Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T19:05:43.007Z Has data issue: false hasContentIssue false

15 - Origin and Dynamical Evolution of the Asteroid Belt

from Part III - Implications for the Formation and Evolution of the Solar System

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited, with a wide range in eccentricity and inclination, and their compositions are diverse (generally dry objects in the inner belt and more water-rich objects in the outer belt). The asteroid belt’s origins and dynamical history are reviewed. The classical view is that the belt was born with several Earth masses in planetesimals, then strongly depleted. However, it is possible that very few planetesimals ever formed in the asteroid region and the belt’s story is one of implantation rather than depletion. Many processes may have implanted asteroids from different regions of the Solar System, dynamically removed them, and excited their orbits. During the gaseous disk phase these include the effects of giant planet growth, migration, and sweeping secular resonances. After this phase these include scattering from resident planetary embryos, chaos in the giant planets’ orbits, giant planet instability, and long-term dynamical evolution. Different global models for Solar System formation imply contrasting dynamical histories of the asteroid belt. Vesta and Ceres may have been implanted from opposite regions of the Solar System – Ceres from the Jupiter–Saturn region and Vesta from the terrestrial planet region – and could therefore represent very different formation conditions.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 227 - 249
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abod, C. P., Simon, J. B., Li, R., et al. (2019) The mass and size distribution of planetesimals formed by the streaming instability. II. The effect of the radial gas pressure gradient. The Astrophysical Journal, 883, 192.CrossRefGoogle Scholar
Adachi, I., Hayashi, C., & Nakazawa, K. (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress in Theoretical Physics, 56, 17561771.CrossRefGoogle Scholar
Agnor, C. B., & Lin, D. N. C. (2012) On the migration of Jupiter and Saturn: Constraints from linear models of secular resonant coupling with the terrestrial planets. The Astrophysical Journal, 745, 143.CrossRefGoogle Scholar
Alexander, C. M. O., McKeegan, K. D., & Altwegg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214, 36.Google Scholar
ALMA Partnership, Brogan, C. L., Pérez, L. M., et al. (2015) The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HL tau region. The Astrophysical Journal, 808, L3.Google Scholar
Andrews, S. M., Huang, J., Pérez, L. M., et al. (2018) The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. The Astrophysical Journal, 869, L41.CrossRefGoogle Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. (2009) Protoplanetary disk structures in ophiuchus. The Astrophysical Journal, 700, 15021523.Google Scholar
Andrews, S. M., Wilner, D. J., Zhu, Z., et al. (2016) Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. The Astrophysical Journal, 820, L40.CrossRefGoogle Scholar
Baruteau, C., Crida, A., Paardekooper, S.-J., et al. (2014) Planet–disk interactions and early evolution of planetary systems. In Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. K. (eds.), Protostars and Planets VI. Tucson: University of Arizona Press, pp. 667689.Google Scholar
Batygin, K. (2012) A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature, 491, 418420.Google Scholar
Birnstiel, T., Fang, M., & Johansen, A. (2016) Dust evolution and the formation of planetesimals. Space Science Reviews, 205, 41–75.Google Scholar
Bitsch, B., Johansen, A., Lambrechts, M., & Morbidelli, A. (2015) The structure of protoplanetary discs around evolving young stars. Astronomy & Astrophysics, 575, A28.Google Scholar
Bitsch, B., Morbidelli, A., Johansen, A., et al. (2018) Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants. Astronomy & Astrophysics, 612, A30.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538542.Google Scholar
Boehnke, P., & Harrison, T. M. (2016) Illusory late heavy bombardments. Proceedings of the National Academy of Sciences (USA), 113, 1080210806.CrossRefGoogle ScholarPubMed
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. (2005) The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.Google Scholar
Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A., & O’Brien, D. P. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F., & Norman, M. D. (2017) The late heavy bombardment. Annual Review of Earth and Planetary Sciences, 45, 619647.CrossRefGoogle Scholar
Bottke, W. F., Vokrouhlický, D., Broz, M., Nesvorný, D., & Morbidelli, A. (2001) Dynamical spreading of asteroid families by the Yarkovsky effect. Science, 294, 16931696.Google Scholar
Bottke, W. F., Vokrouhlický, D., Marchi, S., et al. (2015) Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321323.Google Scholar
Bottke, W. F., Vokrouhlický, D., Minton, D., et al. (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 7881.CrossRefGoogle ScholarPubMed
Bouvier, A., & Wadhwa, M. (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., & Carruba, V. (2017) Scattering V-type asteroids during the giant planet instability: a step for Jupiter, a leap for basalt. Monthly Notices of the Royal Astronomical Society, 468, 12361244.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., et al. (2016) Dynamical dispersal of primordial asteroid families. Icarus, 266, 142151.Google Scholar
Brasser, R., Matsumura, S., Ida, S., Mojzsis, S. J., & Werner, S. C. (2016) Analysis of terrestrial planet formation by the Grand Tack model: System architecture and tack location. The Astrophysical Journal, 821, 75.CrossRefGoogle Scholar
Brasser, R., & Mojzsis, S. J. (2020) The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 4, 492499.Google Scholar
Brasser, R., & Morbidelli, A. (2013) Oort cloud and scattered disc formation during a late dynamical instability in the Solar System. Icarus, 225, 4049.Google Scholar
Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F. (2009) Constructing the secular architecture of the Solar System II: the terrestrial planets. Astronomy & Astrophysics, 507, 10531065.Google Scholar
Bromley, B. C., & Kenyon, S. J. (2017) Terrestrial planet formation: Dynamical shake-up and the low mass of Mars. The Astronomical Journal, 153, 216.CrossRefGoogle Scholar
Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., & Papaloizou, J. C. B. (1999) Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth. The Astrophysical Journal, 514, 344367.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., & Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 3, 736741.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., & Metzler, K. (2016) Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences (USA), 113, 28862891.Google Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., Gladman, B., & Keil, K. (2002) Meteoritic parent bodies: Their number and identification. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 653667.Google Scholar
Bus, S. J., & Binzel, R. P. (2002) Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Carrera, D., Gorti, U., Johansen, A., & Davies, M. B. (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. The Astrophysical Journal, 839, 16.Google Scholar
Chambers, J. E. (2001) Making more terrestrial planets. Icarus, 152, 205224.CrossRefGoogle Scholar
Chambers, J. E., & Wetherill, G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304327.Google Scholar
Chambers, J. E., & Wetherill, G. W. (2001) Planets in the asteroid belt. Meteoritics & Planetary Science, 36, 381399.Google Scholar
Clayton, R. N., & Mayeda, T. K. (1996) Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 19992017.Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E., & Walsh, K. J. (2019a) The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 321, 778790.Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N., & Walsh, K. J. (2018) Mars’ growth stunted by an early giant planet instability. Icarus, 311, 340356.CrossRefGoogle Scholar
Clement, M. S., Morbidelli, A., Raymond, S. N., & Kaib, N. A. (2020) A record of the final phase of giant planet migration fossilized in the asteroid belt’s orbital structure. Monthly Notices of the Royal Astronomical Society, 492, L56L60.Google Scholar
Clement, M. S., Raymond, S. N., & Kaib, N. A. (2019b) Excitation and depletion of the asteroid belt in the early instability scenario. The Astronomical Journal, 157, 38.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651.CrossRefGoogle ScholarPubMed
Crida, A., Masset, F., & Morbidelli, A. (2009) Long range outward migration of giant planets, with application to Fomalhaut b. The Astrophysical Journal, 705, L148L152.Google Scholar
Crida, A., Morbidelli, A., & Masset, F. (2006) On the width and shape of gaps in protoplanetary disks. Icarus, 181, 587604.Google Scholar
Dauphas, N. (2017) The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521524.Google Scholar
Dauphas, N., & Pourmand, A. (2011) Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature, 473, 489492.CrossRefGoogle ScholarPubMed
Day, J. M. D., Pearson, D. G., & Taylor, L. A. (2007) Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science, 315, 217.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
Deienno, R., Gomes, R. S., Walsh, K. J., Morbidelli, A., & Nesvorný, D. (2016) Is the Grand Tack model compatible with the orbital distribution of Main Belt asteroids? Icarus, 272, 114124.Google Scholar
Deienno, R., Izidoro, A., Morbidelli, A., et al. (2018) Excitation of a primordial cold asteroid belt as an outcome of planetary instability. The Astrophysical Journal, 864, 50.Google Scholar
Deienno, R., Morbidelli, A., Gomes, R. S., & Nesvorný, D. (2017) Constraining the giant planets’ initial configuration from their evolution: Implications for the timing of the planetary instability. The Astronomical Journal, 153, 153.Google Scholar
Deienno, R., Walsh, K. J., Kretke, K. A., & Levison, H. F. (2019) Energy dissipation in large collisions – No change in planet formation outcomes. The Astrophysical Journal, 876, 103.Google Scholar
Delbo’, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. (2017) Identification of a primordial asteroid family constrains the original planetesimal population. Science, 357, 10261029.Google Scholar
DeMeo, F. E., & Carry, B. (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus, 226, 723741.Google Scholar
DeMeo, F. E., & Carry, B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
Dermott, S. F., Christou, A. A., Li, D., Kehoe, T. J. J., & Robinson, J. M. (2018) The common origin of family and non-family asteroids. Nature Astronomy, 2, 549554.Google Scholar
Dra̧żkowska, J., Alibert, Y., & Moore, B. (2016) Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy & Astrophysics, 594, A105.Google Scholar
Dra̧żkowska, J., & Dullemond, C. P. (2018) Planetesimal formation during protoplanetary disk buildup. Astronomy & Astrophysics, 614, A62.Google Scholar
Duncan, M., Quinn, T., & Tremaine, S. (1987) The formation and extent of the Solar System comet cloud. The Astronomical Journal, 94, 13301338.CrossRefGoogle Scholar
Emery, J. P., Marzari, F., Morbidelli, A., French, L. M., & Grav, T. (2015) The complex history of trojan asteroids. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 203220.Google Scholar
Fanale, F. P., & Salvail, J. R. (1989) The water regime of asteroid (1) Ceres. Icarus, 82, 97110.Google Scholar
Fernandez, J. A., & Ip, W. (1984) Some dynamical aspects of the accretion of Uranus and Neptune – The exchange of orbital angular momentum with planetesimals. Icarus, 58, 109120.CrossRefGoogle Scholar
Fischer, R. A., & Ciesla, F. J. (2014) Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 392, 2838.Google Scholar
Fogg, M. J., & Nelson, R. P. (2005) Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. Astronomy & Astrophysics, 441, 791806.Google Scholar
Fogg, M. J., & Nelson, R. P. (2007) On the formation of terrestrial planets in hot-Jupiter systems. Astronomy & Astrophysics, 461, 11951208.Google Scholar
Franchi, I. A., Wright, I. P., Sexton, A. S., & Pillinger, C. T. (1999) The oxygen-isotopic composition of Earth and Mars. Meteoritics & Planetary Science, 34, 657661.Google Scholar
Fung, J., Shi, J.-M., & Chiang, E. (2014) How empty are disk gaps opened by giant planets? The Astrophysical Journal, 782, 88.Google Scholar
Gladman, B. (1993) Dynamics of systems of two close planets. Icarus, 106, 247.Google Scholar
Gladman, B. J., Migliorini, F., Morbidelli, A., et al. (1997) Dynamical lifetimes of objects injected into asteroid belt resonances. Science, 277, 197201.Google Scholar
Goldreich, P., & Tremaine, S. (1980) Disk-satellite interactions. The Astrophysical Journal, 241, 425441.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gomes, R. S., Morbidelli, A., & Levison, H. F. (2004) Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus, 170, 492507.CrossRefGoogle Scholar
Gradie, J., & Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. (1978) Planetesimals to planets – Numerical simulation of collisional evolution. Icarus, 35, 126.Google Scholar
Grimm, R. E., & McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.Google Scholar
Haghighipour, N., & Scott, E. R. D. (2012) On the effect of giant planets on the scattering of parent bodies of iron meteorite from the terrestrial planet region into the asteroid belt: A concept study. The Astrophysical Journal, 749, 113.Google Scholar
Haisch, K. E. Jr., Lada, E. A., & Lada, C. J. (2001) Disk frequencies and lifetimes in young clusters. The Astrophysical Journal, 553, L153L156.Google Scholar
Hansen, B. M. S. (2009) Formation of the terrestrial planets from a narrow annulus. The Astrophysical Journal, 703, 11311140.CrossRefGoogle Scholar
Hartmann, W. K. (2019) The collapse of the terminal cataclysm paradigm … and where we go from here. 50th Lunar and Planetary Science Conference, March 18–22, The Woodlands, TX, p. 1064.Google Scholar
Hayashi, C. (1981) Structure of the solar Nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the Nebula. Progress of Theoretical Physics Supplement, 70, 3553.Google Scholar
Heppenheimer, T. A. (1980) Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus, 41, 7688.CrossRefGoogle Scholar
Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. (2005) Accretion of the gaseous envelope of Jupiter around a 5 10 Earth-mass core. Icarus, 179, 415431.Google Scholar
Ida, S., & Lin, D. N. C. (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. The Astrophysical Journal, 604, 388413.Google Scholar
Ida, S., & Makino, J. (1992) N-body simulation of gravitational interaction between planetesimals and a protoplanet. I – Velocity distribution of planetesimals. Icarus, 96, 107120.Google Scholar
Ida, S., & Makino, J. (1993) Scattering of planetesimals by a protoplanet – Slowing down of runaway growth. Icarus, 106, 210.Google Scholar
Ikoma, M., Emori, H., & Nakazawa, K. (2001) Formation of giant planets in dense nebulae: Critical core mass revisited. The Astrophysical Journal, 553, 9991005.Google Scholar
Ikoma, M., Nakazawa, K., & Emori, H. (2000) Formation of giant planets: Dependences on core accretion rate and grain opacity. The Astrophysical Journal, 537, 10131025.Google Scholar
Izidoro, A., Morbidelli, A., & Raymond, S. N. (2014) Terrestrial planet formation in the presence of migrating super-Earths. The Astrophysical Journal, 794, 11.Google Scholar
Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F., & Pierens, A. (2015a) Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy & Astrophysics, 582, A99.Google Scholar
Izidoro, A., Raymond, S. N., Morbidelli, A., & Winter, O. C. (2015b) Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 453, 36193634.Google Scholar
Izidoro, A., Raymond, S. N., Pierens, A., et al. (2016) The asteroid belt as a relic from a chaotic early Solar System. The Astrophysical Journal, 833, 40.Google Scholar
Jacobson, S. A., & Morbidelli, A. (2014) Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions of the Royal Society of London Series A, 372, 0174.Google Scholar
Jacobson, S. A., Morbidelli, A., Raymond, S. N., et al. (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature, 508, 8487.Google Scholar
Johansen, A., Blum, J., Tanaka, H., et al. (2014) The multifaceted planetesimal formation process. In Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. K. (eds.), Protostars and Planets VI. Tucson: University of Arizona Press, pp. 547570.Google Scholar
Johansen, A., & Lambrechts, M. (2017) Forming planets via pebble accretion. Annual Review of Earth and Planetary Sciences, 45, 359387.Google Scholar
Johansen, A., Mac Low, M.-M., Lacerda, P., & Bizzarro, M. (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 1500109.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.Google Scholar
Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N., & Levison, H. F. (2016) Timing of the formation and migration of giant planets as constrained by cb chondrites. Science Advances, 2.Google Scholar
Kaib, N. A., & Chambers, J. E. (2016) The fragility of the terrestrial planets during a giant-planet instability. Monthly Notices of the Royal Astronomical Society, 455, 35613569.CrossRefGoogle Scholar
Kaib, N. A., & Cowan, N. B. (2015) The feeding zones of terrestrial planets and insights into Moon formation. Icarus, 252, 161174.Google Scholar
Kerridge, J. F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites abundances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49, 17071714.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Kley, W., & Nelson, R. P. (2012) Planet–disk interaction and orbital evolution. Annual Review of Astronomy & Astrophysics, 50, 211249.Google Scholar
Knežević, Z., & Milani, A. (2003) Proper element catalogs and asteroid families. Astronomy & Astrophysics, 403, 11651173.Google Scholar
Kokubo, E., & Ida, S. (1998) Oligarchic growth of protoplanets. Icarus, 131, 171178.Google Scholar
Kokubo, E., & Ida, S. (2000) Formation of protoplanets from planetesimals in the Solar Nebula. Icarus, 143, 1527.Google Scholar
Krasinsky, G. A., Pitjeva, E. V., Vasilyev, M. V., & Yagudina, E. I. (2002) Hidden mass in the asteroid belt. Icarus, 158, 98105.Google Scholar
Kretke, K. A., Bottke, W., Kring, D. A., & Levison, H. F. (2017) Effect of giant planet formation on the compositional mixture of the asteroid belt. AAS/Division of Dynamical Astronomy Meeting #48, June 11–15, Queen Mary University of London, London, p. 103.02.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., & Meibom, A., 2005. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, C., & Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences (USA), 114, 67126716.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. (2014) Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Kuchynka, P., & Folkner, W. M. (2013) A new approach to determining asteroid masses from planetary range measurements. Icarus, 222, 243253.Google Scholar
Küppers, M., O’Rourke, L., Bockelée-Morvan, D., et al. (2014) Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Lambrechts, M., & Johansen, A. (2012) Rapid growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lambrechts, M., & Johansen, A. (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astronomy & Astrophysics, 572, A107.CrossRefGoogle Scholar
Lambrechts, M., & Lega, E. (2017) Reduced gas accretion on super-Earths and ice giants. Astronomy & Astrophysics, 606, A146.CrossRefGoogle Scholar
Lambrechts, M., Lega, E., Nelson, R. P., Crida, A., & Morbidelli, A. (2019) Quasi-static contraction during runaway gas accretion onto giant planets. Astronomy & Astrophysics, 630, A82.Google Scholar
Laskar, J., Gastineau, M., Delisle, J. B., Farrés, A., & Fienga, A. (2011) Strong chaos induced by close encounters with Ceres and Vesta. Astronomy & Astrophysics, 532, L4.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., Larson, H. P., & Johnson, J. R. (1981) The 1.7- to 4.2-μ m spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Lecar, M., & Franklin, F. (1997) The Solar Nebula, secular resonances, gas drag, and the asteroid belt. Icarus, 129, 134146.Google Scholar
Leinhardt, Z. M., & Richardson, D. C. (2005) Planetesimals to protoplanets. I. Effect of fragmentation on terrestrial planet formation. The Astrophysical Journal, 625, 427440.CrossRefGoogle Scholar
Lemaitre, A., & Dubru, P. (1991) Secular resonances in the primitive solar nebula. Celestial Mechanics and Dynamical Astronomy, 52, 5778.Google Scholar
Levison, H. F., Bottke, W. F., Gounelle, M., et al. (2009) Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 460, 364366.Google Scholar
Levison, H. F., Kretke, K. A., & Duncan, M. J. (2015a) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature, 524, 322324.Google Scholar
Levison, H. F., Kretke, K. A., Walsh, K. J., & Bottke, W. F. (2015b) Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proceedings of the National Academy of Sciences (USA), 112, 1418014185.Google Scholar
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D., & Gomes, R. (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. The Astronomical Journal, 142, 152.Google Scholar
Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K. (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 196, 258273.Google Scholar
Levison, H. F., & Stewart, G. R. (2001) Remarks on modeling the formation of Uranus and Neptune. Icarus, 153, 224228.Google Scholar
Levison, H. F., Thommes, E., & Duncan, M. J. (2010) Modeling the formation of giant planet cores. I. Evaluating key processes. The Astronomical Journal, 139, 12971314.Google Scholar
Lichtenberg, T., Golabek, G. J., Gerya, T. V., & Meyer, M. R. (2016) The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus, 274, 350365.Google Scholar
Lin, D. N. C., & Papaloizou, J. (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – Orbital migration of protoplanets. The Astrophysical Journal, 309, 846857.Google Scholar
Lissauer, J. J., Hubickyj, O., D’Angelo, G., & Bodenheimer, P. (2009) Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus, 199, 338350.Google Scholar
Malhotra, R. (1993) The origin of Pluto’s peculiar orbit. Nature, 365, 819821.Google Scholar
Malhotra, R. (1995) The origin of Pluto’s orbit: Implications for the Solar System beyond Neptune. The Astronomical Journal, 110, 420.CrossRefGoogle Scholar
Mamajek, E. E. (2009) Initial conditions of planet formation: Lifetimes of primordial disks. In Usuda, T., Tamura, M., & Ishii, M. (eds.), American Institute of Physics Conference Series, Volume 1158 of American Institute of Physics Conference Series. AIP Publishing, pp. 310.Google Scholar
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. (2007) Formation of Earth-like planets during and after giant planet migration. The Astrophysical Journal, 660, 823844.Google Scholar
Marchal, C., & Bozis, G. (1982) Hill stability and distance curves for the general three-body problem. Celestial Mechanics, 26, 311333.Google Scholar
Marchi, S., Bottke, W. F., Kring, D. A., & Morbidelli, A. (2012) The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth and Planetary Science Letters, 325, 2738.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
Marchi, S., Walker, R. J., & Canup, R. M. (2020) A compositionally heterogeneous martian mantle due to late accretion. Science Advances, 6, eaay2338.Google Scholar
Marty, B. (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 5666.Google Scholar
Marty, B., & Yokochi, R. (2006) Water in the early Earth. Reviews in Mineralogy and Geophysics, 62, 421450.Google Scholar
Masset, F., & Snellgrove, M. (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. Monthly Notices of the Royal Astronomical Society, 320, L55L59.Google Scholar
Mastrobuono-Battisti, A., & Perets, H. B. (2017) The composition of Solar System asteroids and Earth/Mars moons, and the Earth–Moon composition similarity. Monthly Notices of the Royal Astronomical Society, 469, 35973609.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research (Planets), 110, E05009.Google Scholar
McKinnon, W. B. (2008) Could Ceres be a refugee from the Kuiper Belt? Asteroids, Comets, Meteors 2008, July 14–18, Baltimore, MD, Vol. 1405, 8389.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Meech, K., & Raymond, S. N. (2020) Origin of Earth’s water: Sources and constraints. In Meadows, V., Arney, G., Marais, D. D., & Schmidt, B. (eds.), Planetary Astrobiology. Tucson: University of Arizona Press.Google Scholar
Milani, A., & Knezevic, Z. (1990) Secular perturbation theory and computation of asteroid proper elements. Celestial Mechanics and Dynamical Astronomy, 49, 347411.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Minton, D. A., & Malhotra, R. (2009) A record of planet migration in the main asteroid belt. Nature, 457, 11091111.CrossRefGoogle ScholarPubMed
Minton, D. A., & Malhotra, R. (2011) Secular resonance sweeping of the main asteroid belt during planet migration. The Astrophysical Journal, 732, 53.Google Scholar
Mizuno, H. (1980) Formation of the giant planets. Progress of Theoretical Physics, 64, 544557.Google Scholar
Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O., & Werner, S. C. (2019) Onset of giant planet migration before 4480 million years ago. The Astrophysical Journal, 881, 44.Google Scholar
Monteux, J., Golabek, G. J., Rubie, D. C., Tobie, G., & Young, E. D. (2018) Water and the interior structure of terrestrial planets and icy bodies. Space Science Reviews, 214, 39.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. (2009) Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. (2010) Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. The Astronomical Journal, 140, 13911401.Google Scholar
Morbidelli, A., & Crida, A. (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 191, 158171.Google Scholar
Morbidelli, A., & Henrard, J. (1991) The main secular resonances ν6, vs and ν16 in the asteroid belt. Celestial Mechanics and Dynamical Astronomy, 51, 169197.Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature, 435, 462465.Google Scholar
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N., & Walsh, K. J. (2012a) Building terrestrial planets. Annual Review of Earth and Planetary Sciences, 40, 251275.Google Scholar
Morbidelli, A., Marchi, S., Bottke, W. F., & Kring, D. A. (2012b) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth and Planetary Science Letters, 355, 144151.Google Scholar
Morbidelli, A., Nesvorny, D., Laurenz, V., et al. (2018) The timeline of the lunar bombardment: Revisited. Icarus, 305, 262276.Google Scholar
Morbidelli, A., & Raymond, S. N. (2016) Challenges in planet formation. Journal of Geophysical Research (Planets), 121, 19621980.Google Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. (2007) Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. The Astronomical Journal, 134, 17901798.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., & Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 493507.Google Scholar
Nagasawa, M., Ida, S., & Tanaka, H. (2001) Origin of high orbital eccentricity and inclination of asteroids. Earth, Planets, and Space, 53, 10851091.Google Scholar
Nagasawa, M., Ida, S., & Tanaka, H. (2002) Excitation of orbital inclinations of asteroids during depletion of a protoplanetary disk: Dependence on the disk configuration. Icarus, 159, 322327.Google Scholar
Nagasawa, M., Lin, D. N. C., & Thommes, E. (2005) Dynamical shake-up of planetary systems. I. Embryo trapping and induced collisions by the sweeping secular resonance and embryo-disk tidal interaction. The Astrophysical Journal, 635, 578598.Google Scholar
Nagasawa, M., Tanaka, H., & Ida, S. (2000) Orbital evolution of asteroids during depletion of the Solar Nebula. The Astronomical Journal, 119, 14801497.Google Scholar
Nathues, A., Hoffmann, M., Schaefer, M., et al. (2015) Sublimation in bright spots on (1) Ceres. Nature, 528, 237240.Google Scholar
Nesvorný, D. (2011) Young Solar System’s fifth giant planet? The Astrophysical Journal, 742, L22.Google Scholar
Nesvorný, D. (2015) Evidence for slow migration of Neptune from the inclination distribution of Kuiper Belt objects. The Astronomical Journal, 150, 73.Google Scholar
Nesvorný, D. (2018) Dynamical evolution of the early Solar System. Annual Review of Astronomy & Astrophysics, 56, 137174.Google Scholar
Nesvorný, D., Brož, M., & Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. (2019) Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 3, 808812.Google Scholar
Nesvorný, D., & Morbidelli, A. (2012) Statistical study of the early Solar System’s instability with four, five, and six giant planets. The Astronomical Journal, 144, 117.Google Scholar
Nesvorný, D., Roig, F., & Bottke, W. F. (2017) Modeling the historical flux of planetary impactors. The Astronomical Journal, 153, 103.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018) Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2, 878882.Google Scholar
Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. (2013) Capture of Trojans by jumping Jupiter. The Astrophysical Journal, 768, 45.Google Scholar
Nimmo, F., & Kleine, T. (2007) How rapidly did Mars accrete? Uncertainties in the Hf W timing of core formation. Icarus, 191, 497504.Google Scholar
Nittler, L. R., & Ciesla, F. (2016) Astrophysics with extraterrestrial materials. Annual Review of Astronomy & Astrophysics, 54, 5393.Google Scholar
Novaković, B., Cellino, A., & Knežević, Z. (2011) Families among high-inclination asteroids. Icarus, 216, 6981.Google Scholar
O’Brien, D. P., Morbidelli, A., & Bottke, W. F. (2007) The primordial excitation and clearing of the asteroid belt – Revisited. Icarus, 191, 434452.CrossRefGoogle Scholar
O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., & Mandell, A. M. (2014) Water delivery and giant impacts in the Grand Tack scenario. Icarus, 239, 7484.Google Scholar
Ormel, C. W., & Klahr, H. H. (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astronomy & Astrophysics, 520, A43.Google Scholar
Papaloizou, J. C. B., & Larwood, J. D. (2000) On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Monthly Notices of the Royal Astronomical Society, 315, 823833.Google Scholar
Petit, J., Morbidelli, A., & Chambers, J. (2001) The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338347.Google Scholar
Pfalzner, S., Steinhausen, M., & Menten, K. (2014) Short dissipation times of proto-planetary disks: An artifact of selection effects? The Astrophysical Journal, 793, L34.Google Scholar
Pierens, A., & Nelson, R. P. (2008) Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astronomy & Astrophysics, 482, 333340.Google Scholar
Pierens, A., & Raymond, S. N. (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics, 533, A131.Google Scholar
Pierens, A., Raymond, S. N., Nesvorny, D., & Morbidelli, A. (2014) Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: Implications for the Grand Tack and Nice models. The Astrophysical Journal, 795, L11.Google Scholar
Pirani, S., Johansen, A., Bitsch, B., Mustill, A. J., & Turrini, D. (2019a) Consequences of planetary migration on the minor bodies of the early Solar System. Astronomy & Astrophysics, 623, A169.CrossRefGoogle Scholar
Pirani, S., Johansen, A., & Mustill, A. J. (2019b) On the inclinations of the Jupiter Trojans. Astronomy & Astrophysics, 631, A89.Google Scholar
Piso, A.-M. A., & Youdin, A. N. (2014) On the minimum core mass for giant planet formation at wide separations. The Astrophysical Journal, 786, 21.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 6285.Google Scholar
Pravec, P., Harris, A. W., Kušnirák, P., Galád, A., & Hornoch, K. (2012) Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus, 221, 365387.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Quarles, B., & Kaib, N. (2019) Instabilities in the early Solar System due to a self-gravitating disk. The Astronomical Journal, 157, 67.Google Scholar
Rafikov, R. R. (2003) The growth of planetary embryos: Orderly, runaway, or oligarchic? The Astronomical Journal, 125, 942961.Google Scholar
Raymond, S. N., & Izidoro, A. (2017a) Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus, 297, 134148.Google Scholar
Raymond, S. N., & Izidoro, A. (2017b) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Raymond, S. N., Izidoro, A., Bitsch, B., & Jacobson, S. A. (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disc? Monthly Notices of the Royal Astronomical Society, 458, 29622972.Google Scholar
Raymond, S. N., Izidoro, A., & Morbidelli, A. (2020) Solar System formation in the context of extra-solar planets. In Meadows, V., Arney, G., Marais, D. D., & Schmidt, B. (eds.), Planetary Astrobiology. Tucson: University of Arizona Press.Google Scholar
Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R., & Walsh, K. J. (2014) Terrestrial planet formation at home and abroad. In Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. K. (eds.), Protostars and Planets VI. Tucson: University of Arizona Press, pp. 595618.Google Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. (2006a) Exotic Earths: Forming habitable worlds with giant planet migration. Science, 313, 14131416.Google Scholar
Raymond, S. N., & Morbidelli, A. (2014) The Grand Tack model: A critical review. In Complex Planetary Systems, Proceedings of the International Astronomical Union, Volume 310 of IAU Symposium. Cambridge: Cambridge University Press, pp. 194203.Google Scholar
Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. (2009) Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 203, 644662.Google Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I. (2006b) High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus, 183, 265282.Google Scholar
Ribeiro de Sousa, R., Morbidelli, A., Raymond, S. N., et al. (2020) Dynamical evidence for an early giant planet instability. Icarus, 339, 113605.Google Scholar
Robert, F., Merlivat, L., & Javoy, M. (1977) Water and deuterium content in eight condrites. Meteoritics, 12, 349.Google Scholar
Roig, F., & Nesvorný, D. (2015) The evolution of asteroids in the jumping-Jupiter migration model. The Astronomical Journal, 150, 186.Google Scholar
Roig, F., Nesvorný, D., & DeSouza, S. R. (2016) Jumping Jupiter can explain Mercury’s orbit. The Astrophysical Journal, 820, L30.Google Scholar
Ronnet, T., Mousis, O., Vernazza, P., Lunine, J. I., & Crida, A. (2018) Saturn’s formation and early evolution at the origin of Jupiter’s massive moons. The Astronomical Journal, 155, 224.Google Scholar
Rubie, D. C., Laurenz, V., Jacobson, S. A., et al. (2016) Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science, 353, 11411144.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Safronov, V. S. (1969) Evoliutsiia doplanetnogo oblaka.Google Scholar
Schäfer, U., Yang, C.-C., & Johansen, A. (2017) Initial mass function of planetesimals formed by the streaming instability. Astronomy & Astrophysics, 597, A69.Google Scholar
Schiller, M., Bizzarro, M., & Fernandes, V. A. (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature, 555, 507510.Google Scholar
Schiller, M., Bizzarro, M., & Siebert, J. (2020) Iron isotope evidence for very rapid accretion and differentiation of the proto-earth. Science Advances, 6, eaay7604.Google Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T., & Bizzarro, M. (2015) Early accretion of protoplanets inferred from a reduced inner Solar System 26Al inventory. Earth and Planetary Science Letters, 420, 4554.Google Scholar
Scott, E. R. D. (2002) Meteorite evidence for the accretion and collisional evolution of asteroids. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizone Press, pp. 697709.Google Scholar
Simon, J. B., Armitage, P. J., Youdin, A. N., & Li, R. (2017) Evidence for universality in the initial planetesimal mass function. The Astrophysical Journal, 847, L12.Google Scholar
Squire, J., & Hopkins, P. F. (2018) Resonant drag instabilities in protoplanetary discs: The streaming instability and new, faster growing instabilities. Monthly Notices of the Royal Astronomical Society, 477, 50115040.Google Scholar
Suzuki, D., Bennett, D. P., Sumi, T., et al. (2016) The exoplanet mass-ratio function from the MOA-II survey: Discovery of a break and likely peak at a Neptune mass. The Astrophysical Journal, 833, 145.Google Scholar
Tanaka, H., & Ida, S. (1999) Growth of a migrating protoplanet. Icarus, 139, 350366.Google Scholar
Tanaka, H., & Ward, W. R. (2004) Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. The Astrophysical Journal, 602, 388395.Google Scholar
Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. (1974) Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22, 1.Google Scholar
Thommes, E., Nagasawa, M., & Lin, D. N. C. (2008) Dynamical shake-up of planetary systems. II. N-body simulations of Solar System terrestrial planet formation induced by secular resonance sweeping. The Astrophysical Journal, 676, 728739.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459461.Google Scholar
Turrini, D., Coradini, A., & Magni, G. (2012) Jovian early bombardment: Planetesimal erosion in the inner asteroid belt. The Astrophysical Journal, 750, 8.Google Scholar
Turrini, D., & Svetsov, V. (2014) The formation of Jupiter, the Jovian early bombardment and the delivery of water to the asteroid belt: The case of (4) Vesta. Life, 4, 434.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. The Astronomical Journal, 152, 39.Google Scholar
Walker, R. J. (2009) Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde / Geochemistry, 69, 101125.Google Scholar
Walsh, K. J., & Levison, H. F. (2016) Terrestrial planet formation from an annulus. The Astronomical Journal, 152, 68.Google Scholar
Walsh, K. J., & Morbidelli, A. (2011) The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astronomy & Astrophysics, 526, A126.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2012) Populating the asteroid belt from two parent source regions due to the migration of giant planets – “The Grand Tack.” Meteoritics & Planetary Science, 47, 19411947.Google Scholar
Ward, W. R. (1981) Solar nebula dispersal and the stability of the planetary system I. Scanning secular resonance theory. Icarus, 47, 234264.Google Scholar
Ward, W. R. (1986) Density waves in the solar nebula – Differential Lindblad torque. Icarus, 67, 164180.Google Scholar
Ward, W. R. (1997) Protoplanet migration by nebula tides. Icarus, 126, 261281.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Weidenschilling, S. J. (1977a) Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 5770.Google Scholar
Weidenschilling, S. J. (1977b) The distribution of mass in the planetary system and solar nebula. Astrophysics & Space Science, 51, 153158.Google Scholar
Weidenschilling, S. J. (2011) Initial sizes of planetesimals and accretion of the asteroids. Icarus, 214, 671684.Google Scholar
Wetherill, G. W. (1980) Formation of the terrestrial planets. Annual Review of Astronomy & Astrophysics, 18, 77113.Google Scholar
Wetherill, G. W. (1991) Why isn’t Mars as big as Earth? In Lunar and Planetary Institute Science Conference Abstracts, Volume 22 of Lunar and Planetary Inst. Technical Report, March 18–22, Houston, TX, pp. 1495.Google Scholar
Wetherill, G. W. (1992) An alternative model for the formation of the asteroids. Icarus, 100, 307325.Google Scholar
Wetherill, G. W., & Stewart, G. R. (1989) Accumulation of a swarm of small planetesimals. Icarus, 77, 330357.Google Scholar
Wetherill, G. W. & Stewart, G. R. (1993) Formation of planetary embryos – Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190.Google Scholar
Williams, J. P., & Cieza, L. A. (2011) Protoplanetary disks and their evolution. Annual Review of Astronomy & Astrophysics, 49, 67117.Google Scholar
Youdin, A. N., & Goodman, J. (2005) Streaming instabilities in protoplanetary disks. The Astrophysical Journal, 620, 459469.Google Scholar
Zellner, N. E. B. (2017) Cataclysm no more: New views on the timing and delivery of lunar impactors. Origins of Life and Evolution of the Biosphere, 47, 261280.Google Scholar
Zhang, C., Miao, B., & He, H. (2019) Oxygen isotopes in HED meteorites and their constraints on parent asteroids. Planetary and Space Science, 168, 8394.Google Scholar
Zhang, H., & Zhou, J.-L. (2010) On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter–Saturn configuration. The Astrophysical Journal, 714, 532548.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×