Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T23:01:04.324Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 October 2020

Roger D. Borcherdt
Affiliation:
United States Geological Survey, California
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N.H. (1881). Solutions de quelques problèmes à l’aide d’intégrales defines, Oeuvres complètes, nouvelle éd., 1, Grondahl & Son, Christiania, 1127.Google Scholar
Aki, K. and Richards, P. G. (1980 1st ed., 2000 2nd ed.). Quantitative Seismology, Theory and Methods, San Francisco, W. H. Freeman and Co.Google Scholar
Backus, G. and Gilbert, F. (1968). The Resolving Power of Gross Earth Data, Geophys. J. Roy. Astron. Soc. 16, 169-205.Google Scholar
Becker, F. L. (1971). Phase measurements of reflected ultrasonic waves near the Rayleigh critical angle, J. Appl. Phys., 42, 199-202.Google Scholar
Becker, F. L. and Richardson, R. L. (1969). Critical angle reflectivity, J. Acoust. Soc. Am., 45, 793-794.Google Scholar
Becker, F. L. and Richardson, R. L. (1970). Ultrasonic critical angle reflectivity, in Research Techniques in Nondestructive Testing, ed. R. S. Sharpe, Orlando, FL, Academic, pp. 91-131.Google Scholar
Benioff, H. (1935). A linear strain seismograph, Bull. Seism. Soc. Am., 25, 283-309.Google Scholar
Benioff, H., and Gutenberg, B.. (1952). The response of strain and pendulum seismographs to surface waves, Bull. Seism. Soc. Am., 43, 229-237.Google Scholar
Ben-Menehem, A. and Singh, S. J. (1981). Seismic Waves and Sources, New York, Springer-Verlag, pp. 840-915.Google Scholar
Birkoff, G., and MacLane, S. (1953). A Survey of Modern Algebra, New York, Macmillian Company, p. 112.Google Scholar
Biswas, N. N. and Knopoff, L. (1970). Exact earth-flattening calculations for Love waves, Bull. Seism, Soc. Am. 60, 1123-1137.Google Scholar
Bland, D. R. (1960). The Theory of Linear Viscoelasticity, New York, Pergamon Press.Google Scholar
Boltzmann, L. (1874). Zur Theorie der Elastischen Nachwirkung, Sitzungsber. Math. Naturwiss. Kl. Kaiserl. Wiss. 70, 275.Google Scholar
Borcherdt, R. D. (1971). Inhomogeneous Body and Surface Plane Waves in a Generalized Viscoelastic Half Space, Ph.D. Dissertation, University of California, Berkeley, CA, 308 pp, researchgate.netGoogle Scholar
Borcherdt, R. D. (1973a). Energy and plane waves in linear viscoelastic media, J. Geophys. Res., 78, 2442-2453, doi: 10.1029/jb078i014p02442 Google ScholarGoogle Scholar
Borcherdt, R. D. (1973b). Rayleigh-Type surface wave on a linear viscoelastic halfspace, J. Acoust. Soc. Am., 54, 1651-1653, doi: 10.1121/1.1919469 Google Scholar researchgate.netGoogle Scholar
Borcherdt, R. D. (1977). Reflection and refraction of Type-II S waves in elastic and anelastic media, Bull. Seismol. Soc. Am., 67, 43-67. Google ScholarGoogle Scholar
Borcherdt, R. D. (1982). Reflection-refraction of general P- and Type-I S waves in elastic and anelastic solids, Geophys. J. R. Astron. Soc., 70, 621-638, doi: 10.1111/j.1365-246x.1982.tb05976. Google ScholarGoogle Scholar
Borcherdt, R.D. (1988). Volumetric strain and particle displacements for body and surface waves in a general viscoelastic half-space, Geophys. J. R. Astron. Soc., 93, 215-228, doi: 10.1111/j.1365-246x.1988.tb01997. Google ScholarGoogle Scholar
Borcherdt, R. D. (2009). Viscoelastic Waves in Layered Media, 1st edn., Cambridge, Cambridge University Press, 305 pp, ISBN 978-0-521-89853-9, doi: /10.1121/1.3243311 CrossRef Google ScholarGoogle Scholar
Borcherdt, R.D. and Glassmoyer, G. (1989a). An exact anelastic model for the free-surface reflection of P and SI waves, Bull. Seismol. Soc. Am., 79, 842-859. Google Scholar researchgate.netGoogle Scholar
Borcherdt, R. D. and Wennerberg, L. (1985). General P, Type-I S, and Type-II S waves in anelastic solids: Inhomogeneous wave fields in low-loss solids, Bull. Seismol. Soc. Am., 75, 1729-1763. Google ScholarGoogle Scholar
Borcherdt, R.D., Glassmoyer, G., and Wennerberg, L. (1986). Influence of welded boundaries in anelastic media on energy flow and characteristics of general P, SI and SII body waves: Observational evidence for inhomogeneous body waves in low-loss solids, J. Geophys. Res., 91 , 11,503-11, 518. doi: 10.1029/jb091ib11p11503. Google ScholarGoogle Scholar
Borcherdt, R.D., Johnston, M. J. S., and Glassmoyer, G. (1989b). On the use of volumetric strain meters to infer additional characteristics of short-period seismic radiation, Bull. Seismol. Soc. Am., 79, 1006-1023. Google ScholarGoogle Scholar
Brand, L. (1960). Advanced Calculus, New York, John Wiley and Sons, Inc., p. 454.Google Scholar
Brekhovskikh, L. M. (1960). Waves in Layered Media, Orlando, FL, Academic Press, p. 34.Google Scholar
Bullen, K. E. (1965). An Introduction to the Theory of Seismology, 3rd edn., 2nd printing, Cambridge, Cambridge University Press.Google Scholar
Červený, V. (2001). Seismic Ray Theory, Cambridge, Cambridge University Press.Google Scholar
Chapman, C. H. (2002). Seismic ray theory and finite frequency extensions. In: Lee, W. H. K., Kanamori, H., Jennings, P.C. (eds.), International Handbook of Earthquake and Engineering Seismology, Part A. New York: Academic Press, 103-123.Google Scholar
Chapman, C. H. (1973). The Earth flattening transformation in body wave theory. Geophys. J. R. Astron. Soc. 35, 55 – 70.Google Scholar
Cooper, H. F., Jr. (1967). Reflection and transmission of oblique plane waves at a plane interface between viscoelastic media, J. Acoust. Soc. Amer., 42, 1064-1069.Google Scholar
Cooper, H. F., Jr., and Reiss, E. L. (1966). Reflection of plane viscoelastic waves from plane boundaries, J. Acoust. Soc. Amer., 39, 1133-1138.Google Scholar
Cowan, E. W. (1968). Basic Electromagnetism, New York, Academic.Google Scholar
Dahlen, F. A. and Tromp, J. (1998). Theoretical Global Seismology, Princeton, Princeton University Press.Google Scholar
Dix, C. H. (1939). Reflection and refraction of seismic waves, II: Discussion of the physics of refraction prospecting, Geophysics, 4, 238-241.Google Scholar
Dobrin, M. B. (1960). Introduction to Geophysical Prospecting, McGraw-Hill, p 70.Google Scholar
Dziewonski, A.M. and Anderson, D. L., (1984). Seismic tomography, American Scientist, 72, 483-494.Google Scholar
Ewing, J., and Houtz, R. (1979). Acoustic stratigraphy and structure of the oceanic crust, in Deep Drilling Results in the Atlantic Ocean: Ocean Crust, ed. Talwani, M., Harrison, C. G., and Hayes, D. E., Washington, D.C., American Geophysical Union, pp. 1-14.Google Scholar
Ewing, W. M., Jardetsky, W. S., and Press, F. (1957). Elastic Waves in Layered Media, New York, McGraw Hill.Google Scholar
Flügge, W. (1967). Viscoelasticity, Waltham, MA, Blaisdell.Google Scholar
Fumal, T. E. (1978). Correlations between seismic wave velocities of near-surface geologic materials in the San Francisco Bay region, California, U.S. Geological Survey Open-File Report 78-107.Google Scholar
Fung, Y. C. (1965). Foundations of Solid Mechanics, Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
Futterman, W. I. (1962). Dispersive body waves, J. Geophys. Res., 67, 5279-5291.Google Scholar
Gorenflo, R. and Vessella, S. (1991). Abel Integral Equations in Lect. Notes Mathematics 1461, Berlin, Springer Verlag.Google Scholar
Grant, F. S. and West, G. F. (1965). Interpretation theory in applied geophysics, McGraw-Hill.Google Scholar
Gross, B. (1953). Mathematical Structure of the Theories of Viscoelasticity, Paris, Hermann et Cie.Google Scholar
Gupta, I. N. (1966). Response of a vertical strain seismometer to body waves, Bull. Seism. Soc. Am., 56, 785-791.Google Scholar
Gurtin, M. E. and Sternberg, E. (1962). On the linear theory of viscoelasticity, Archive of Rat. Mech. Analysis, II, 291-356.Google Scholar
Hamilton, E. L., Buchen, H. P., Keir, D. L., and Whitney, J. A. (1970). Velocities of compressional and shear waves in marine sediments determined in situ and from a research submersible, J. Geophys. Res., 75, 4039-4049.Google Scholar
Haskell, N. A. (1953). The dispersion of surface waves on multilayered media, Bull. Seismol. Soc. Am., 43, 17-34.Google Scholar
Haskell, N. A. (1960). Crustal reflection of plane SH waves, J. Geophys. Res., 65, 4147-4150.Google Scholar
Herglotz, G. (1907). Über das benndorfsche problem der fortpflanzungsgeschwindigkeit der erdbebenstrahlen, Zeitschr. für Geophys., 8, 145147.Google Scholar
Hill, D. P. (1972). An earth-flattening transformation for waves from a point source, Bull. Seismol. Soc. Am., 62, 1195-1210.Google Scholar
Hudson, J. A. (1980). Propagation and Excitation of Elastic Waves, Cambridge, Cambridge University Press.Google Scholar
Hunter, S. C. (1960). Viscoelastic waves, Progress in Solid Mech., 1, 1-57.Google Scholar
Kanai, K. (1950). The effect of solid viscosity of surface layer on earthquake movements, III, Bull. Earthquake Res. Inst., Tokyo Univ., 28, 31-35Google Scholar
Kramer, S. L. (1996). Geotechnical Earthquake Engineering, Upper Saddle River, NJ, Prentice-Hall.Google Scholar
Kreysig, E. (1967). Advanced Engineering Mathematics, New York, John Wiley.Google Scholar
Lay, T. and Wallace, T. C. (1995). Modern Global Seismology, Academic Press, San Diego.Google Scholar
Lindsay, R. B. (1960). Mechanical Radiation, McGraw-Hill, New York.Google Scholar
Lockett, F. J. (1962). The reflection and refraction of waves at an interface between viscoelastic media, J. Mech. Phys. Solids, 10, 53-64.Google Scholar
Love, A. E. H. (1944). The Mathematical Theory of Elasticity, Cambridge University Press, 1st edn., 1892, 1893; 4th edn., 1927. Reprinted New York, Dover Publications.Google Scholar
McDonal, F. J., Angona, F. A., Mills, R. L., Sengush, R. L., van Nostrand, R.G., and White, J. E. (1958). Attenuation of shear and compressional waves in Pierre Shale, Geophysics, 23, 421-439.Google Scholar
Minster, J. B. and Anderson, D. L. (1981). A model of dislocation-controlled theology for the mantle, Philos. Trans. R. Soc. London, 299, 319-356.Google Scholar
Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics, New York, McGraw-Hill.Google Scholar
Newman, P. J., and Worthington, M. H. (1982). In situ investigation of seismic body wave attenuation in heterogeneous media, Geophys. Prospect., 30, 377-400, 1982.Google Scholar
Nowick, A. S. and Berry, B. S. (1972). Anelastic relaxation in crystalline solids, Academic Press, New York and London, 677 pp.Google Scholar
Rayleigh, Lord, Strutt, J. W. (1885). On waves propagated along the plane surface of an elastic solid, Proc. Roy. Math. Soc., 17, 4-11.Google Scholar
Romney, C. (1964). Combinations of strain and pendulum seismographs for increasing the detectability of P, Bull. Seism. Soc. Am., 54, 2165-2174.Google Scholar
Shearer, P.M. (2009). Introduction to Seismology, Cambridge, Cambridge University Press.Google Scholar
Stoffa, P. L., and Buhl, P. L. (1979). Two ship multichannel seismic experiments for deep crustal studies; expanded spread and constant offset profiles, J. Geophys. Res., 84, 7645-7660.Google Scholar
Thompson, W. T. (1950). Transmission of elastic waves through a stratified solid, J. Appl. Phys., 21, 89-93.Google Scholar
Udias, A. (1999). Principles of Seismology, Cambridge, Cambridge University Press.Google Scholar
Volterra, V. (2005). Theory of Functionals and of Integral and Integro-differential Equations, New York, Dover Publications.Google Scholar
Wiechert, E. (1910). Bestimmung des Weges der Erdbebenwellen im Erdinnern. I. Theoretisches, Phys. Z. 11, 294304.Google Scholar
Wolfram, S. (1999). The Mathematica Book, 4th edn., Cambridge, Wolfram Media/Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Roger D. Borcherdt, United States Geological Survey, California
  • Book: Viscoelastic Waves and Rays in Layered Media
  • Online publication: 17 October 2020
  • Chapter DOI: https://doi.org/10.1017/9781108862660.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Roger D. Borcherdt, United States Geological Survey, California
  • Book: Viscoelastic Waves and Rays in Layered Media
  • Online publication: 17 October 2020
  • Chapter DOI: https://doi.org/10.1017/9781108862660.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Roger D. Borcherdt, United States Geological Survey, California
  • Book: Viscoelastic Waves and Rays in Layered Media
  • Online publication: 17 October 2020
  • Chapter DOI: https://doi.org/10.1017/9781108862660.014
Available formats
×