Robert L. (1953), “Systems Research and Personnel Management”, RAND P-443, Oct. 23
Chapman, Robert L. (1956), “A Theory of Organizational Behavior Deriving from Systems Research Laboratory Studies”, RAND P-802, Mar. 12
Chapman, Robert L. and Kennedy, John L. (1955), “The Background and Implications of the Systems Research Laboratory Studies”, RAND, P-740, Sept. 21
Chevalley, Claude (1945), Review of Theory of Games and Economic Behaviour, in View, The Modern Magazine
Christie, Lee. S., Luce, R. Duncan, and Macy, Jr. Josiah (1952), “Communication and Learing in Task-Oriented Groups”, M.I.T. Research Laboratory of Electronics, Technical Report No. 231 (reprinted as RAND, RM-1163, Dec. 1, 1953)
Clare, G. (1982), Last Waltz in Vienna: The Destruction of a Family, 1842–1942, London: PanGoogle Scholar
Collbohm, F., et al (1964), “John Davis Williams, 1909–1964, In Memoriam”, The Memorial Service, Santa Monica Civic Auditorium, Santa Monica, California, Dec. 6, 1964
Collingwood, E. F. (1959), “Émile Borel”, Journal of the London Mathematical Society, Vol. 34, pp. 488–512CrossRefGoogle Scholar
Congdon, Lee (1991), Exile and Social Thought: Hungarian Intellectuals in Germany and Austrian, 1919–1933, Princeton: Princeton University PressCrossRefGoogle Scholar
Coriat, Isador H. (1941), “The Unconscious Motives of Interest in Chess”, Psychoanalytical Review, Vol. 28, pp. 30–36Google Scholar
Cornides, T. (1983), “Karl Menger's Contribution to the Social Sciences”, Mathematical Social Sciences, Vol. 6, pp. 1–11CrossRefGoogle Scholar
Corry, Leo (1999), “Hilbert and Physics (1900–1915)”, in Gray, J. (ed.), pp. 145–88
Corry, Leo (2000), “The Empiricist Roots of Hilbert's Axiomatic Approach”, in Hendricks, V. F. et al (eds.), pp. 35–54CrossRef
Corry, Leo (2004), David Hilbert and the Axiomatization of Physics (1898–1918), Dordrecht: KluwerCrossRefGoogle Scholar
Courant, Richard and Friedrichs, Kurt (1944), Supersonic Flow and Shock Waves, New York: Courant Institute of Mathematical Sciences, New York UniversityGoogle Scholar
Courant, Richard and Kurt Friedrichs (1948), Supersonic Flow and Shock Waves, New York: Interscience PublishersGoogle Scholar
Cournot, Antoine Augustin (1838), Recherches sur les principes mathématiques de la théorie des richesses, Paris: Hachette. Translated as Researches into the Mathematical Principles of the Theory of Wealth, by Bacon, Nathaniel T., 1929, New York: MacmillanGoogle Scholar
Commission, Cowles (1952), Economic Theory and Measurement, A Twenty Year Research Report 1932–1952, Chicago: Cowles CommissionGoogle Scholar
Crain, Tom (1998), Schlechter's Chess Games, Yorklyn, Delaware: Caissa EditionsGoogle Scholar
Craver, Earlene (1986a), “The emigration of the Austrian economists”, History of Political Economy, Vol. 18, No. 1, pp. 1–32CrossRefGoogle Scholar
Craver, Earlene (1986b), “Patronage and the Directions of Research in Economics: The Rockefeller Foundation in Europe, 1924–1938”, Minerva, XXIV, pp. 205–22CrossRefGoogle Scholar
Crum, W. L. (1923), “Cycles of Rates on Commercial Paper”, Review of Economic Statistics, Vol. 5, pp. 17–29CrossRefGoogle Scholar
Cubeddu, Raimondo (1993), The Philosophy of the Austrian School, London: RoutledgeGoogle Scholar
Cunningham, Jacqueline L. (1997), “Alfred Binet and the Quest for Testing Higher Mental Functioning”, in Bringmann, Wolfgang, et al (eds.) A Pictorial History of Psychology, Chicago: Quintessence ClubGoogle Scholar
Dalkey, Norman (1964a), “Solvable Nuclear War Models”, RAND RM-4009-PR, April
Dalkey, Norman (1964b), “Games and Simulations”, RAND P-2901, April
Dalkey, Norman and Helmer, Olaf (1962), “An Experimental Application of the Delphi Method to the Use of Experts”, RAND RM-727-1-Abridged.
Dauben, Joseph (1990), Georg Cantor, Princeton: Princeton University PressGoogle Scholar
Dawkins, Richard (1976), The Selfish Gene, New York: Oxford University PressGoogle Scholar
Debreu, Gerard (1959), Theory of Value, New Haven and London: Yale University PressGoogle Scholar
Debreu, Gerard (1991), “The Mathematization of Economic Theory”, American Economic Review, Vol. 81, No. 1, pp. 1–17Google Scholar
Debreu, Gerard (1992), Interview with R. Leonard, April 15, Berkeley, California
De Groot, Adriaan (1965), Thought and Choice in Chess, The Hague and Paris: Mouton & Co. (originally published as Het Denken van de Schaker, Amsterdam: North-Holland, 1946)Google Scholar
de Ville, P., and Ménard, C. (1989), “An Insolent Founding Father”, European Economic Review, Vol. 33, pp. 145–57CrossRefGoogle Scholar
Digby, James (1989), “Operations Research and Systems Analysis at RAND, 1948–1967”, RAND N-2936-RC, April
Digby, James (1990), “Strategic Thought at RAND, 1948–1963”, RAND N-3096-RC, June
Dimand, Mary Ann, and Dimand, Robert 1996, A History of Game Theory: From the Beginnings to 1945, London: RoutledgeGoogle Scholar
Djakow, I. N., Petrowski, N. W., and Rudik, P. A., 1927, Psychologie des Schachspiels, Berlin and Leipzig: Walter de Gruyter & Co.Google Scholar
Dore, M., Goodwin, R., and Chakravarty, S. (eds.) (1989), John von Neumann and Modern Economics, Oxford: Clarendon Press
Dresher, Melvin (1949), “Local Defense of Targets of Equal Value”, RAND RM-319-PR
Dresher, Melvin (1950), “Methods of Solution in Game Theory”, Econometrica, Vol. 18, pp. 179–80Google Scholar
Dresher, Melvin (1951), “Games of Strategy”, Mathematics Magazine, Vol. 25, pp. 93–99CrossRefGoogle Scholar
Dresher, Melvin (1954), “Optimal Tactics in a Multistrike Air Campaign”, RAND RM-1335-PR
Dresher, Melvin (1959), “A Game Theory Analysis of Tactical Air War”, RAND P-1592
Dresher, Melvin (1961), “Optimal Timing in Missile Launching: A Game-Theoretic Analysis”, RAND RM-2723-PR
Dresher, Melvin (1961), Games of Strategy, Englewood Cliffs: Prentice-HallGoogle Scholar
Dresher, Melvin (1948), “Mathematical Theory of Zero-Sum Two-Person Games with a Finite Number or a Continuum of Strategies”, RAND Corp., Sept. 3
Eatwell, J., Milgate, M., and Newman, P. (eds.) (1989), The New Palgrave: Game Theory, New York & London: NortonCrossRef
Edgeworth, F. (1925), Papers Relating to Political Economy, I, London: Macmillan, pp. 111–42Google Scholar
Edwards, Paul (1997), The Closed World: Computers and the Politics of Discourse in Cold War America, Cambridge, Massachusetts: MIT PressGoogle Scholar
Einstein, A. and Infeld, L. (1938), The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta, New York: Simon & SchusterGoogle Scholar
Emmons, William H., Hennessy, Robert, and Kennedy, John L. (1953), “Experiments on ‘the Cortical Correlate of Pattern Vision’”, RAND P-447, Nov. 3.
Enke, Stephen (1965), “Using Costs to Select Weapons”, American Economic Review, Papers & Proceedings, May
Enthoven, A. and Smith, K. Wayne (1971), How Much is Enough?New York: Harper & RowGoogle Scholar
Estes, W. K. (1950), “Towards a Statistical Theory of Learning”, Psychological Review, Vol. 57, pp. 94–107CrossRefGoogle Scholar
Estes, W. K. (1954), “Individual Behavior in Uncertain Situations: An Interpretation in Terms of Statistical Association Theory”, in Thrall, R. M., et al (eds.), pp. 127–37
Etkind, Alexander (1997), Eros of the Impossible. The History of Psychoanalysis in Russia. Translated by Noah, and Rubens, Maria. Boulder, Colorado: Westview PressGoogle Scholar
Evans, Griffith C. (1930), Mathematical Introduction to Economics, New York: McGraw-HillGoogle Scholar
Feffer, Loren Butler (1998), “Oswald Veblen and the Capitalization of American Mathematics: Raising Money for Research, 1923–1928”, Isis, Vol. 89, No. 3, pp. 474–97CrossRefGoogle Scholar
Fellner, W. (1949), Competition Among the Few, New York: A. Knopf, pp. 328Google Scholar
Feyerabend, P. (1957–58), Review of von Neumann (1955), “Mathematical Foundations of Quantum Mechanics”, British Journal for the Philosophy of Science, February, 32, pp. 343–47Google Scholar
Fienberg, S.E., et al (eds.) (1990), A Statistical Model: Frederick Mosteller's Contributions to Statistics, Science, and Public Policy, New York: Springer-VerlagCrossRef
Fine, Reuben (1956), “Psychoanalytic Observations on Chess and Chess Masters”, Psychoanalysis, Monograph 1, 4, No. 3Google Scholar
Fischman, M. and Lendjel, Emeric (no date), “X-Crise et modèle des frères Guillaume” (mimeographed, Clersé-Université Lille I and Grese-Université Paris I).
Fisher, Franklin (1989), “Games Economists Play: A Noncooperative View”, RAND Journal of Economics, Vol. 20, No. 1, pp. 113–24CrossRefGoogle Scholar
Flanagan, John C., et al (1952), Current Trends: Psychology in the World Emergency, University of Pittsburgh PressGoogle Scholar
Fleming, Donald and Bailyn, Bernard (eds.) (1969), The Intellectual Migration, Cambridge, Massachusetts: Harvard University PressCrossRef
Fleming, J., and Strong, S., 1943, “Use of Chess in the Therapy of an Adolescent Boy”, Psychoanalytical Review, Vol. 30, pp. 399–416Google Scholar
Flexner, Abraham (1908), The American College, New York: The Century Co.Google Scholar
Flood, Merrill M. (1944), “Aerial Bombing Tactics: General Considerations” (later published as RAND RM-913, Sept. 2, 1952)
Flood, Merrill M. (1951a), “A Preference Experiment”, RAND P-256, Nov. 13
Flood, Merrill M. (1951b), “A Preference Experiment” (Series 2, Trial 1), RAND P-258, Dec. 5
Flood, Merrill M. (1952a), “A Preference Experiment” (Series 2, Trials 2, 3, 4), RAND P-263, Jan. 25
Flood, Merrill M. (1952b) “Some Experimental Games”, RAND RM-789-1, June 20
Flood, Merrill M. (1952c), “Testing Organisation Theories”, RAND P-312, Nov. 1
Flood, Merrill M. (1952d), “Testing Organization Theories”, in Bales, R. F., Flood, M., and Householder, A. S. (1952), “Some Group Interaction Models”, RAND Report RM-953, Oct. 10
Flood, Merrill M. (1952e), “On Stochastic Learning Theory”, RAND P-353, Dec. 19
Flood, Merrill M. (1954a), “Environmental Non-Stationarity in a Sequential Decision-Making Experiment”, in Thrall, Coombs and Davis, (eds.), pp. 287–300
Flood, Merrill M. (1954b), “Game-Learning Theory and Some Decision-Making Experiments”, in Thrall, Coombs and Davis (eds.), pp. 139–58
Flood, Merrill M. (1958), “Some Experimental Games”, Management Science, Vol. 5, pp. 5–26, (initially published as RAND, RM-789–1, revised June 20, 1952)CrossRefGoogle Scholar
von Foerster, Heinz et al (eds.) (1950), Cybernetics: Circular, Causal and Feedback Mechanisms in Biological and Social Systems. Transactions of the sixth conference March 24–25, 1949. New York: Josiah Macy, Jr. Foundation
Fortun, M., and Schweber, S. (1993), “Scientists and the Legacy of World War II: The Case of Operations Research (OR)”, Social Studies of Science, Vol. 23, No. 4 (November), pp. 595–642CrossRefGoogle Scholar
Fosdick, Raymond B. (1952), The Story of the Rockefeller Foundation, New York: HarperGoogle Scholar
Fossati, Eraldo (1957), The Theory of General Static Equilibrium, Oxford: Basil Blackwell, edited by Shackle, G. L. S.Google Scholar
Fraenkel, A. (1928), Einleitung in die Mengenlehre, 3rd ed., Berlin: SpringerCrossRefGoogle Scholar
Frank, Tibor (2001), “Networking, Cohorting, Bonding: Michal Polanyi in Exile”, Polanyiana, Vol. 10, pp. 108–26Google Scholar
Fréchet, Maurice (1953), “Émile Borel, Initiator of the Theory of Psychological Games and its Application”, Econometrica Vol. 21, pp. 118–27CrossRefGoogle Scholar
Fréchet, Maurice (1955), Les Mathématiques et le Concret, Paris: Presses UniversitairesGoogle Scholar
Fréchet, Maurice (1965), “La Vie et l'Oeuvre d’Émile Borel”, L'Enseignement Mathématique, Tome 1, Fasc. 1, pp. 1–97Google Scholar
Freeman, Harold (1968), “Wald, Abraham”, in International Encyclopaedia of the Social Sciences, New York: Macmillan, Vol. 16, pp. 435–38Google Scholar
Friedman, J. (1977), Oligopoly and the Theory of Games, Amsterdam: North HollandGoogle Scholar
Frischauer, Willi (1938), Twilight in Vienna, London: Collins, translation by Lorimer, E. O.Google Scholar
Frojimovic, Kinga, et al (1999), Jewish Budapest, Monuments, Rites, History, Budapest: Central European University PressGoogle Scholar
Gaither, H. Rowan, et al (1949), Report of the Study Committee for the Ford Foundation on Policy and Program, Detroit, Michigan: Ford FoundationGoogle Scholar
Galison, P. (1990), “Aufbau/Bauhaus: Logical Positivism and Architectural Modernism”, Critical Inquiry, Vol. 16, pp. 709–52CrossRefGoogle Scholar
Galison, P. (1994), “The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision”, Critical Inquiry Vol. 21, Autumn, pp. 228–66CrossRefGoogle Scholar
Gallai, Tibor (1936), “Dénes König: A Biographical Sketch”, in Dénés König, , Theorie der endlichen und unendlichen Graphen. (Leipzig). Translated by McCoart, Richard as Theory of Finite and Infinite Graphs, Boston: Birkhäuser, 1986, pp. 423–26Google Scholar
Gauthier, David (1986), Morals by Agreement, Oxford: Clarendon PressGoogle Scholar
George, Alexander L. (1952), “Emotional Stress and Air War” (a lecture given at the Air War College Air University, Nov. 28, 1951), RAND P-302, May 27Google Scholar
Gerschenkron, Alexander (1977), An Economic Spurt that Failed, Princeton: Princeton University PressGoogle Scholar
Gigerenzer, Gerd, et al (1989), The Empire of Chance: How Probability Changed Science and Everyday Life, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Giocoli, Nicola (2003), Modeling Rational Agents: From Interwar Economics to Early Modern Game Theory, Cheltenham: Edward ElgarGoogle Scholar
Glavinic, Thomas (1999), Carl Haffner's Love of the Draw, London: HarvillGoogle Scholar
Glimm, James, Impagliazzo, John, and Singer, Isadore (eds.) (1990), The Legacy of John von Neumann, Proceedings of Symposia in Pure Mathematics, Vol. 50, Providence, Rhode Island: American Mathematical SocietyCrossRef
Goldenweiser, E. A. (1947), “The Economist and the State”, American Economic Review, XXXVII, No. 1, pp. 1–12Google Scholar
Goldman, Warren (1994), Carl Schlechter: Life and Times of the Austrian Chess Wizard, Yorklyn, Delaware: Caissa EditionsGoogle Scholar
Goldstein, J. R. (1961), “RAND: The History, Operations and Goals of a Nonprofit Corporation”, RAND P-2236–1, April
Goldstine, Herman (1972), The Computer from Pascal to von Neumann, Princeton: Princeton University PressGoogle Scholar
Goldstine, Herman H. and Wigner, Eugene P. (1957), “Scientific Work of J. von Neumann”, Science, Vol. 125, No. 3250, pp. 683–84CrossRefGoogle Scholar
Gray, Jeremy J. (ed.) (1999), The Symbolic Universe: Geometry and Physics, 1890–1930, Oxford University Press
Gray, Jeremy J. and Hunger-Parshall, Karen (eds.) (2000), Episodes in the History of Modern Algebra (1800–1950), Providence, RI: American Mathematical Society and London: London Mathematical Society
Groves, Leslie R. (1962), Now It Can Be Told: The Story of the Manhattan Project, New York: HarperGoogle Scholar
Gruber, Helmut (1991), Red Vienna, Experiment in Working Class Culture, 1919–1934, New York and Oxford: Oxford University Press.Google Scholar
Guerbstman, Alexander (1925), Psichoanaliz sacmatnoj igri, Moscow [The Psychoanalysis of Chess. An Interpretative Essay]Google Scholar
Guilbaud, G. (1949), “La Théorie des Jeux”, Economie Appliquée, Vol. II, No. 1, pp. 275–319Google Scholar
Guilbaud, G. (1952), “Les Problèmes de Partage”, Economie Appliquée, Vol. V, No.1, pp. 93–137Google Scholar
Guilbaud, G. (1954), “Leçons sur les éléments principaux de la théorie mathématique des jeux”, in Guilbaud, G., Massé, P., et Hénon, R. (eds.), Stratégies et Décisions Économiques Études Théoriques et Applications aux Entreprises, Cours et Conférences de Recherches 1951–1953, Centre d’Économétrie, C.N.R.S.
Guilbaud, G. (1955), “La Théorie des Jeux”, Revue d'Economie Politique, Tome LXV, pp. 153–88Google Scholar
Guillaume, G., and Guillaume, E. (1932), L'Economique rationelle, Paris: Gauthier-VillarsGoogle Scholar
Gumbel, E. J. (1945), Review of Theory of Games and Economic Behavior, in The Annals of the American Academy of Political and Social Science, Vol. 239, No. 1, pp. 209–210
Haag, J. (1976/7), “Othmar Spann and the Quest for a ‘True State’”, Annual Austrian History Yearbook, Vol. 12/13, pp. 227–50CrossRefGoogle Scholar
Haberler, Gottfried (1984), “William Fellner In Memoriam”, in Fellner, W., Essays in Contemporary Economic Problems, Disinflation, Washington and London: American Enterprise Institute, pp. 1–6Google Scholar
Hacohen, Malachi (2001), Karl Popper – The Formative Years, 1902–1945: Politics and Philosophy in Interwar Vienna. Cambridge: Cambridge University PressGoogle Scholar
Hadamard, Jacques (1966), The Mathematician's Mind: the Psychology of Invention in the Mathematical Field, Princeton: Princeton University Press, originally (1945), The Psychology of Invention in the Mathematical Field, Princeton University PressGoogle Scholar
Hahn, Hans (1930), Überflüssige Wesenheiten (Occams Rasiermesser), Vienna: A. Wolf. Translated as “Superfluous Entities, or Occam's Razor” in Hahn (1980), pp. 1–19Google Scholar
Hahn, Hans (1930–31), “Die Bedeutung er wissenschaftlichen Weltaufassung, insbesondere für Mathematik und Physik”, Erkenntnis, Vol 1, pp. 96–105. Translated as “The Significance of the Scientific World View, Especially for Mathematics and Physics” in Hahn (1980), pp. 20–30CrossRefGoogle Scholar
Hahn, Hans (1933), “Logik, Mathematik und Naturkennen”, Einheitswissenschaft, Vol. 2, Vienna: Gerold. Translated as “Logic, Mathematics, and Knowledge of Nature” by A. Pap in Ayer, Alfred (ed.), Logical Positivism, New York: Free Press, 1959Google Scholar
Hahn, Hans (1980), Empiricism, Logic and Mathematics, edited by McGuinness, B., with an introduction by Menger, K., Dordrecht: Reidel, Vienna Circle Collection, Vol. 13CrossRefGoogle Scholar
Hahn, Hans (1929), “Empirismus, Mathematik, Logik”, Forschungen und Fortschritte, Vol. 5. Translated as “Empiricism, Mathematics and Logic” in Hahn (1980), pp. 39–42Google Scholar
Hahn, Hans (1930), Überflüssige Wesenheiten (Occams Rasiermesser) (pamphlet published by A. Wolf, Vienna). Translated as “Superfluous Entities, or Occam's Razor” in Hahn (1980), pp. 1–19Google Scholar
Hahn, Hans (1930–31), “Die Bedeutung er wissenschaftlichen Weltaufassung, insbesondere für Mathematik und Physik”, Erkenntnis, Vol. 1. Translated as “The Significance of the Scientific World View, Especially for Mathematics and Physics” (presented August 1929) in Hahn (1980), pp. 20–30CrossRefGoogle Scholar
Hahn, Hans (1931–32), “Diskussion zur Grundlegung der Mathematik”, Erkenntnis, Vol. 2. Translated as “Discussion about the Foundations of Mathematics” (presented September 1930) in Hahn (1980), pp. 31–38Google Scholar
Hahn, Hans (1933a), “Logik, Mathematik und Naturkennen”, Einheitwissenschaft, Heft, Vol. 2, Vienna: Gerold. Translated as “Logic, Mathematics, and Knowledge of Nature” in McGuinness (ed.) (1987), pp. 24–45Google Scholar
Hahn, Hans (1933b), “Die Krise der Anschauung” in Krise und Neuaufbau in den exakten Wissenschaften. Fünf Wiener Vorträge, Leipzig and Vienna: F. Deuticke. Translated as “The Crisis in Intuition” in Hahn (1980), pp. 73–102Google Scholar
Hahn, Hans (1934), “Gibt es Unendliches?” in Alte Probleme – Neue Lösungen in den exakten Wissenschaften. Fünf Wiener Vorträge, Leipzig and Vienna: F. Deuticke. Translated as “Does the Infinite Exist?” in Hahn (1980), pp. 103–31Google Scholar
Hahn, Hans (1980), Empiricism, Logic and Mathematics, Dordrecht: KluwerCrossRefGoogle Scholar
Halberstam, David (1993), The Fifties, New York: Fawcett ColumbineGoogle Scholar
Haller, Rudolf (1991), “The First Vienna Circle”, in Uebel (ed.) (1991), pp. 95–108CrossRef
Halmos, Paul (1973), “The Legend of John von Neumann”, American Mathematical Monthly, Vol. 80, pp. 382–94CrossRefGoogle Scholar
Halperin, Israel (1984), Interview. The Princeton Mathematics Community in the 1930s. Transcript Number 18 (PMC18).
Halperin, Israel (1990), “The Extraordinary Inspiration of John von Neumann”, in Proceedings of Symposia in Pure Mathematics, Vol. 50: The Legacy of John von Neumann, edited by Glimm, James, Impagliazzo, John, and Singer, Isadore, Providence, Rhode Island: American Mathematical Society, pp. 15–17CrossRefGoogle Scholar
Halperin, Israel (1993), Communication with R. Leonard
Hannak, Jacques (1959), Emanuel Lasker: The Life of a Chess Master, New York: Simon and Schuster, an English translation by Heinrich Fraenkel of the 1942 biography in German, with a Preface by Albert EinsteinGoogle Scholar
Harman, Harry H. (1955), “The Psychologist in Interdisciplinary Research”, RAND P-708, July 25
Harrod, Roy (1959), The Prof: A Personal Memoir of Lord Cherwell, London: MacmillanGoogle Scholar
Hausdorff, F. (1927), Mengenlehre, 2nd ed., Berlin and Leipzig: Walter de GruyterGoogle Scholar
Hayek, Friedrich (1933), Monetary Theory and the Trade Cycle. London: Cape. Translation of (1929) Geldtheorie und Konjunkturtheorie (Beitrage zur Konjunkturforschung, herausgegeben vom Österreichisches Institut für Konjunkturforschung, No. 1). Vienna 1929, by N. Kaldor and H. M. Croome
Hayek, Friedrich (1935), Prices and Production, 2nd ed., revised and enlarged, New York: Augustus M. KellyGoogle Scholar
Hayek, Friedrich (1937), “Economics and Knowledge”, Economica, Vol. 4 (New Series), pp. 33–54CrossRefGoogle Scholar
Hayek, Friedrich (1942–43), “Scientism and the Study of Society”, Economica, New Series, Vol. 9, No. 35 (Aug., 1942), pp. 267–291; and Part II, Economica, New Series, Vol. 10, No. 37 (Feb., 1943), pp. 34–63CrossRefGoogle Scholar
Hayek, Friedrich (1942–44), “Scientism and the Study of Society”, Economica (New Series), Vol. IX, No. 35, August 1942, pp. 267–91; Vol. X, No. 37, February 1943, pp. 34–63; Vol. XI, No. 41, February 1944, pp. 27–39CrossRefGoogle Scholar
Hayek, Friedrich [1944](1976), The Road to Serfdom, Chicago: University of Chicago PressGoogle Scholar
Hayek, Friedrich (1992), The Collected Works of F.A. Hayek, Vol. 4, “The Fortunes of Liberalism, Essays on Austrian Economics and the Ideal of Freedom”, edited by Klein, Peter G., Chicago: University of Chicago PressGoogle Scholar
Hayek, Friedrich (1994), Hayek on Hayek: An Autobiographical Dialogue, edited by Kresge, Stephen and Wenar, Leif, London: RoutledgeCrossRefGoogle Scholar
Haythorn, William W. (1957), “Simulation in RAND's Logistics Systems Laboratory”, RAND P-1075, Apr. 30.
Haywood, Col. Oliver G. (1949), “Military Doctrine of Decision and the von Neumann Theory of Games”, Air University Quarterly, Vol. 4, pp. 17–30Google Scholar
Haywood, Col. Oliver G. (1951), “Military Doctrine and the von Neumann Theory of Games”, RAND RM-528, February
Haywood, Col. Oliver G. (1954), “Military Decision and Game Theory”, Journal of the Operations Research Society of America, Vol. 2, November, No. 4, pp. 365–85CrossRefGoogle Scholar
Heims, Steve J. (1980), John von Neumann and Norbert Wiener, Cambridge, Massachusetts: MIT PressGoogle Scholar
Helmer, Olaf (1947), “Combat Between Heterogeneous Forces”, RAND RM-6, May 5
Helmer, Olaf (1957), “The Game-Theoretical Approach to Organization Theory”, RAND P-1026, Feb. 19
Helmer, Olaf (1960), “Strategic Gaming”, RAND P-1902, Feb. 10
Helmer, OlafBrown, Bernice, and Gordon, Theodore (1966), Social Technology. New York: Basic BooksGoogle Scholar
Helmer, Olaf and Rescher, Nicholas (1960), “On the Epistemology of the Inexact Sciences”, RAND R-353, February, no date.
Hendricks, V. F., et al (eds.) (2000), Proof Theory: History and Philosophical Significance, Dordrecht: KluwerCrossRef
Herken, Gregg (1985), Counsels of War, New York: KnopfGoogle Scholar
Hersh, Reuben and John-Steiner, Vera (1993), “A Visit to Hungarian Mathematics”, The Mathematical Intelligencer, Vol. 15, No. 2, pp. 13–26CrossRefGoogle Scholar
Herzog, Arthur (1963), The War-Peace Establishment, New York: Harper & RowGoogle Scholar
Heywood, R. B. (ed.) (1947), The Works of the Mind, Chicago: University of Chicago Press
Hicks, John (1933), “Gleichgewicht und Konjunktur”, Zeitschrift für Nationalökonomie Vol. 4, p. 445Google Scholar
Hicks, John (1939), Value and Capital, Oxford: Clarendon PressGoogle Scholar
Hicks, J. R. and Weber, W. (eds.) (1973), Carl Menger and the Austrian School of Economics, Oxford: Clarendon
Hilbert, David (1899), Grundlagen der Geometrie, Leipzig: TeubnerGoogle Scholar
Hilbert, David (1918), “Axiomatisches Denken”, Mathematische Annalen, Vol. 78, p. 405ffCrossRefGoogle Scholar
Hilbert, David (1926), “Über das Unendliche”, Mathematische Annalen, Vol. 95, pp. 161–90. Translated as “On the infinite”, by Putnam, E. and Massey, G. J. in Benacerraf and Putnam, (eds.) (1991), pp. 183–201CrossRefGoogle Scholar
Hilbert, John S. (2001), “Emanuel Lasker: The Challenge for a Biographer”, on ChessCafe.com, May 15th,
Hitch, Charles (1953), “Suboptimization in Operations Problems”, Journal of the Operations Research Society of America, Vol. 1, May, No.3, pp. 87–99CrossRefGoogle Scholar
Hitch, Charles (1963), “Plans, Programs and Budgets in the Department of Defense”, Journal of the Operations Research Society of America, Vol. II, pp. 1–17Google Scholar
Hitch, Charles and McKean, Roland (1960), Economics of Defense in the Nuclear Age, Cambridge, Massachusetts: Harvard University PressCrossRefGoogle Scholar
Hoffman, Dassie (2000), “Sandor Ferenczi and the Humanistic Psychologists” (mimeographed, New York: Saybrook Graduate School)
Hofmann, Paul (1988), The Viennese, New York: Anchor BooksGoogle Scholar
Holmes Wolf, Theta (1973), Alfred Binet, Chicago: University of Chicago PressGoogle Scholar
Hounshell, David (1997), “The Cold War, RAND, and the generation of knowledge, 1946–1962”, Historical Studies in the Physical and Biological Sciences, Vol. 27, pp. 237–67.CrossRefGoogle Scholar
Huizinga, J. (1950) [1933], Homo Ludens: A Study of the Play Element in Culture. New York: Roy PublishersGoogle Scholar
Hurwicz, L. (1945), “The Theory of Economic Behavior”, American Economics Review, Vol. 35, pp. 909–25Google Scholar
Ingrao, Bruna and Israel, Giorgio (1991), The Invisible Hand, Cambridge, Massachusetts: MIT PressGoogle Scholar
Innocenti, Alessandro and Zappia, Carlo (2005), “Thought- and performed experiments in Hayek and Morgenstern”, in Fontaine, and Leonard, (eds.), The Experiment in the History of Economics, London: Routledge, pp. 71–97Google Scholar
Isaacs, R. P. (1951), “Games of Pursuit”, RAND P-257, November
Isaacs, R. P. (1955), “The Problem of Aiming and Evasion”, RAND P-642, March
Israel, Giorgio, and Gasca, Ana Milan (2009), The World as a Mathematical Game: John von Neumann and Twentieth Century Science, Basel: BirkhäuserCrossRefGoogle Scholar
Janik, Allan, and Toulmin, Stephen (1973), Wittgenstein's Vienna, New York: TouchstoneGoogle Scholar
Janis, Irving (1949), “Are the Cominform countries using hypnotic techniques to elicit confessions in public trials?”, RAND RM-161, Apr. 25
Janis, Irving (1952), Air War and Emotional Stress, New York: McGraw-HillGoogle Scholar
Jardini, David (1997), Out of the Blue Yonder: the RAND Corporation's Diversification into Social Welfare Research (unpublished PhD thesis, Carnegie-Mellon University)Google Scholar
Johnston, William M. (1983 [1972]), The Austrian Mind, An Intellectual and Social History, 1848–1938, Berkeley and Los Angeles: University of California PressGoogle Scholar
Jones, Ernest (1931), “The Problem of Paul Morphy. A Contribution to the Psychoanalysis of Chess”, International Journal of Psychoanalysis, Vol. 12, pp. 1–23, reprinted in Jones, Ernest (1964), Essays in Applied Psychoanalysis, Vol. 1, New York: International Universities Press, pp. 165–96.Google Scholar
Kac, Mark (1985), Enigmas of Chance, New York: Harper & RowGoogle Scholar
Kádár, Gábor and Zoltán Vági, (2004a), “Rationality or Irrationality? The Annihilation of Hungarian Jews”, The Hungarian Quarterly, Vol. XLV, No. 174, pp. 32–54Google Scholar
Kádár, Gábor and Zoltán Vági, (2004b), Self-Financing Genocide: The Gold Train, the Becher Case and the Wealth of Hungarian Jews, Budapest and New York: Central European University PressGoogle Scholar
Kahn, Herman (1962), Thinking about the Unthinkable, New York: AvonGoogle Scholar
Kahn, Herman and Mann, Irwin (1957), “Game Theory”, RAND P-1166, July 30.
Kalisch, G., et al (1952), “Some Experimental n-Person Games”, RAND RM-948, Aug. 25. Reprinted in Thrall, Coombs, and Davis (eds.) (1954), pp. 301–327
Kalmár, Lazsló (1928/29), “Zur Theorie der abstrakten Spiele” (translated as “On the Theory of Abstract Games”), Acta Litterarum ac Scientiarum, Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio: Scientiarum Mathematicarum, Szeged. Vol. IV, pp. 65–85Google Scholar
Kant, Emmanuel (1911, orig. 1781), Critique of Pure Reason, New York: MacmillanGoogle Scholar
Kant, Emmanuel (1969, orig. 1785), Foundations of the Metaphysics of Morals, Indianapolis: Bobbs-MerrilGoogle Scholar
Kaplan, Fred (1983), The Wizards of Armageddon, New York: Simon & SchusterGoogle Scholar
Kaplanski, I. (1945), “A contribution to von Neumann's theory of games”, Annals of Mathematics, Vol. 46, pp. 474–79CrossRefGoogle Scholar
Katz, Barry (1989), Foreign Intelligence, Cambridge, Massachusetts: Harvard University PressCrossRefGoogle Scholar
Katzburg, Nathaniel (1981), Hungary and the Jews: Policy and Legislation, 1920–1943, Ramat-Gan: Bar-Ilan University Press.Google Scholar
Kaufmann, Felix (1936), Methodenlehre der Sozialwissenschaften, Vienna: Julius SpringerCrossRefGoogle Scholar
Kaufmann, Felix (1944), Methodology of the Social Sciences, London and New York: Oxford University PressGoogle Scholar
Kaysen, C. (1946), “A Revolution in Economic Theory?Review of Economic Studies, Vol. 14, pp. 1–15CrossRefGoogle Scholar
Kecskeméti, Paul (1935), “Ethics and the ‘Single Theory’”, Social Research, Vol. 2, pp. 210–21Google Scholar
Kennedy, John L. (ed.) (1949), Handbook of Human Engineering Data for Design Engineers, Special Devices Center Technical Report, SDC 199-1-1
Kennedy, John L. (ed.) (1952a), “Some Practical Problems of the Alertness Indicator”, RAND, February 29
Kennedy, John L. (ed.) (1952b), “The Uses and Limitations of Mathematical Models, Game Theory, and Systems Analysis in Planning and Problem Solution”, in Flanagan, John C., et al, Current Trends in Psychology in the World Emergency, Pittsburgh, Pennsylvania: University of Pittsburgh Press, pp. 97–116.
Kennedy, John L. (ed.) (1955), “The Contextual Map”, RAND RM-1575, Oct. 24.
Kertész, Imré (1992), Fateless. Translated by Wilson, Christopher C. and Wilson, Katharina M., Evanston, Illinois: Northwestern University PressGoogle Scholar
Kertész, Imré (1997), Kaddish for a Child not Born. Translated by Wilson, C. C. and Wilson, K. M., Evanston, Illinois: Hydra BooksGoogle Scholar
Keynes, J. M. (1921), A Treatise on Probability, London: MacmillanGoogle Scholar
Kindleberger, Charles (1978), “World War II Strategy”, Encounter, Vol. 51, pp. 39–42Google Scholar
Kindleberger, Charles (1980), “The Life of an Economist”, Banca Nazionale de Lavoro, Vol. 134, September, pp. 231–45Google Scholar
Kirzner, Israel (ed.) (1994), Classics in Austrian Economics: A Sampling in the History of a Tradition, London: William Pickering
Kjeldsen, T. H. (2001), “John von Neumann's Conception of the Minimax Theorem: A Journey Through Different Mathematical Contexts”, Archive of the History of the Exact Sciences, Vol. 56, pp. 39–68CrossRefGoogle Scholar
Klaus, Georg (1965), “Emanuel Lasker – ein philosophischer Vorläufer der Spieltheorie”, Deutsche Zeitschrift für Philosophie, Vol. 13, pp. 976–988CrossRefGoogle Scholar
Klausinger, Hansjörg (2008), “Policy Advice by Austrian Economists: The Case of Austria in the 1930s”, Advances in Austrian Economics, Vol. 11, pp. 25–53CrossRefGoogle Scholar
Klein, Judy (2000), “Economics for a Client: The Case of Statistical Quality Control and Sequential Analysis,” Toward a History of Applied Economics, edited by Backhouse, Roger and Biddle, Jeff, Annual Supplement to the History of Political Economy, Vol. 32, Durham, North Carolina: Duke University Press, 2000, pp. 27–69.Google Scholar
Kline, Morris (1980), Mathematics: The Loss of Certainty, Oxford and New York: Oxford University PressGoogle Scholar
Köhler, W., and Held, R. (1949), “The Correlate of Pattern Vision”, Science, Vol. 110, pp. 414–19CrossRefGoogle ScholarPubMed
König, Dénes (1927), “Über eine Schlussweise aus dem Endlichen ins Unendliche” (translated as “On a Method of Conclusion from the Finite to the Infinite”), Acta Litterarum ac Scientiarum, Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio: Scientiarum Mathematicarum, Szeged. Vol. III, pp. 121–30Google Scholar
König, Dénes (1936), Theorie der endlichen und unendlichen Graphen. Leipzig: Teubner. Translated as Theory of Infinite and Infinite Graphs (1986) by Richard McCoart. Boston: Birkhäuser.Google Scholar
Koopmans, Tjalling C. (ed.) (1951), Activity Analysis of Production and Allocation, Cowles Commission Monograph 13, New York: Wiley
Kraft, Victor (1953), The Vienna Circle, New York: Philosophical LibraryGoogle Scholar
Kramer, Edna (1982), The Nature and Growth of Modern Mathematics, Princeton: Princeton University PressGoogle Scholar
Kreps, David (1990), Game Theory and Economic Modelling, Oxford: Oxford University PressCrossRefGoogle Scholar
Kruskal, J. B. and Newell, Allen (1950), “A Model for Organization Theory”, RAND LOGS-103
Kruskal, William and Tanur, Judith M. (eds.) (1978), International Encyclopedia of Statistics, New York: Free Press
Kuhn, Harold (1952), Lectures on the Theory of Games, issued as a report of the Logistics Research Project, Office of Naval Research, Princeton UniversityGoogle Scholar
Kuhn, Harold (1991), Interview with R. Leonard, Dec. 11, Princeton
Kuhn, Harold (1992), Personal communication with R. Leonard, Sept. 30
Kuhn, H. and Tucker, A. W. (eds.) (1950), Contributions to the Theory of Games I, Annals of Mathematics Studies 24, Princeton: Princeton University Press
Kuhn, H. and Tucker, A. W. (eds.) (1958), “John von Neumann's Work in the Theory of Games and Mathematical Economics”, Bulletin of the American Mathematical Society, Vol. 64, No. 3, Part 2, May, pp. 100–22CrossRef
Kuratowski, Kazimierz (Casimir) (1945), “A Half Century of Polish Mathematics”, Fundamenta Mathematicae, Vol. XXXIII, pp. v–ixGoogle Scholar
Kürschàk, József (1963), Hungarian problem book: Based on the Eötvös competitions, 1894-[1928]. Revised and edited by Hajós, G., Neukomm, G., and Surányi, J., translated by Rapaport, Elvira, New York: Random House.Google Scholar
Kurz, H. and Salvadori, N. 1993, European Journal for the History of Economic Thought, Vol. 1, No. 1, pp. 129–60CrossRef
Lasker, Emanuel (1965) [1896], Common Sense in Chess, New York: DoverGoogle Scholar
Lasker, Emanuel (2001, orig. 1907), Kampf, New York: Lasker's Publishing Co.; reprinted in 2001 by Berlin-Brandenburg: Potsdam, with foreword by Lothar SchmidtGoogle Scholar
Lasker, Emanuel (1976), Lasker's Manual of Chess, New York: Dover (orig., Lehrbuch des Schachspiels, 1926. First English translation, 1927)Google Scholar
Lasker, Emanuel (1941), The Community of the Future, New York: M. J. BerninGoogle Scholar
Latour, B. (1987), Science in Action, Cambridge, Massachusetts: Harvard University PressGoogle Scholar
Laufenburger, Henry (1934), “Review of Morgenstern (1934) Die Grenzen der Wirtschaftspolitik”, Revue d'Economie Politique, Vol. 48, No. 3, pp. 1084–85Google Scholar
Lax, Peter (1990), “Remembering John von Neumann”, in Glimm, et al (eds.), pp. 5–7.CrossRef
Leonard, R. (1991), “War as a ‘Simple Economic Problem’”, History of Political Economy Vol. 23, Special Issue: Economics and National Security, pp. 261–83Google Scholar
Leonard, R. (1992), “Creating a Context for Game Theory”, History of Political Economy, Vol. 24, Special Issue: “Toward a History of Game Theory”, pp. 29–76CrossRefGoogle Scholar
Leonard, R. (1994), “Reading Cournot, Reading Nash: The Creation and Stabilization of the Nash Equilibrium”, Economic Journal, Vol. 104, No. 424, May, pp. 492–511CrossRefGoogle Scholar
Leonard, R. (1995), “From Parlor Games to Social Science: von Neumann, Morgenstern, and the Creation of Game Theory, 1928–1944”, Journal of Economic Literature, Vol. XXXIII, June, pp. 730–61Google Scholar
Leonard, R. (1998), “Ethics and the Excluded Middle: Karl Menger and Social Science in Interwar Vienna”, Isis, Vol. 89, pp. 1–26CrossRefGoogle Scholar
Leonard, R. (2004), “Structures sous tension: Théorie des jeux et psychologie sociale à la RAND”, in Dahan, Amy and Pestre, Dominique (eds.), Les Sciences pour La Guerre, Paris: Ecole des Hautes Etudes en Sciences Sociales, pp. 83–127Google Scholar
Lewin, Kurt (1936), Principles of Topological Psychology. Translated by Heider, F. and Heider, G., New York and London: McGraw-HillCrossRefGoogle Scholar
Litschel, Rudolf Walter (1974), 1934- Das Jahr der Irrungen, Linz: Oberosterreichischer Landesverlag, No. 36Google Scholar
Loomis, Lynn H. (1946), “On a Theorem of Von Neumann”, in Proceedings of the National Academy of Science, Vol. 32, Aug. 15, No. 8, pp. 213–15CrossRefGoogle ScholarPubMed
Lorch, Edgar R. (1993), “Szeged in 1934”, Hersh, Reuben (ed.), American Mathematical Monthly, Vol. 100, pp. 219–30CrossRefGoogle Scholar
Lotka, A. J. (1924), Elements of Physical Biology, later republished (1956) as Elements of Mathematical Biology, New York: DoverGoogle Scholar
Lucas, W. F. (1969), “The proof that a game may not have a solution”, Transactions of the American Mathematical Society, Vol. 137, pp. 219–29CrossRefGoogle Scholar
Luce, R. Duncan and Raiffa, H. (1957), Games & Decisions, New York: WileyGoogle Scholar
Lukács, György (1983), Record of a Life, London: VersoGoogle Scholar
Lukacs, John (1988), Budapest, 1900, New York: Grove WeidenfeldGoogle Scholar
Lukacs, John (1998), A Thread of Years, New Haven, Connecticut: Yale University PressGoogle Scholar
Lutfalla, G. (ed.) (1938), Recherches sur les principes mathématiques de la théorie des richesses, Paris: Rivière, 255 pp.
Macdonald, Dwight (1957), The Ford Foundation, New York: Reynal PressGoogle Scholar
Macdougall, G. D. A. (1951), “The Prime Minister's Statistical Section” in Chester, D. N. (ed.), Lessons of the British War Economy, Cambridge: Cambridge University Press, pp. 58–68Google Scholar
MacLane, Saunders (1989), “The Applied Mathematics Group at Columbia in World War II”, in Duren, Peter, et al (eds.), A Century of Mathematics in America, Part III, Vol. 3, Providence, Rhode Island: American Mathematical Society, pp. 495–515Google Scholar
Macrae, Norman (1992), John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More, New York: Pantheon BooksGoogle Scholar
Mahr, Alexander (1956), “Hans Mayer – Leben und Werk”, Zeitschrift für National-ökonomie, Bd. 16, pp. 3–16Google Scholar
Marget, A. W. (1929), “Morgenstern on the Methodology of Economic Forecasting”, Journal of Political Economy, Vol. 37, pp. 312–39CrossRefGoogle Scholar
Marrow, Alfred (1969), The Practical Theorist: The Life and Works of Kurt Lewin, New York: Basic BooksGoogle Scholar
Marschak, J. (1946), “Von Neumann and Morgenstern's New Approach to Static Economics”, Journal of Political Economy, Vol. 54, pp. 97–115CrossRefGoogle Scholar
Marshall, Andrew W. (1958), “Experimentation by Simulation and Monte Carlo”, RAND P-1174, Jan. 28.Google Scholar
Marshall, James (1988), “Fellner, William J.” in Sobel, R. and Katz, B. S. (eds.), Biographical Directory of the Council of Economic Advisors, Westport, CT: Greenwood PressGoogle Scholar
Maurensig, Paolo (1998), The Lüneberg Variation, New York: Henry Holt (orig. La variante di Lüneberg, Milan: Adelphi, 1993)Google Scholar
Mayberry, J. P., Nash, J. F., and Shubik, M. (1953), “A comparison of treatments of the duopoly situation”, Econometrica, Vol. 21, pp. 141–54CrossRefGoogle Scholar
Mayer, Hans (1911), “Eine neue Grundlegung der theoretischen Nationalökonomie”, Zeitschrift für Volkswirtschaft, Sozialpolitik und Verwaltung, Vol. 20, pp. 181–209Google Scholar
Mayer, Hans (1921–22), “Untersuchung zu dem Grundgesetz der wirtschaftlichen Wertrechnung”, Zeitschrift für Volkswirtschaftslehre und Sozialpolitik, Vol. 2, pp. 1–23Google Scholar
Mayer, Hans (1928), “Zurechnung”, Handwörterbuch der Staatwissenschaften, Vol. VIII, 4th ed., pp. 1206–28. Translated and reprinted as “Imputation”, in Kirzner, (ed.) (1994), pp. 19–53
Mayer, Hans (1932), “Der Erkenntniswert der funktionellen Preistheorien”, in Mayer, (ed.) Die Wirtschaftstheorie der Gegenwart, Vienna, Vol. 2, pp. 14–239b. Translated and reprinted as “The Cognitive Value of Functional Theories of Price, Critical and Positive Investigations Concerning the Price Problem”, in Kirzner, (ed.) (1994), pp. 55–168Google Scholar
McCagg, William O., (1972), Jewish Nobles and Geniuses in Modern Hungary, Boulder, Colorado: East European QuarterlyGoogle Scholar
McCulloch, Warren and Pitts, Walter (1943), “A Logical Calculus of the Ideas Immanent in Nervous Activity”, Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–33CrossRefGoogle Scholar
McDonald, John (1950), Strategy in Poker, Business and War, New York: NortonGoogle Scholar
McGlothlin, W. H. (1958), “The Simulation Laboratory as a Developmental Tool”, RAND P-1454, Aug. 7Google Scholar
McGuinness, B. F. (ed.) (1979), Ludwig Wittgenstein and the Vienna Circle: Conversations Recorded by Friedrich Waismann, Oxford: Blackwell
McKinsey, J. C. C. (1952a), “Some Notions and Problems of Game Theory”, Bulletin of the American Mathematical Society, Vol. 58, No. 6, pp. 591–611CrossRefGoogle Scholar
McKinsey, J. C. C. (1952b), Introduction to the Theory of Games, New York: McGraw-HillGoogle Scholar
Mehrtens, Herbert (1987), “Ludwig Bieberbach and “Deutsche Mathematik”, in Phillips, Esther (ed.), Studies in the History of Mathematics, Washington, D.C.: The Mathematical Assocation of America, pp. 195–241Google Scholar
Ménard, C. (1978), La Formation d'une Rationalité économique: A. A. Cournot, Paris: FlammarionGoogle Scholar
Menger, Carl (1871), Grundsätze der Volkswirthschaftlehre. Translated by Dinwall, J. and Hoselitz, B. (1981), as Principles of Economics, New York: NYU PressGoogle Scholar
Menger, Carl (1923, [1871]) Grundsätze der Volkswirtschaftslehre, 2nd ed., edited by Menger, Karl, Wien: Hölder-Pichlen-TempskyGoogle Scholar
Menger, Karl (1923), “Über die Dimensionalität von Punktmenger, I. Teil”, Monatshefte für Mathematik und Physik, Vol. 33, pp. 148–60CrossRefGoogle Scholar
Menger, Karl (ed.) (1928–1936), Ergebnisse eines Mathematischen Kolloquiums, seven volumes, Leipzig and Vienna: Deuticke
Menger, Karl (1930), “Der Intuitionismus”, Blätter für Deutsche Philosophie, Vol. 4, pp. 311–25. Translated by R. Kowalski as “On Intuitionism” in Menger (1979), pp. 46–58Google Scholar
Menger, Karl (1933), “Die neue Logik”, in Krise und Neuaufbau in den Exakten Wissenschaften. Fünf Wiener Worträge, Leipzig and Vienna: Deuticke, pp. 94–122. Translated by Gottlieb, H. B. and Senior, J. K. as “The New Logic” in Philosophy of Science 4, pp. 299–336. Reprinted in Menger (1979), pp. 17–45, with prefatory notes on “Logical Tolerance in the Vienna Circle” pp. 11–16Google Scholar
Menger, Karl (1934a), “Bernoullische Wertlehre und Petersburger Spiel”, Ergebnisse eines mathematischen Kolloquiums, Vol. 6, pp. 26–27Google Scholar
Menger, Karl (1934b), “Ein Satz über endliche Mengen mit Anwendungen auf die formale Ethik”, ibid, pp. 23–26Google Scholar
Menger, Karl (1934c), “Das Unsicherheitsmoment in der Wertlehre. Betrachtungen in Anschluss an das sogenannte Petersburger Spiel”, Zeitschrift für Nationalökonomie Vol. 5, pp. 459–85. Translated in Menger (1979) as “The Role of Uncertainty in Economics”, pp. 259–78CrossRefGoogle Scholar
Menger, Karl (1934d), Moral, Wille und Weltgestaltung. Grundlegung zur Logik der Sitten, Vienna: Julius Springer. Translated (1974) as Morality, Decision and Social Organization: Towards a Logic of Ethics, Dordrecht: ReidelCrossRefGoogle Scholar
Menger, Karl (1935), “Hans Hahn”, Fundamenta Mathematicae, Vol. 24, pp. 317–20CrossRefGoogle Scholar
Menger, Karl (1936a), “Einige neuere Fortschritte in der exakten Behandlung sozialwissenschaftlicher Probleme”, in Neuere fortschritte in den exakten Wissenschaften. Fünf Wiener Vorträge, Dritter Zyklus, Leipzig and Wien: F. Deuticke, pp. 103–32Google Scholar
Menger, Karl (1936b), “Bemerkungen zu den Ertragsgesetzen”, Zeitschrift für Nationalökonomie, Vol. 7, pp. 25–26, and “Weitere Bemerkungen zu den Ertragsgesetzen”, ibid, pp. 388–97. Translated as “The Logic of the Laws of Return. A Study in Meta-Economics”, in Morgenstern, (ed.) (1954), pp. 419–81. Revision of translation as “Remarks on the Law of Diminishing Returns. A Study in Meta-Economics” in Menger (1979), pp. 279–302CrossRefGoogle Scholar
Menger, Karl (1937), “An Exact Theory of Social Relations and Groups,” in Report of Third Annual Research Conference on Economics and Statistics, Cowles Commission for Research in Economics, Colorado Springs, Colorado, pp. 71–73Google Scholar
Menger, Karl (1938), “An Exact Theory of Social Groups and Relations”, American Journal of Sociology Vol. 43, pp. 790–98CrossRefGoogle Scholar
Menger, Karl (1952), “The Formative Years of Abraham Wald and his Work in Geometry”, Annals of Mathematical Statistics, Vol. 23, pp. 14–20CrossRefGoogle Scholar
Menger, Karl (1955), Calculus. A Modern Approach, Boston: Ginn, pp. xviii and 354Google Scholar
Menger, Karl (1956), “Why Johnny Hates Math”, The Mathematics Teacher, Vol. 49, pp. 578–84Google Scholar
Menger, Karl (1973), “Austrian Marginalism and Mathematical Economics”, in Hicks and Weber (eds.), pp. 38–60
Menger, Karl (1979), Selected Papers in Logic and Foundations, Didactics, Economics, Dordrecht: ReidelCrossRefGoogle Scholar
Menger, Karl (undated), “My Memories of the Early Days of I.I.T.” (unpublished manuscript, 4 pp., Karl Menger Papers, Duke University Library)
Menger, Karl (1982), “Memories of Moritz Schlick”, in Gadol, Eugene T. (ed.) (1982), Rationality and Science. A Memorial Volume for Moritz Schlick in Celebration of the Centennial of His Birth. Wien and New York: Springer-Verlag, pp. 83–103.Google Scholar
Menger, Karl (1994), Reminiscences of the Vienna Circle and the Mathematical Colloquium, edited by Golland, Louise, McGuinness, Brian, and Sklar, Abe, Dordrecht: KluwerCrossRefGoogle Scholar
Menger, Karl (1998), Ergebnisse eines Mathematischen Kolloquiums, [1928–1927], edited by Dierker, E. and Sigmund, K., Wien and New York: SpringerGoogle Scholar
Mensch, A. (ed.) (1966), Theory of Games, Techniques and Applications, New York: American Elsevier
Miller, L., et al (1989), “Operations Research and Policy Analysis at RAND, 1968–1988”, RAND N-2937-RC, April
Miller, Martin A. (1998), Freud and the Bolsheviks: Psychoanalysis in Imperial Russia and the Soviet Union, New Haven, Connecticut: Yale University PressGoogle Scholar
Milnor, J. W. (1955), “On Games of Survival”, RAND P-622, Jan. 11Google Scholar
Mirowski, Philip (1989), More Heat Than Light, New York: Cambridge University PressCrossRefGoogle Scholar
Mirowski, Philip (1991), “When Games Grow Deadly Serious”, History of Political Economy, Vol, 23, Special Issue: Economics and National Security, A History of their Interaction, pp. 227–60Google Scholar
Mirowski, Philip (1992), “What Were von Neumann and Morgenstern Trying to Accomplish?History of Political Economy, Vol. 24, Special Issue: “Toward a History of Game Theory”, pp. 113–47CrossRefGoogle Scholar
Mirowski, Philip (2002), Machine Dreams: Economics Becomes a Cyborg Science, New York and Cambridge: Cambridge University PressGoogle Scholar
von Mises, L. (1920), “Economic Calculation in the Socialist Commonwealth”, in Collectivist Economic Planning, edited by Hayek, F. A.. New York: Augustus M. KelleyGoogle Scholar
von Mises, L (1922), Socialism: An Economic and Social Analysis, Indianapolis: Liberty FundGoogle Scholar
von Mises, L (1949), Human Action: A Treatise on Economics, Chicago: Henry RegneryGoogle Scholar
von Mises, L (1960 [1933]), Epistemological Problems of Economics, Princeton: Van NostrandGoogle Scholar
von Mises, L (1971 [1912]), The Theory of Money and Credit. (Translated by H. E. Batson). Irvington, New York: Foundation for Economic Education.Google Scholar
von Mises, L (1978), Notes and Recollections, Amsterdam: South HollandGoogle Scholar
von Mises, L (1980), Planning for Freedom, South Holland, Illinois: Libertarian PressGoogle Scholar
von Mises, R. (1951) [1939], Positivism, Cambridge, Massachusetts: Harvard University PressGoogle Scholar
Mitchell, W. C. (1913), Business Cycles and their Causes, Berkeley: University of California PressGoogle Scholar
Mitchell, W. C. (1927), Business Cycles: The Problem and its Setting, New York: National Bureau of Economic ResearchGoogle Scholar
Mongin, Philippe (2003), “L'axiomatization et les théories économiques”, Revue économique, Vol. 54, pp. 99–138CrossRefGoogle Scholar
Monk, R. (1990), Ludwig Wittgenstein. The Duty of Genius, New York: PenguinGoogle Scholar
Moore, H. L. (1914), Economic Cycles – Their Law and Cause, New York: MacmillanGoogle Scholar
Moore, H. L. (1923), Generating Economic Cycles, New York: MacmillanCrossRefGoogle Scholar
Moore, H. L. (1925), “A Moving Equilibrium of Demand and Supply”, Quarterly Journal of Economics, Vol. 39, pp. 357–71CrossRefGoogle Scholar
Morgan, M (1990), The History of Econometric Ideas, Cambridge and New York: Cambridge University PressCrossRefGoogle Scholar
Morgenstern, Oskar (1926), “Bemerkungen zu Cassels Preistheorie” (unpublished manuscript), OMDU, Box 21, Writings and Speeches, Alphabetical “Bemerkungen zu Cassels Preistheorie”, 1925–1926
Morgenstern, Oskar (1927a), “Francis Y. Edgeworth”, Zeitschrift für Volkswirtschaft und Sozialpolitik, Vol. 5, No. 10–12, pp. 646–52, translated in Schotter, (ed.) 1976, pp. 477–80Google Scholar
Morgenstern, Oskar (1927b), “Friedrich von Wieser, 1851–1925”, American Economic Review, Vol. 17, No. 4, December, pp. 669–74, translated in Schotter, (ed.) 1976, pp. 481–85Google Scholar
Morgenstern, Oskar (1928), Wirtschaftprognose: Enie Untersuchung ihrer Voraussetzungen und Möglichkeiten, Vienna: Julius Springer, pp. iv and 129CrossRefGoogle Scholar
Morgenstern, Oskar (1929), “Allyn Abbot Young”, Zeitschrift für Nationalökonomie, Vol. 1, May 1929, pp. 143–45, translated in Schotter, (ed.) 1976, pp. 487–88CrossRefGoogle Scholar
Morgenstern, Oskar (1931), “Mathematical Economics”, in Seligman, Edwin R.A. and Johnson, Alvin (eds.), Encyclopaedia of the Social Sciences, Vol. 5, pp. 364–68, New York: MacmillanGoogle Scholar
Morgenstern, Oskar (1934a), Die Grenzen der Wirtschaftspolitik, Vienna: Julius Springer, 136 pp. Translated by Vera Smith and revised as The Limits of Economics, London: Hodge, 1937, pp. v and 151CrossRefGoogle Scholar
Morgenstern, Oskar (1934b), “Das Zeitmoment in der Wertlehre”, Zeitschrift fur Nationalökonomie, Vol. 5, No. 4, pp. 433–58. Translated as “The Time Moment in Economic Theory” in Schotter, (ed.) (1976), pp. 151–67CrossRefGoogle Scholar
Morgenstern, Oskar (1935a), “Vollkommene Voraussicht und wirtschaftliches Gleichgewicht”, Zeitschrift für Nationalökonomie, Vol. 6, No. 3, pp. 337–57. Translated by Frank Knight (mimeographed, University of Chicago). Reprinted in Schotter, (ed.) (1976), pp. 169–83CrossRefGoogle Scholar
Morgenstern, Oskar (1935b), “Report on the Activities of the Austrian Institute for Trade Cycle Research 1931–1935”, Feb. 13, AIRAC, Folder 37, Austrian Center for Trade Cycle Research, Vienna 1935–1936
Morgenstern, Oskar (1936), “Logistics and the Social Sciences”, Zeitschrift fur Nationalökonomie, Vol. 7, No. 1, pp. 1–24. Translated in Schotter, (ed.) (1976), pp. 389–404CrossRefGoogle Scholar
Morgenstern, Oskar (1937), The Limits of Economics, London: W. Hodge. Translation of Morgenstern (1934) by Vera SmithGoogle Scholar
Morgenstern, Oskar (1941a), “Professor Hicks on Value and Capital”, Journal of Political Economy, Vol. 49, No. 3, pp. 361–93CrossRefGoogle Scholar
Morgenstern, Oskar (1941b), “Quantitative Implications of Maxims of Behavior” (unpublished manuscript, Princeton University)
Morgenstern, Oskar (1951a), “Joseph A. Schumpeter, 1883–1950”, Economic Journal, Vol. 61, No. 241, March, pp. 197–202, reprinted in Schotter, (ed.) (1976), pp. 489–92.Google Scholar
Morgenstern, Oskar (1951b), “Abraham Wald, 1902–1950”, Econometrica, Vol. 19, No. 4, October, pp. 361–67CrossRefGoogle Scholar
Morgenstern, Oskar (1951c), “Notes on the Formulation of a Study of Logistics”, RAND LOGS 67, May 28
Morgenstern, Oskar (ed.) (1954), Economic Activity Analysis, New York: Wiley
Morgenstern, Oskar (1954a), “Consistency Problems in the Military Supply System”, RAND RM-1296, July 14
Morgenstern, Oskar (1954b), “The Compressibility of Organizations and Economic Systems”, RAND RM-1325, Aug. 17
Morgenstern, Oskar (1958), “Obituary. John von Neumann, 1903–57”, The Economic Journal, Vol. 68, March, pp. 170–174. Reprinted in Schotter, (ed.), (1976), pp. 499–503Google Scholar
Morgenstern, Oskar (1968), “Schlesinger, Karl”, in International Encyclopedia of the Social Sciences, Vol. 14, pp. 51–52Google Scholar
Morgenstern, Oskar (1976), “The Collaboration between Oskar Morgenstern and John von Neumann on the Theory of Games”, Journal of Economic Literature, Vol. 14, pp. 805–16Google Scholar
Morgenstern, Oskar, Oskar Morgenstern Papers, Rare Book, Manuscript and Special Collections Library, Duke University (OMDU)
Morris, Charles (1984), A Time of Passion, New York: Harper & RowGoogle Scholar
Morris, Edie and Harkleroad, Leon (1990), “Rózsa Péter: Recursive Function Theory's Founding Mother”, The Mathematical Intelligencer, Vol. 12, pp. 59–64CrossRefGoogle Scholar
Morse, Marston and Hart, William L. (1941), “Mathematics in the Defense Program”, American Mathematical Monthly, Vol. 48, pp. 293–302CrossRefGoogle Scholar
Morse, Philip M. (1948), “Mathematical Problems in Operations Research”, Bulletin of the American Mathematical Society, Vol. 54, pp. 602–21CrossRefGoogle Scholar
Morse, Philip M. (1977), In at the Beginnings, Cambridge, Massachusetts: MIT PressGoogle Scholar
Morse, Philip M. and Kimball, George E. (1951), Methods of Operations Research, New York: Technology Press and Wiley (originally in classified form as 1946, same title, OEG Report 54)Google Scholar
Mosteller, Frederick et al (1961), Probability with Statistical Applications. Reading, Massachusetts: Addison-WesleyGoogle Scholar
Mosteller, Frederick (1968), “Wilks, S.S.”, in International Encyclopaedia of the Social Sciences, Vol. 16, edited by Sills, David L.. New York: Macmillan and Free Press, pp. 550–53Google Scholar
Mosteller, Frederick and Bush, Robert R. (1955), Stochastic Models for Learning, New York: WileyGoogle Scholar
Muller, Adam (1809), Die Elemente der Staatskunst, Berlin: J. D. SanderGoogle Scholar
Müller, Karl H. (1991), “Neurath's Theory of Pictorial-Statistical Representation” in Uebel (ed.) (1991), pp. 223–250CrossRef
Nabokov, Vladimir (1964), The Defense, New York: G.P. Putnam's Sons (orig. Zashchita Luzhina, Berlin: Slovo, 1930)Google Scholar
Nagy, Dénes, Péter Horváth, , and Nagy, Ferenc (1989), “The von Neumann–Ortvay Connection”, in Brink, J.R. and Haden, C.R. (eds.) 1989, The Computer and the Brain: Perspectives on Human and Artificial Intelligence, Amsterdam, New York, Oxford, Tokyo: North Holland, pp. 227–39Google Scholar
Nagy, Ferenc (1987), Neumann János és a “Magyar Titok”, A Dokumentumok Tükrében (John von Neumann and the “Hungarian Secret”), Budapest: Országos Müszaki Információs Központ és KönyvtárGoogle Scholar
Nasar, Sylvia (1998), A Beautiful Mind: A Biography of John Forbes Nash, Jr., New York: Simon & SchusterGoogle Scholar
Nash, J. F. (1950a), “The Bargaining ProblemEconometrica, Vol. 18, pp. 155–62CrossRefGoogle Scholar
Nash, J. F. (1950b), “Equilibrium Points in N-Person Games”, Proceedings of the National Academy of Science, Vol. 36, pp. 48–49CrossRefGoogle ScholarPubMed
Nash, J. F. (1950c), Non-cooperative Games, Ph.D dissertation, Princeton UniversityGoogle Scholar
Nash, J. F. (1950d) with Shapley, L., “A Simple Three-person Poker Game”, in Kuhn, and Tucker, (eds.) Contributions to the Theory of Games, pp. 105–16Google Scholar
Nash, J. F. (1951a), “Non-cooperative games”, Annals of Mathematics, Vol. 54, pp. 286–95CrossRefGoogle Scholar
Nash, J. F. (1951b), “N-Person Games, an Example and a Proof”, RAND RM-615, June 4
Nash, J. F. (1954), “Continuous Iteration Method for Solution of Differential Games”, RAND RM-1326, Aug. 18
Nash, J. F. (1954b), “Parallel Control”, RAND RM-1361, Aug. 27
Nash, J. F. (1991), Interview with R. Leonard, Dec. 11, Princeton
Nash, J. F. (1993), Letter to R. Leonard, Feb. 22
Neumann, Olaf (2000), “Divisibility Theories in the Early History of Commutative Algebra and the Foundations of Algebraic Geometry”, in Gray, and Hunger-Parshall, (eds.), pp. 73–104
von Neumann, John (1925), “Eine Axiomatisierung der Mengenlehre”, Journal für die Reine und Angewandte Mathematick, Vol. 154, pp. 219–40Google Scholar
von Neumann, John (1927a), “Mathematische Begrundung der Quantenmechanik”, Nachrichten von der Gesellschaft der Wissenschaften Zu Göttingen, pp. 1–57. See also Taub, A. H. (ed.) (1963), Vol. 1Google Scholar
von Neumann, John (1927b), “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”, Nachrichten von der Gesellschaft der Wissenschaften Zu Göttingen, pp. 245–72. See also Taub, A. H. (ed.) (1963), Vol. 1Google Scholar
von Neumann, John (1927c), “Thermodynamik Quantenmechanischer Gesamtheiten”, Nachrichten von der Gesellschaft der Wissenschaften Zu Göttingen, pp. 273–91. See also Taub, A. H. (ed.) (1963), Vol. 1Google Scholar
von Neumann, John (1927d), “Uber die Grundlagen der Quantenmechanik”, with Hilbert, D. and Nordheim, L., Mathematische Annalen, Vol. 98, pp. 1–30Google Scholar
von Neumann, John (1927e), “Zur Hilbertschen Beweistheorie”, Mathematische Zeitschrift, 26: 1–46CrossRefGoogle Scholar
von Neumann, John (1928a), “Calcul des Probabilités – Sur la Théorie des Jeux” presented by Borel, E., Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Tome 186, No. 25, Lundi 18 juin, pp. 1689–91Google Scholar
von Neumann, John (1928b), “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen, Vol. 100, pp. 295–320. Translated by Bargmann, S. as “On the Theory of Games of Strategy” in Tucker, A. W. and Luce, R. D. (eds.) (1959), pp. 13–42CrossRefGoogle Scholar
von Neumann, John (1928c), “Die Axiomatisierung der Mengenlehre”, Mathematische Zeitschrift, Vol. 27, pp. 669–752. In Taub, (ed.) (1963), Vol I, pp. 339–422CrossRefGoogle Scholar
von Neumann, John (1928d), “Die Zerlegung eines Intervalles in abzahlbar viele kongruente Teilmengen”, Fundamenta Mathematicae II, pp. 230–38. In Taub, (ed.), Vol. I, pp. 302–11CrossRefGoogle Scholar
von Neumann, John (1928e), “Uber die Definition durch transfinite Induktion, und verwandte Fragen der allgemeinen Mengenlehre”, Mathematische Annalen 99, pp. 373–91. In Taub, (ed.), Vol. I, pp. 320–38CrossRefGoogle Scholar
von Neumann, John (1929a), “Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren”, Mathematisch Annalen, Vol. 102, pp. 49–131CrossRefGoogle Scholar
von Neumann, John (1929b), “Zur algebra der Funktionaloperatoren und Theorie der normalen Operatoren”, Mathematisch Annalen, Vol. 102, pp. 370–427CrossRefGoogle Scholar
von Neumann, John (1929c), “Zur Theorie der unbeschrankten Matrizen”, Journal für die Reine und Angewandte Mathematick, Vol. 161, pp. 208–36Google Scholar
von Neumann, John (1937), “Über ein Ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”, Ergebnisse eines Mathematisches Kolloquium, Vol. 8, pp. 73–83. Translated as “A model of general economic equilibrium” in Review of Economic Studies, Vol. 13, 1945, pp. 1–9Google Scholar
von Neumann, John (1947a), “The Mathematician”, in R. B. Heywood. (ed.), The Works of the Mind, pp. 180–96, reprinted in Taub, (ed.) (1963), Vol. I, pp. 1–9Google Scholar
von Neumann, John (1947b), “Discussion of a maximum problem” (unpublished working paper, Princeton, November)
von Neumann, John (1948), “A numerical Method for Determination of the Value and the Best Strategies of a Zero-sum Two-person Game with Large Numbers of Strategies”, (mimeographed, Princeton, May)
von Neumann, John (1950), “Solutions of Games by Differential Equations” (with Brown, G. W.), in Contributions to the Theory of Games, Vol. I (ed. by Kuhn, H. and Tucker, A. W.), Annals of Mathematics Studies, No. 24, Princeton.Google Scholar
von Neumann, John (1953), “A Certain Two-person Game Equivalent to the Optimal Assignment Problem“, Contributions to the Theory of Games, Vol. II (edited by Kuhn, H. W. and Tucker, A. W.), Annals of Mathematics Studies, No. 28, Princeton, pp. 5–12Google Scholar
von Neumann, John (1954a), “The Role of Mathematics in the Sciences and in Society”, Address at 4th Conference of the Association of Princeton Graduate Alumni, pp. 16–29, reprinted in Taub, (ed.) (1961), Vol. VI, pp. 477–90
von Neumann, John (1954b), “A numerical method to determine optimum strategy”, Naval Research Logistics Quarterly, Vol. 1, pp. 109–15CrossRefGoogle Scholar
von Neumann, John (1955a) [1932], Mathematical Foundations of Quantum Mechanics, translated By Beyer, Robert, Princeton: Princeton University PressGoogle Scholar
von Neumann, John (1955b), “The Impact of Recent Developments in Science on the Economy and on Economics”, Looking Ahead, Vol. 4, No. 11, reproduced in Taub, (ed.) (1961–63), Vol. VI, pp. 100–01Google Scholar
von Neumann, John (1955c), “Can we survive technology?”, in Fortune, June, reproduced in Taub, (ed.) (1961–63), Vol. VI, pp. 504–19
von Neumann, John (1984) [1931], “The formalist foundations of mathematics”, in Benacerraf, P. and Putnam, H. (eds.), Philosophy of Mathematics, Selected Readings, Cambridge: Cambridge University Press.Google Scholar
von Neumann, John, John von Neumann Papers, Institute for Advanced Study (VNIAS), Princeton
von Neumann, John, John von Neumann Papers, Library of Congress (VNLC), Washington D.C
von Neumann, John and Brown, G. W. (1950), “Solutions of games by differential equations” (with Brown, G.W.), in Contributions to the Theory of Games, Vol. I, edited by Kuhn, H. and Tucker, A. W., Annals of Mathematics Studies, No. 24, Princeton: Princeton University PressGoogle Scholar
von Neumann, John and Morgenstern, Oskar (1947) [1944], The Theory of Games and Economic Behavior, Princeton: Princeton University PressGoogle Scholar
von Neumann-Eckart, Klari, Klari von Neumann-Eckhart Papers. In possession of Marina von Neumann Whitman (KEMNW), Ann Arbor, Michigan
Neurath, Marie (1973), “26 September 1924 and After” (biographical note on Otto Neurath) in Neurath (1973), pp. 56–64
Neurath, Otto (1920), “Experiences of Socialization in Bavaria” (from a lecture given in 1920 to the Sociological Society of Vienna). Reprinted in Neurath (1973), pp. 18–28
Neurath, Otto (1925), “Gesellschafts- und Wirtschaftsmuseum in Wien”, Österreichische Gemiende-Zeitung, Vol. 2, Jahrgang, No. 16, Wien. Translated as “The Social and Economic Museum in Vienna”, in Neurath (1973), p. 214
Neurath, Otto (1928), Lebensgestaltung und Klassenkampf, p. 152Berlin: E. Laub. Translated as “Personal Life and Class Struggle” in Neurath (1973), pp. 249–98Google Scholar
Neurath, Otto (1929), ‘Wissenschaftliche Weltauffassung: Der Wiener Kreis’ (unsigned) (Preface signed by Hahn, Hans, Neurath, Otto, Carnap, Rudolf), p. 64. Wien: Artur Wolf. Translated as “The Scientific Conception of the World: The Vienna Circle”, in Neurath (1973), pp. 299–318Google Scholar
Neurath, Otto (1930), “Wege der wissenschaflichen Weltauffassung”, Erkenntnis, Heft 2–4, pp. 106–25. Translated as “Ways of the Scientific World-Conception” in Neurath (1983), pp. 32–47
Neurath, Otto (1931a), “Bildhafte Pädagogil im Gesellschafts- und Wirtschaftsmuseum in Wien”, Museumkunde, Neue Folge, III, Heft 3, pp. 125–29, Berlin: Walter de Gruyter. Translated as “Visual Education and the Social and Economic Museum in Vienna”, in Neurath (1973), pp. 215–17Google Scholar
Neurath, Otto (1931b), “Empirische Soziologie. Der wissenschaftliche Gehalt der Geschichte und Nationalökonomie”, Schriften zur wissenschaftlichen Weltauffassung, her. von Philipp Frank und Moritz Schlick, Bd. 5, p. 151, Wien: Julius Springer. Translated as “Empirical Sociology: The Scientific Content of History and Political Economy”, in Neurath (1973), pp. 319–421Google Scholar
Neurath, Otto (1933), “Museums of the Future”, Survey Graphic, Vol. 22, No. 9, pp. 458–63, reprinted in Neurath (1973), pp. 218–23Google Scholar
Neurath, Otto (1935), “Was bedeutet rationale Wirtschaftsbetrachtung?” Einheitswissenschaft, Heft 4, p. 46, Wien: Gerold & Co. Translated as “What is Meant by a Rational Economic Theory?” in McGuinness (ed.) (1987), pp. 67–109Google Scholar
Neurath, Otto (1937), “A New Language” from “Visual Education”, Survey Graphic, Vol. 24, No. 1, pp. 25–28, reprinted in Neurath (1973), pp. 224–26Google Scholar
Neurath, Otto (1938), “Die neue Enzyklopaedie”. Zur Enzyklopaedie der Einheitswissenschaft, Heft 6, pp. 6–16, Den Haag: Van Stockum & Zoon. Translated as “The New Encyclopedia” in McGuinness (ed.) (1987), pp. 132–41Google Scholar
Neurath, Otto (1939), Modern Man in the Making, London: Secker and WarburgGoogle Scholar
Neurath, Otto (1939/40), “The Social Sciences and Unified Science”, The Journal of Unified Science (Erkenntnis), Vol. 9, pp. 244–48. The Haag, Chicago, reprinted in Neurath (1983), pp. 209–12Google Scholar
Neurath, Otto (1945), “Visual Education: Humanisation versus Popularisation” (excerpt from unfinished 1945 manuscript Empiricism and Sociology, posthumously edited by Neurath, M. and Cohen, R. in Neurath [1973]), pp. 227–48Google Scholar
Neurath, Otto (1973), Empiricism and Sociology, edited by Neurath, Marie and Cohen, Robert S., Vienna Circle Collection, Vol. 1, Dordrecht: ReidelCrossRefGoogle Scholar
Neurath, Otto (1983), Philosophical Papers, 1913–1946, edited by Cohen, Robert S. and Neurath, Marie, Vienna Circle Collection, Vol. 16, Dordrecht: ReidelCrossRefGoogle Scholar
Newell, Allen (1951), “An Example in the Theory of Organization”, RAND P-291, Feb. 14.
Newell, Allen and Kruskal, J.B. (1951), “Formulating Precise Concepts in Organization Theory”, RAND RM-619-PR
Nimzovich, Aron (1974), My System, edited by Reinfeld, Fred, New York: David McKay, originally published in German in 1925–27 by Verlag B. Kagan, BerlinGoogle Scholar
Novick, David (ed.) (1965), Program Budgeting, Cambridge, Massachusetts: Harvard University
Novick, David (1988), “Beginning of Military Cost Analysis, 1950–1961”, RAND P-7425, March
O’Brien, D. P. (1988), Lionel Robbins, New York: St. Martin's PressCrossRefGoogle Scholar
Owens, Larry (1989), “Mathematicians at War: Warren Weaver and the Applied Economics Panel 1942–1945”, in Rowe, David E. and McCleary, John (eds.), The History of Modern Mathematics, Vol. II, Institutions and Applications: Academic Press, Harcourt, Brace, Jovanovitch, pp. 286–305Google Scholar
Oxaal, Ivar, Pollak, Michael, and Botz, Gerhard (eds.) (1987), Jews, Antisemitism and Culture in Vienna, London and New York: Routledge & Kegan Paul
Palmer, Greg (1978), The McNamara Strategy and the Vietnam War, Westport & London: GreenwoodGoogle Scholar
Patai, Ralph (1996), The Jews of Hungary: History, Culture, Psychology, Detroit, Michigan: Wayne State University PressGoogle Scholar
Pauley, Bruce F. (1992), From Prejudice to Perdition: A History of Austrian Anti-Semitism, Chapel Hill & London: University of North Carolina PressGoogle Scholar
Paxson, E. W. (1948), “Games of Tactics”, RAND RM-45, June 28
Paxson, E. W. (1949), “Recent Developments in the Theory of Games”, Econometrica, Vol. 17, pp. 72–73Google Scholar
Persons, Warren M. (1919a) “Indices of Business Conditions”, Review of Economic Statistics, Vol. 1, pp. 5–110Google Scholar
Persons, Warren M. (1919b) “An Index of General Business Conditions”, Review of Economic Statistics, Vol. 1, pp. 111–205Google Scholar
Pfister, Oskar (1931), “Ein Hamlet am Schachbrett. Ein Beitrag zue Psychologie des Shchachspieles”, Psychoanalytische Bewegung, Vol. 3, May-June, pp. 217–22Google Scholar
Piaget, J. (1971), Structuralism (translated by Maschler, Chaninah), London: Routledge and Kegan PaulGoogle Scholar
Pinch, T. (1977), “What Does a Proof do if it Does Not Prove?”, in Mendelsohn, E., Weingart, P., and Whitley, R. (eds.), The Social Production of Scientific Knowledge, Dordrecht: Kluwer, pp. 171–215CrossRefGoogle Scholar
Pollack, B. (ed.) (1995), The Experimental Psychology of Alfred Binet: Selected Papers, New York: Springer Publishing Co.
Popper, Karl (1992), Unended Quest: An Intellectual Autobiography, London: RoutledgeGoogle Scholar
Popper, Karl (1995), “Hans Hahn – Reminiscences of a Grateful Student”, Introduction to The Collected Works of Hans Hahn (edited by Schmetterer, L. and Sigmund, K.), Vol. I, Vienna: Springer VerlagGoogle Scholar
Poundstone, William (1992), Prisoner's Dilemma, New York: AnchorGoogle Scholar
Powers, J. (1982), Philosophy and the New Physics, London: MethuenGoogle Scholar
Punzo, Lionello F. (1989), “Von Neumann and K. Menger's Mathematical Colloquium”, in Dore, et al (eds.)
Punzo, Lionello F. (1991), “The School of Mathematical Formalism and the Viennese Circle of Mathematical Economists”, Journal of the History of Economic Thought, Vol. 13, Spring, pp. 1–18.CrossRefGoogle Scholar
Punzo, Lionello F. (1993), “On Robert Remak's Superponiertes Preissysteme”, paper presented at the History of Economics Society, Philadelphia
Punzo, Lionello F. (1994), “Karl Menger's Contribution to the Social Sciences”, in Menger (1994), pp. xxi–xxiv
Quade, E. S. (ed.) (1964), Analysis for Military Decisions, Chicago, Illinois: Rand McNally
Rabinbach, Anson, (1983), The Crisis of Austrian Socialism. From Red Vienna to Civil War 1927–1934, Chicago: University of Chicago PressGoogle Scholar
Rabinbach, Anson (ed.) (1985), The Austrian Socialist Experiment, Boulder, Colorado: Westview Press
Rachman, Arnold W. (1997), Sandor Ferenczi: The Psychotherapist of Tenderness and Passion, New York: Jason AronsonGoogle Scholar
Radó, Tibor (1932), “On Mathematical Life in Hungary”, American Mathematical Monthly, Vol. 37, pp. 85–90CrossRefGoogle Scholar
RAND Corporation (March 1989), A Bibliography of Selected RAND Publications
Redéi, Miklós (ed.) (2005), John von Neumann: Selected Letters, Providence, Rhode Island: American Mathematical SocietyCrossRef
Rees, Minah (1980), “The Mathematical Sciences and World War II”, American Mathematical Monthly, Vol. 87, pp. 607–21CrossRefGoogle Scholar
Regis, E. (1989), Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study, London: PenguinGoogle Scholar
Reid, Constance (1970), Hilbert, New York: Springer-VerlagCrossRefGoogle Scholar
Reisch, George (2005), How the Cold War Transformed the Philosophy of Science, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Rellstab, Urs (1991), “New Insights in the Collaboration between John von Neumann and Oskar Morgenstern on the Theory of Games and Economic Behavior” (mimeographed, Duke University, Department of Economics)
Rellstab, Urs (1992a), “From German Romanticism to Game Theory: I. Oskar Morgenstern's Vienna in the 1920's” (mimeographed, Duke University, Department of Economics)
Rellstab, Urs (1992b), Ökonomie und Spiele, Die Entstehungsgeschichte der Spieltheorie aus dem Blickwinkel des Ökonomen Oskar Morgenstern, Zurich: Verlag Rüegger, pp. x and 219Google Scholar
Remak, R (1929), “Kann die Volkswirtschaftslehre eine exakte Wissenschaft werden?Jahrbucher für Nationalökonomie und Statistik, Vol. 131, pp. 703–35Google Scholar
Remak, R (1933), “Können superponierte Preissysteme praktisch berechnet werden?Jahrbucher für Nationalökonomie und Statistik, Vol. 138, pp. 839–42Google Scholar
Reti, Richard (1923a), “Do ‘New Ideas’ Stand Up in Practice?”, translated from the Russian and reprinted in R. Tekel and M. Shibut in Virginia Chess Newsletter, Sept./Oct. issue, 1993, at .Google Scholar
Reti, Richard (1923b), Modern Ideas in Chess, translated by Hart, John, London: G. Bell and Sons.Google Scholar
Reti, Richard (1933), Masters of the Chessboard, translated by Schwendemann, J. A., London: Bell (orig. published 1932)Google Scholar
Rhodes, Richard (1986), The Making of the Atomic Bomb, New York: TouchstoneGoogle Scholar
Rickert, H. (1902), The Limits of Concept Formation in Natural Science, New York: Cambridge University PressGoogle Scholar
Riesz, Frigyes, “Obituary”, Acta Scientiarum Mathematicarum Szeged, 1956, Vol. 7, pp. 1–3Google Scholar
Rives, Norfleet W. (1975), “On the history of the mathematical theory of games”, History of Political Economy, Vol. 7, No. 4, pp. 549–65CrossRefGoogle Scholar
Robbins, L. (1935 [1932]), An Essay on the Nature and Significance of Economic Science, London: MacmillanGoogle Scholar
Robbins, L. (1938), “The Methods of Economic Observation and the Problems of Prediction in Economics”, in O'Brien (1988), pp. 170–78. O'Brien's translation of “Les méthodes d'observation économique et les problèmes de la prévision en matière économique”, in Cinq Conférences sur la Méthode dans les recherches économiques, Paris: Recueil Sirey, with a preface by Charles RistGoogle Scholar
Roos, Charles (1934), Dynamic Economics, Bloomington: Principia PressGoogle Scholar
Rosier, Michel (1987), “Otto Neurath, économiste et leader du Cercle de Vienne”, Oeconomica, Vol. 7, pp. 113–45Google Scholar
Rosser, J. Barkley (1989), “Mathematics and Mathematicians in World War II”, in Duren, Peter, et al (eds.), A Century of Mathematics in America, Part III, Vol. 3, Providence: American Mathematical Society, pp. 303–09Google Scholar
Rostow, W. W. (1981), Pre-Invasion Bombing Strategy, Austin: University of TexasGoogle Scholar
Rota, Gian-Carlo (1997), Indiscrete Thoughts, Boston: BirkhäuserCrossRefGoogle Scholar
Rothkirchen, Livia (1978), “Deep-Rooted Yet Alien: Some Aspects of the History of the Jews in Subcarpathian Ruthenia”, Yad Vashem Studies, Vol. 12, pp. 147–91.Google Scholar
Rothschild, K. W. (1973), “Distributive Aspects of the Austrian Theory”, in Hicks and Weber (eds.), pp. 207–25
Russell, Bertrand (1919), Introduction to Mathematical Philosophy, London: George Allen & UnwinGoogle Scholar
Russell, Bertrand and Whitehead, Alfred N. (1910), Principia Mathematica, Cambridge: Cambridge University PressGoogle Scholar
Samuelson, Paul A. (1949), “Market Mechanisms and Maximization”, RAND P-69, Mar. 28
Samuelson, Paul A. (1962), “Economists and the History of Ideas”, American Economic Review, Vol. LII, No. 1, pp. 1–18Google Scholar
Samuelson, Paul A. (1991), Personal communication with R. Leonard, Nov. 19
Sapolsky, Harvey M. (1990), Science and the Navy: The History of the Office of Naval Research, Princeton: Princeton University PressCrossRefGoogle Scholar
Saussure, Ferdinand de (1983) [1916], Course in General Linguistics, edited by Bally, Charles and Sechehaye, Albert. Translated by Harris, Roy. La Salle, Illinois: Open CourtGoogle Scholar
Scarf, Herbert E. (1955), “On Differential Games with Survival Payoffs”, RAND P-742, September
Scarf, Herbert E. and Shapley, L. S. (1956), “Games with Partial Information”, RAND P-797, April
Schlesinger, Karl (1935), “Über die Produktionsgleichungen der ökonomischen Wertlehre”, in Menger (ed.) (1935), Ergebnisse eines mathematischen Kolloquiums, 1933–34, Heft 6, pp. 10–11Google Scholar
Schlick, Moritz (1930), Fragen der Ethik, Vienna. Translated as Problems of Ethics, New York: Prentice Hall, 1939Google Scholar
Schorske, Carl (1981 [1961]), Fin-de-siècle Vienna, New York: Random HouseGoogle Scholar
Schotter, Andrew (ed.) (1976), Selected Economic Writings of Oskar Morgenstern, New York: NYU Press
Schumpeter, Joseph (1954), History of Economic Analysis, New York: Oxford University PressGoogle Scholar
Schwalbe, U. and Walker, P. (2001), “Zermelo and the Early History of Game Theory”, Games and Economic Behavior, Vol. 34, pp. 123–37CrossRefGoogle Scholar
Science Letter News (Apr. 3, 1937), “Princeton Scientist Analyzes Gambling; You Can't Win” p. 216
Segal, Sanford L. (2003), Mathematicians under the Nazis, Princeton University PressCrossRefGoogle Scholar
Selten, R. (1965), “Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit”, Zeitschrift für die gesamte Staatwissenschaft, Vol. 121, pp. 301–24; 667–89Google Scholar
Selten, R. (1975), “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games”, International Journal of Game Theory, Vol. 4, 1, pp. 25–55CrossRefGoogle Scholar
Shapley, Lloyd (1949), “A Hidden-Target Model”, RAND RM-101, Feb. 14
Shapley, Lloyd (1949a), “The Silent Duel, One Bullet Versus Two, Equal Accuracy”, RAND RM-445-PR
Shapley, Lloyd (1949b), “Note on Duels with Continuous Firing”, RAND RM-118, Mar. 11
Shapley, Lloyd (1955), “Markets as Cooperative Games”, RAND P-629, Mar. 7
Shapley, Lloyd (1992), Interview with R. Leonard, April 21, University of California at Los Angeles
Shapley, L. and Snow, R. (1950), “Basic solutions of discrete games” in Kuhn and Tucker (eds.) pp. 27–35
Shubik, M. (1952), “Information, Theories of Competition, and the Theory of Games”, Journal of Political Economy, Vol. 60, pp. 145–50CrossRefGoogle Scholar
Shubik, M. (1959), Strategy and Market Structure, New York: WileyGoogle Scholar
Shubik, M. (1979), “Morgenstern, Oskar”, International Encyclopaedia of the Social Sciences, Vol. 18, edited by Sills, David L., 1968, New York: Macmillan Co. and Free Press. (Vol. 18 a 1979 supplement), pp. 541–44Google Scholar
Shubik, M. (1989), “Oskar Morgenstern”, in Eatwell et al, (eds.), pp. 164–66CrossRef
Shubik, M. (ed.) (1964), Game Theory and Related Approaches to Social Behavior, New York: Wiley
Shubik, M. (ed.) (1976), Essays in Mathematical Economics in Honor of Oskar Morgenstern, Princeton: Princeton University Press
Shubik, M. (1982), Game Theory in the Social Sciences, Cambridge, Massachusetts: MIT PressGoogle Scholar
Shubik, M. (1989), “Cournot, Antoine Augustin” in Eatwell, et al (eds.), pp. 117–28CrossRef
Shubik, M. (1991), Interview with R. Leonard, Dec. 6, New Haven, Connecticut
Sieg, Ulrich and Dreyer, Michael (eds.) (2001), Emanuel Lasker: Schach, Philosophie und Wissenschaft, Berlin: Philo
Siegfried, Tom (2006), A Beautiful Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature, Washington, D.C.: Joseph Henry PressGoogle Scholar
Siegmund-Schultze, Reinhard (1994), “Communications between German and American Mathematicians between World Wars”, Research Reports from the Rockefeller Archive Center, Spring, pp. 14–16Google Scholar
Sigmund, Karl (1995a), “Hans Hahn and the Foundational Debate”, in DePauli-Schimanovich, W., et al (eds.) (1995), The Foundational Debate, Amsterdam: Kluwer, pp. 235–45CrossRefGoogle Scholar
Sigmund, Karl (1995b), “A Philosopher's Mathematician: Hans Hahn and the Vienna Circle”, The Mathematical Intelligencer, Vol. 17, No. 4, pp. 16–29CrossRefGoogle Scholar
Silk, Leonard (1977), “The Game Theorist”, New York Times, Sunday, Feb. 13.
Silverman, Paul (1984), “Law and Economics in Interwar Vienna” (unpublished PhD dissertation, University of Chicago)
Simon, H. (1945), Review of Theory of Games and Economic Behavior, American Journal of Sociology, Vol. 50, No. 6, pp. 558–60CrossRefGoogle Scholar
Simon, H. (1991a), Interview with R. Leonard, Dec. 18, Carnegie-Mellon University
Simon, H. (1991b), Communication with R. Leonard, Dec. 20
Smith, Barry (1986), “Austrian Economics and Austrian Philosophy”, in Grassl, Wolfgang and Smith, Barry (eds.) (1986), Austrian Economics: Historical and Philosophical Background, London and Sydney: Croom HelmGoogle Scholar
Smith, Barry (1990), “On the Austrianness of Austrian Economics”, Critical Review, Winter-Spring, pp. 212–38CrossRefGoogle Scholar
Smith, Barry (1995), “L'Autriche et la Naissance de la Philosophie Scientifique”, Actes de la Recherce en sciences sociales, Vol. 109, Septembre, pp. 61–71CrossRefGoogle Scholar
Smith, Bruce (1964), “Strategic Expertise and National Security Policy: a Case Study”, Public Policy, Vol XIII, pp. 69–106Google Scholar
Smith, Bruce (1966), The RAND Corporation, Cambridge, Massachusetts: Harvard University PressCrossRefGoogle Scholar
Smith, John Maynard (1988), Games, Sex and Evolution, New York and Toronto: Harvester-WheatsheafGoogle Scholar
Spann, Othmar (1924), Kategorienlehre in Ergänzungsbände zur Sammlung Herdflamme, Vol. I, Jena: Gustav FischerGoogle Scholar
Spann, Othmar (1931), Der Wahre Staat, Vorlesungen über Abbruch und Neubau der Gesellschaft, Jena: FischerGoogle Scholar
Spann, Othmar (1932), Geschichtsphilosophie, Jena: FischerGoogle Scholar
Spann, Othmar (1911), Die Haupttheorien der Volkswirtschaftslehre, Leipzig: Quelle & MeyerGoogle Scholar
Specht, Robert D. (1957), “War Games”, RAND P-1041, Mar. 18.
Specht, Robert D. (1960), “RAND – A personal view of its history”, Operations Research, Vol. 8, pp. 825–39CrossRefGoogle Scholar
von Stackelberg, H. (1952), The Theory of the Market Economy (translated from German; original 1934), London: W. HodgeGoogle Scholar
Stadler, Friedrich (1991), “Otto Neurath: Encyclopedist, Adult Educationalist and School Reformer”, in Uebel (ed.) (1991), pp. 255–64CrossRef
Stadler, Friedrich (1991), “Aspects of the Social Background and Position of the Vienna Circle at the University of Vienna”, in Uebel (ed.), pp. 51–77.CrossRef
Stigler, George J. (1965), “The Economist and the State”, American Economic Review, Vol. LV, No. 1, pp. 1–18Google Scholar
Stockfisch, Jack (1987), “The Intellectual Foundations of Systems Analysis”, RAND P-7401, December
Stocking, George W. (1959), “Institutional Factors in Economic Thinking”, American Economic Review, Vol. XLIX, No. 1, pp. 1–21Google Scholar
Stone, Marshall (1983), Review: Steve J. Heims, John von Neumann and Norbert Wiener, from mathematics to the technologies of life and death, Bulletin of the American Mathematical Society (N.S.), Volume 8, Number 2, pp. 395–399CrossRefGoogle Scholar
Stone, R. (1948), “The Theory of Games”, Economic Journal, Vol. 58, pp. 185–201CrossRefGoogle Scholar
Sturrock, J. (1993), Structuralism, London: FontanaGoogle Scholar
Swedberg, Richard (1991), Schumpeter: A Biography, Princeton: Princeton University PressGoogle Scholar
Tarrasch, Siegbert (1912), Die moderne Schachpartie, Nürnberg: Tarraschs SelbstrverlagGoogle Scholar
Tarrasch, Siegbert (1940), The Game of Chess: A Systematic Text-book for Beginners and More Experienced Players, Philadelphia: D. McKayGoogle Scholar
Taub, Alfred H. (ed.) (1963), John von Neumann, Collected Works, Vols. I-VI, New York: Macmillan
Thrall, R. M., Coombs, C. H., and Davis, R. L. (eds.) (1954), Decision Processes, New York: Wiley
Thucydides, (1966), The Peloponnesian War (Books I, II [Chapters 1–7]) and V [Chapter 7]), Chicago: Great Books Foundation; based on the translation by Rex Warner (1954), Harmondsworth: Penguin BooksGoogle Scholar
Tidman, Keith R. (1984), The Operations Evaluation Group, Annapolis, Maryland: Naval Institute PressGoogle Scholar
Tintner, Gerhard (1952), “Abraham Wald's Contributions to Econometrics”, Annals of Mathematical Studies, Volume 23, Number 1, pp. 21–28CrossRef
Tirole, Jean (1988), The Theory of Industrial Organisation, Cambridge, Massachusetts: MIT Press, pp. 479Google Scholar
Tucker, A. (1991), Interview with R. Leonard, Dec. 11, Princeton
Tucker, A. W. and Luce, R. D. (eds.) (1959), Contributions to the Theory of Games, Vol. IV, Princeton: Princeton University Press
Turán, Paul (1949a), “Megemlékezés», Mathematikai Lapok”, Vol. 1, pp. 3–16, translated as “Commemoration” in Collected Papers, Vol. 1, pp. 459–70.
Turán, Paul (1949b) “Fejér Lipót mathematikai munkásseaga”, Mathematikai Lapok, Vol. I, pp. 160–70, translated as “Leopold Fejér's Mathematical Work”, in Collected Papers, Vol. I, pp. 474–81Google Scholar
Turán, Paul (1960), “Fejér Lipót, 1880–1959”, Mathematikai Lapok, Vol. 12, pp. 8–18, translated as “Leopold Fejér (1880–1959). His Life and Work”, in Collected Papers Vol. 2, pp. 1204–12Google Scholar
Turán, Paul (1974), “Megemlékezés a fasizmus mathematikus áldozatairól”, Mat. Lapok, Vol. 25, pp. 259–63, translated as “Commemoration of Mathematicians Who Were Victims of Fascism”, in Collected Papers, Vol. 3, pp. 2622–26Google Scholar
Turán, Paul (1977), “A Note of Welcome”, Journal of Graph Theory, Vol. 1, No. 1, pp. 7–9CrossRefGoogle Scholar
Uebel, Thomas E. (ed.) (1991), Rediscovering the Forgotten Vienna Circle, Boston Studies in the Philosophy of Science, Vol. 133, Dordrecht and Boston: KluwerCrossRef
Ulam, Stan (1958), “John von Neumann”, Bulletin of the American Mathematical Society, Vol. 64, No. 3, pp. 1–49CrossRefGoogle Scholar
Ulam, Stan (1976), Adventures of a Mathematician, New York: ScribnersGoogle Scholar
Ulam, Stan (1980), Unpublished Draft Biography of John von Neumann, located in Stanislaus Ulam Papers, American Philosophical Society Library, in Series IX, Manuscripts of Published Works, 1944–1984
Van Dalen, Dirk (1999), Mystic, Geometer, and Intuitionist: The Life of L.E.J. Brouwer. Vol. 1: The Dawning Revolution, Oxford: Oxford University PressGoogle Scholar
Van Dalen, Dirk (2005), Mystic, Geometer, and Intuitionist: The Life of L.E.J. Brouwer. Vol. 2: Hope and Disillusion, Oxford: Oxford University PressGoogle Scholar
Van Hove, Léon (1958), “Von Neumann's Contribution to Quantum Theory”, Bulletin of the American Mathematical Society, Vol. 64, No. 3, Part 2, May, pp. 95–99, Special Issue on John von Neumann, 1903–1957CrossRefGoogle Scholar
Van Stigt, W. P. (1981), “L.E.J. Brouwer, The Signific Interlude“, in Troelstra, A. S. and Dalen, D. Van (eds.), The L.E.J. Brouwer Centenary Symposium, Amsterdam: North HollandGoogle Scholar
Vaughn, Karen (1994), Austrian Economics in America: The Migration of a Tradition. New York and Cambridge: Cambridge University PressCrossRefGoogle Scholar
Veblen, Oswald, Oswald Veblen Papers. Library of Congress (VLC), Washington D.C.
Ville, Jean (1938), “Sur la Théorie Générale des Jeux de Hasard”, in Borel (1938), Traité du Calcul des Probabilités et de ses Applications, Vol. IV, 2, Paris: Gauthier-Villars, pp. 105–13Google Scholar
Viteles, M.S. (1945), “The aircraft pilot: five years of research; a summary of outcomes”, Psychological Bulletin, Vol. 42, pp. 489–526CrossRefGoogle Scholar
Vonneuman, Nicholas A. (1987), John von Neumann as Seen by His Brother. Meadowbrook, Pennsylvania: N.A. Vonneumann.Google Scholar
Wald, Abraham (1931a) “Axiomatik des Zwischenbegriffes in metrischen Räumen”, Wiener Akademischer Anzeiger, No. 16, pp. 1–3Google Scholar
Wald, Abraham (1931b), “Axiomatik des Zwischenbegriffes in metrischen Räumen”, Mathematische Annalen, Vol. 104, pp. 476–84CrossRefGoogle Scholar
Wald, Abraham (1931c), “Axiomatik des metrischen Zwischenbegriffes”, Ergebnisse eines Mathematische Kolloquiums, Vol. 2, p. 17Google Scholar
Wald, Abraham (1933), “Zur Axiomatik des Zwischenbegriffes”, Ergebnisse eines Mathematische Kolloquiums, Vol. 4, pp. 23–24Google Scholar
Wald, Abraham (1934), “Über die eindeutige positive Lösbarkeit der neuen Produktionsgleichungen”, in Menger, Karl (ed.) (1935), Ergebnisse eines Mathematischen Kolloquiums, Vol. 6, 1933–34, Leipzig and Vienna: Franz Deuticke, pp. 12–18. Translated as “On the Unique Non-negative Solvability of the New Production Equations, Part I”, in Baumol and Goldfeld (1968), pp. 281–88Google Scholar
Wald, Abraham (1935), “Uber die Produktionsgleichungen der ökonomischen Wertlehre”, in Menger, Karl (ed.) (1936), Ergebnisse eines Mathematischen Kolloquiums, Vol. 7, 1934–35, Leipzig and Vienna: Franz Deuticke, pp. 1–6. Translated as “On the Production Equations of Economic Value Theory”, in Baumol and Goldfeld (1968), pp. 289–93Google Scholar
Wald, Abraham (1936), Berechnung und Ausschaltung von Saisonschwankungen., Vienna: Julius SpringerCrossRefGoogle Scholar
Wald, Abraham (1937), “Zur Theorie der Preisindexziffern”, Zeitschrift für Nationalökonomie, Vol. 8, pp. 179–219CrossRefGoogle Scholar
Wald, Abraham (1939), “A New Formula for the Index of Cost of Living”, Econometrica, Vol. 7, pp. 280–306CrossRefGoogle Scholar
Wald, Abraham (1940), “The Approximate Determination of Indifference Surfaces by Means of Engel Curves”, Econometrica, Vol. 8, pp. 96–100CrossRefGoogle Scholar
Wald, Abraham (1945a), “Statistical Functions which Minimize the Maximum Risk”, Annals of Mathematics, Vol. 46, pp. 265–80CrossRefGoogle Scholar
Wald, Abraham (1945b), “Generalization of a Theorem by v. Neumann Concerning Zero Sum Two Person Games”, Annals of Mathematics, Vol. 46, No. 2, April, pp. 281–86CrossRefGoogle Scholar
Wallis, W. Allen (1980), “The Statistical Research Group”, Journal of the American Statistical Association, Vol. 75, No. 370, pp. 320–30 and “Rejoinder”, pp. 334–35Google Scholar
Walras, L. (1863), “Compte rendu des ‘Principes de la théorie des richesses’” in Lutfalla (ed.) (1938), pp. 224–32
Walras, L. (1900) [1874], Eléments d’économique politique pure, ou théorie de la richesse sociale. 4th ed. Lausanne: Rouge and Paris: Pichon. Translated by William Jaffé as Elements of Pure EconomicsLondon: Allen & Unwin, 1954.Google Scholar
War Ministry (1963), Operational Research in the R.A.F., London: Her Majesty's Stationery OfficeGoogle Scholar
Weaver, Warren (1970), Scene of Change: A Lifetime in American Science, New York: Scribner'sGoogle Scholar
Weber, M. (1921–22), Economy and Society: an Outline of Intepretive Sociology. 3-volume edition, New York: Bedminster Press (1967); 2-volume and 3-volume editions, Berkeley: University of California Press (1978)Google Scholar
Weber, M. (1949), The Methodology of the Social Sciences, edited by Shils, Edward and Finch, Henry, New York: Free PressGoogle Scholar
Weber, Wilhelm (1961), “Hans Mayer”, Handwörterbuch der Sozialwissenschaften, Bd. 7, Stuttgart: Gustav Fischer, pp. 364–5Google Scholar
Weiner, Milton G. (1954), “Observations on the Growth of Information-Processing Centers”, RAND P-529, May 21
Weininger, Otto (1903), Geschlecht und Karakter: Eine prinzipielle Untersuchung, Vienna and Leipzig: Wilhelm Braumüller. Translated as Sex and Character, from 6th German edition, London: Wm. Heinemann, and New York: G.P. Putnam's (1906).Google Scholar
Weintraub, E. Roy (1985), General Equilibrium Analysis, Studies in Appraisal, Cambridge: Cambridge University PressGoogle Scholar
Weintraub, E. Roy (1991), Stabilizing Dynamics, Cambridge: Cambridge University Press, 177pp.CrossRefGoogle Scholar
Weintraub, E. Roy (1998), “From Rigor to Axiomatics: the Marginalization of Griffith C. Evans”, in History of Political Economy, Special Issue, “From Interwar Pluralism to Postwar Neoclassicism”, edited by Mary S. Morgan and Malcolm Rutherford, pp. 227–59CrossRefGoogle Scholar
Weintraub, E. Roy (2002), How Economics Became a Mathematical Science, Duke University PressCrossRefGoogle Scholar
Weintraub, E. Roy (ed.) (1992), “Towards a History of Game Theory”, History of Political Economy, Special Issue, Vol. 24
Weisner, Louis (1945), “Review of Theory of Games and Economic Behavior”, Science and Society, Vol. 9, pp. 366–69Google Scholar
Weisz, Jószef (1905), “Játékkülömbözetek Meghatározásáról”, KöMaL, April, pp. 185–86Google Scholar
Werfel, Franz (1934, orig.1933), The Forty Days of Musa-Dagh. Translated from German by Dunlop, Geoffrey. New York: Viking PressGoogle Scholar
Weyl, Hermann (1927), Philosophie der Mathematick und Naturwissenschaften, Munich: Leipzig Verlag. Translated as Philosophy of Mathematics and Natural Science, Princeton: Princeton University Press, 1949Google Scholar
Weyl, Hermann (1944), “David Hilbert, 1862–1943”, Royal Society of London, Obituary Notices of Fellows, Vol. 4, No. 13, November, pp. 547 ff.CrossRefGoogle Scholar
Weyl, Hermann (1949), “Ars Combinatoria”, in Philosophy of Mathematics and Natural Science, Princeton: Princeton University Press, pp. 237–52Google Scholar
Weyl, Hermann (1950), “Elementary Proof of a minimax theorem Due to von Neumann”, in Kuhn and Tucker (eds.) 1950, pp. 19–25
Whitehead, Alfred N. (1967 [1925]), Science and the Modern World, New York: Free PressGoogle Scholar
Who's Who in America: A Biographical Dictionary of Notable Living Men and Women, Vol. 34. 1966–67
von Wieser, F. (1914), Theorie der gesellschaftlichen Wirtschaft, translated as Social Economics, by A. Ford Hinrichs, 1927, with preface by Wesley Clair Mitchell, New York: GreenbergGoogle Scholar
von Wieser, Friedrich (1926), Das Gesetz der Macht, Vienna: J. SpringerGoogle Scholar
Wiggershaus, Rolf (1995), The Frankfurt School, translated by Robertson, Michael, Cambridge, Massachusetts: MIT Press.Google Scholar
Williams, John D. (1933), “The Use of Reticles for the Observation of Meteors”, Publications of the Astronomical Society of the Pacific, Vol. XLV No. 266, August, pp. 175–79CrossRefGoogle Scholar
Williams, John D. (1939), “Binocular Observation of 718 Meteors”, Proceedings of the American Philosophical Society, Vol. 81, No. 4, pp. 505–20Google Scholar
Williams, John D. (1946), “Effect on Military Worth of Exchanging Bombing Accuracy for Bomber Safety by Increasing Range of Bomb”, RAND RA-15008, Sept. 1
Williams, John D. (1949), “A Selection of Information on Coverage”, RAND RM-91, Jan. 10
Williams, John D. (1952), “Conflicts with Imprecise Payoffs”, RAND P-354, Dec. 15
Williams, John D. (1953), “Regarding Optimum Amount of Operational Training in GCI Centers”, RAND RM-1033, Jan. 26
Williams, John D. (1954), The Compleat Strategyst, New York: McGraw-HillGoogle Scholar
Williams, John D. (1958), “Some Attributes of the Changing Society”, RAND RM-2285-RC, Nov. 10. (later published as Part 1, The Place of Mathematics in a Changing Society, Report of Subcommittee 1, Secondary School Curriculum Committee, National Council of Teachers of Mathematics, October)
Wilson, F. (1981), A Picture History of Chess, New York: DoverGoogle Scholar
Wistrich, Robert S. (ed.) (1992), Austrians and Jews in the Twentieth Century: From Franz Joseph to Waldheim, New York: St. Martin's PressCrossRef
Witte, Edwin (1957), “The Economist and Public Policy”, American Economic Review, Vol. XLVII, No. 1, pp. 1–20Google Scholar
Wittgenstein, Ludwig (1921), Tractatus Logico-Philosophicus, translated by Pears, D. F. and McGuinness, B. F. 1993, London: Routledge, pp. xxii and 89Google Scholar
Wittman, von W. (1967), “Die extremale Wirtschaft. Robert Remak – ein Vorläufer der Aktivitätsanalyse”, Jahrbucher für Nationalökonomie und Statistik, Vol. 180, pp. 397–409Google Scholar
Wohlstetter, A. (1959), “The Delicate Balance of Terror”, Foreign Affairs, January
Wohlstetter, A. (1964a), “Analysis and Design of Conflict Systems”, in Hitch and McKean (1964), pp. 103–48
Wohlstetter, A. (1964b), “Sin and Games in America”, in Shubik (ed.) (1964)
Wohlstetter, A. and Rowen, H. (1951), “Economic and Strategic Considerations in Air Base Location: a Preliminary Review”, RAND D-1114
Wolf, Theta Holmes (1973), Alfred Binet, Chicago and London: University of Chicago PressGoogle Scholar
Wolfe, P (ed.) (1955), “Report of an Informal Conference on Recent Developments in the Theory of Games, January 31 – February 1, 1955”, Logistics Research Project, Dept. Mathematics, Princeton University
Zermelo, E. (1913), “Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels”, Proceedings of the 5th International Congress of Mathematicians, Cambridge, Aug. 22–28, 1912, Vol. II, pp. 501–04, translated as “On an Application of Set Theory to the Theory of the Game of Chess” by Ulrich Schwalbe and Paul Walker in Schwalbe and Walker (2001), pp. 133–36Google Scholar
Zermelo, E. (1928), “Die Berechnung der Turnier – Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung”, Mathematische Zeitschrift, Vol. 29, pp. 46–460Google Scholar
Zolo, Danilo (1990), “Reflexive Epistemology and Social Complexity: The Philosophical Legacy of Otto Neurath”, Philosophy of the Social Sciences, Vol. 20, pp. 149–69CrossRefGoogle Scholar
Zweig, Stefan (1981), The Royal Game and Other Stories, New York: Harmony Books (orig. Schachnovelle, written in late 1941, early 1942; translated as The Royal Game, New York: Viking Press, 1944)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Robert Leonard, Université du Québec à Montréal
  • Book: Von Neumann, Morgenstern, and the Creation of Game Theory
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778278.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Robert Leonard, Université du Québec à Montréal
  • Book: Von Neumann, Morgenstern, and the Creation of Game Theory
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778278.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Robert Leonard, Université du Québec à Montréal
  • Book: Von Neumann, Morgenstern, and the Creation of Game Theory
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778278.019
Available formats
×