Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T19:22:48.017Z Has data issue: false hasContentIssue false

Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 39 - 196
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, J. B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research, 79, 48294836.Google Scholar
Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al. (2013a) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.Google Scholar
Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013b) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.CrossRefGoogle Scholar
Barrat, J.-A., & Yamaguchi, A. (2014) Comment on “The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma processes on Vesta” by B. E. Mandler and L. T. Elkins-Tanton. Meteoritics & Planetary Science, 49, 468472.CrossRefGoogle Scholar
Barrat, J.-A., Yamaguchi, A., Bunch, T., et al. (2011) Possible fluid–rock interactions of differentiated asteroids recorded in eucritic meteorites. Geochimica et Cosmochimica Acta, 75, 38393852.CrossRefGoogle Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2007) The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. Geochimica et Cosmochimica Acta, 71, 41084124.Google Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2008) Geochemistry of diogenites: Still more diversity in their parental melts. Meteoritics & Planetary Science, 43, 17591775.Google Scholar
Bartels, K. S., & Grove, T. L. (1991) High-pressure experiments on magnesian eucrite compositions: Constraints on magmatic processes in the eucrite parent body. Proceedings of the Lunar & Planetary Science Conference, 21, 351365.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2015) Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics & Planetary Science, 50, 13111337.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2017) Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data. Icarus, 286, 3545.CrossRefGoogle Scholar
Beck, A. W., McCoy, T. J., Sunshine, J. M., et al. (2013) Challenges in detecting olivine on the surface of 4 Vesta. Meteoritics & Planetary Science, 48, 21552165.CrossRefGoogle Scholar
Beck, A. W., & McSween, H. Y. (2010) Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.Google Scholar
Beck, A. W., Mittlefehldt, D. W., McSween, H. Y., et al. (2011) MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin. Meteoritics & Planetary Science, 46, 11331151.CrossRefGoogle Scholar
Beck, A. W., Welten, K. C., McSween, H. Y., Viviano, C. E., & Caffee, M. W. (2012) Petrologic and textural diversity among the PCA 02 howardite group, one of the largest pieces of the Vestan surface. Meteoritics & Planetary Science, 47, 947969.Google Scholar
Benedix, G. K., Haack, H., & McCoy, T. J. (2014) Iron and stony-iron meteorites. In Davis, A. M. (ed.), Treatise on Geochemistry, 2nd ed., Vol. 1. Oxford: Elsevier, pp. 267285.Google Scholar
Binzel, R. P. (2012) A golden spike for planetary science. Science, 338, 203204.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P., et al. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95103.CrossRefGoogle Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.CrossRefGoogle ScholarPubMed
Bobrovnikoff, N. T. (1929) The spectra of minor planets. Lick Observatirt Bulletin, 14 (No. 407), 1827.CrossRefGoogle Scholar
Bogard, D. D. (2011) K-Ar ages of meteorites: Clues to parent-body thermal histories. Chemie der Erde Geochemistry, 71, 207226.Google Scholar
Bogard, D. D., & Garrison, D. H. (2010) 39Ar-40Ar ages of eucrites and the thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science, 38, 669710.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M., et al. (2012) Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.CrossRefGoogle Scholar
Cartwright, J. A., Ott, U., & Mittlefehldt, D. W. (2014) The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases. Geochimica et Cosmochimica Acta, 140, 488508.Google Scholar
Cartwright, J. A., Ott, U., Mittlefehldt, D. W., et al. (2013) The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases. Geochimica et Cosmochimica Acta, 105, 395421.CrossRefGoogle Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. (2014) A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.CrossRefGoogle ScholarPubMed
Cohen, B. (2013) The Vestan cataclysm: Impact-melt clasts in howardites and the bombardment history of 4 Vesta. Meteoritics & Planetary Science, 48, 771785.Google Scholar
Combe, J.-P., McCord, T. B., McFadden, L. A., et al. (2015) Composition of the northern regions of Vesta analyzed by the Dawn mission. Icarus, 259, 5371.Google Scholar
Consolmagno, J. G., & Drake, M. J. (1977) Composition and evolution of eucrite parent body – Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
Consolmagno, J. G., Golabek, G. J., Turrini, D., et al. (2015) Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. F., & Brown, R. H. (1991) Three basaltic Earth-approaching asteroids and the source of basaltic meteorites. Icarus, 89, 113.Google Scholar
Cunningham, C. J. (2014) The First Four Asteroids: A History of Their Impact on English Astronomy in the Early Nineteenth Century. PhD thesis, University of Southern Queensland.Google Scholar
Day, J. M. D., Walker, R. J., Qin, L., & Rumble, D. (2012) Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614617.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2013) Vesta’s mineralogical composition as revealed by VIR on Dawn. Meteoritics & Planetary Science, 48, 21662184.Google Scholar
De Sanctis, M. C., Combe, J.-P., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal, 758, L36.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.CrossRefGoogle Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.CrossRefGoogle Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the onset of differentiation. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 239241.CrossRefGoogle ScholarPubMed
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Gaffey, M. J. (1993) Forging an asteroid–meteorite link. Science, 260, 167168.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus, 127, 130157.Google Scholar
Ghosh, A., & McSween, H. Y. (1998) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Greenwood, R. C., Barrat, J.-A., Yamaguchi, A., et al. (2014) The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth & Planetary Science Letters, 390, 165174.Google Scholar
Gupta, G., & Sahijpal, S. (2010) Differentiation of Vesta and the parent bodies of other achondrites. Journal of Geophysical Research, 115, E08001.CrossRefGoogle Scholar
Haba, M. K., Wotzlaw, J.-W., Lai, Y.-J., et al. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience, 12, 510515.Google Scholar
Hahn, T. M., Lunning, N. G., McSween, H. Y., et al. (2018) Mg-rich harzburgites from Vesta: Mantle residua or cumulates from planetary differentiation? Meteoritics & Planetary Science, 53, 514546.CrossRefGoogle Scholar
Herzog, G. F. (2007) Cosmic-ray exposure ages of meteorites. In Holland, H. D., & Turekian, K. I. (eds.), Treatise on Geochemistry, Vol. 1. Oxford: Pergamon Press, pp. 711746.Google Scholar
Jaumann, R. J., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., et al. (2013) The structure of asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Keil, K. (2002) Geological history of asteroid 4 Vesta: the “smallest terrestrial planet”. In Bottke, W., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 573584.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.CrossRefGoogle Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., et al. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences (USA), 114, 67126716.Google Scholar
Lazzaro, D., Michtchenco, T., Carvano, J. M., et al. (2000) Discovery of a basaltic asteroid in the outer Main Belt. Science, 288, 20332035.Google Scholar
Lorenz, K., Nazarov, M., Kurat, G., et al. (2007) Foreign meteoritic material of howardites and polymict eucrites. Petrology, 15, 109125.CrossRefGoogle Scholar
Lunning, N. G., McSween, H. Y., Tenner, H. Y., et al. (2015) Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth & Planetary Science Letters, 418, 126135.CrossRefGoogle Scholar
Lunning, N. G., Welten, K. C., McSween, H. Y., et al. (2016) Grosvenor Mountains 95 howardite pairing group: Insights into the surface regolith of asteroid 4 Vesta. Meteoritics & Planetary Science, 51, 167194.Google Scholar
Mandler, B. E., & Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 303307.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690694.CrossRefGoogle ScholarPubMed
Masiero, J. R., Mainzer, A. K., Bauer, J. M., et al. (2013) Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophysical Journal, 770, 7.Google Scholar
Mayne, R. G., McSween, H. Y., McCoy, T. J., et al. (2009) Petrology of the unbrecciated eucrites. Geochimica et Cosmochimica Acta, 73, 794819.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. (2013a) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research, 118, 335346.CrossRefGoogle Scholar
McSween, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013b) Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902014.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., et al. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
McSween, H. Y., Raymond, C. A., Stolper, E. M., et al. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Geochemistry, 79, 125526.Google Scholar
Mittlefehldt, D. W. (1994) The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta, 58, 15371552.CrossRefGoogle Scholar
Mittlefehldt, D. W. (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie der Erde Geochemistry, 75, 155183.CrossRefGoogle Scholar
Mittlefehldt, D. W., Beck, A. W., Lee, C.-T. A., et al. (2012) Compositional constraints on the genesis of diogenites. Meteoritics & Planetary Science, 47, 7298.Google Scholar
Mittlefehldt, D. W., Herrin, J. S., Quinn, J. E., et al. (2013) Composition and petrology of HED polymict breccias: the regolith of (4) Vesta. Meteoritics & Planetary Science, 48, 21052134.Google Scholar
Mittlefehldt, D. W., & Lindstrom, M. M. (2003) Geochemistry of eucrites: Genesis of basaltic eucrites, and Hf and Ta as petrogenetic indicators for altered Antarctic eucrites. Geochimica et Cosmochimica Acta, 67, 19111935.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., et al. (1998) Non-chondritic meteorites from asteroidal bodies. In Papike, J. J. (ed.), Planetary Materials: Mineralogy & Petrology of Extraterrestrial Materials. Washington, DC: Mineralogical Society of America, pp. 4-1–4-195.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth & Planetary Science Letters, 395, 267280.CrossRefGoogle Scholar
Newsom, H. E., & Drake, M. J. (1982) The metal content of the eucrite parent body: Constraints from the partitioning behavior of tungsten. Geochimica et Cosmochimica Acta, 46, 24832489.CrossRefGoogle Scholar
O’Brien, D. P., Marchi, S., Morbidell, A., et al. (2015) Constraining the cratering chronology of Vesta. Planetary & Space Science, 103, 131142.Google Scholar
Papike, J. J., Karner, J. M., & Shearer, C. K. (2003) Determination of planetary basalt parentage: A simple technique using the electron microprobe. American Mineralogist, 88, 469472.CrossRefGoogle Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2019) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.CrossRefGoogle Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.CrossRefGoogle Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals. New York: Cambridge University Press, pp. 321340.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Righter, K., & Drake, M. J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Roig, F., & Nesvorny, D. (2020) Modeling the chronologies and size distributions of Ceres and Vesta. The Astronomical Journal, 160, 110.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M. C., et al. (2014) Detections and geologic context of local enrichments of olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research, 119, 20782108.CrossRefGoogle Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sarafian, A. R., Roden, M. F., & Patino-Douce, A. E. (2013) The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 21352154.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011) Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophysical Journal Letters, 740, L22.Google Scholar
Schmedemann, N., Kneissl, T., Ivanov, B. A., et al. (2015) The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and ages of HED meteorites. Planetary & Space Science, 103, 104130.Google Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, I. A., & Sanders, I. S. (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.CrossRefGoogle Scholar
Scott, E. R. D., Krot, A. N., & Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysical Journal, 854, 164.CrossRefGoogle ScholarPubMed
Scully, J. E. C., Russell, C. T., Yin, A., et al. (2015) Geomorphological evidence for transient water flow on Vesta. Earth & Planetary Science Letters, 411, 151163.Google Scholar
Shearer, C. K., Fowler, G. W., & Papike, J. J. (1997) Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenties. Meteoritics & Planetary Science, 32, 877889.Google Scholar
Stolper, E. M. (1977) Experimental petrology of eucritic meteorites. Geochimica et Cosmochimica Acta, 41, 587681.Google Scholar
Takeda, H., & Graham, A. L. (1991) Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust. Meteoritics, 26, 129134.Google Scholar
Thangjam, G., Reddy, V., Le Corre, L., et al. (2013) Lithologic mapping of HED terrains on Vesta using Dawn Framing Camera color data. Meteoritics & Planetary Science, 48, 21992210.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 14921495.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Treiman, A. H. (1997) The parent magmas of cumulate eucrites: A mass balance approach. Meteoritics & Planetary Science, 32, 138146.Google Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., et al. (2008) 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Unsulan, O., Jenniskens, P., Yin, Q.-Z., et al. (2019) The Saricicek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of vestoids. Meteoritics & Planetary Science, 54, 9531008.Google Scholar
Warren, P. H., Kallemeyn, G. W., Huber, H., et al. (2009) Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias. Geochimica et Cosmochimica Acta, 73, 59185943.Google Scholar
Wasson, J. T. (2013) Vesta and extensively melted asteroids: Why HED meteorites are probably not from Vesta. Earth & Planetary Science Letters, 381, 138146.CrossRefGoogle Scholar
Welten, K. C., Lindner, L., Van Der Borg, K., et al. (1997) Cosmic-ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies. Meteoritics & Planetary Science, 32, 891902.Google Scholar
Wetherill, G. W. (1987) Dynamical relations between asteroids, meteorites and Apollo-Amor objects. Philosophical Transactions of the Royal Society of London, Series A, 323, 323336.Google Scholar
Williams, D. A., Jaumann, R., McSween, H. Y., et al. (2014) The chronostratigraphy of protoplanet Vesta. Icarus, 244, 158165.Google Scholar
Wilson, L., & Keil, K. (2012) Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.Google Scholar
Wisdom, J. (1985) Meteorites may follow a chaotic route to Earth. Nature, 315, 731733.CrossRefGoogle Scholar
Zellner, B., Storrs, A. W., Wells, E., et al. (1997). Hubble Space Telescope images of asteroid 4 Vesta. Icarus, 128, 8387.Google Scholar
Zellner, B., Tholen, D. J., & Tedesco, E. F. (1985) The eight-color asteroid survey: Results for 589 minor planets. Icarus, 61, 355416.Google Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C., et al. (1996) Mineralogy of carbonaceous chondrite clasts in HED meteorites. Meteoritics & Planetary Science, 31, 518537.Google Scholar

References

Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Arzi, A. A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics, 44, 173184.CrossRefGoogle Scholar
Bagdassarov, N., Golabek, G. J., Solferino, G., & Schmidt, M. W. (2009) Constraints on the Fe-S melt connectivity in mantle silicates from electrical impedance measurements. Physics of the Earth and Planetary Interiors, 177, 139146.Google Scholar
Barrat, J.-A., & Yamaguchi, A. (2014) Comment on “The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma processes on Vesta” by B. E. Mandler and L. T. Elkins-Tanton. Meteoritics & Planetary Science, 49, 468472.Google Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2007) The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. Geochimica et Cosmochimica Acta, 71, 41084123.Google Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2008) Geochemistry of diogenites: Still more diversity in their parental melts. Meteoritics & Planetary Science, 43, 17591775.Google Scholar
Barrat, J.-A., Yamaguchi, A., Zanda, B., Bollinger, C. & Bohn, M. (2010) Relative chronology of crust formation on asteroid 4-Vesta: Insights from the geochemistry of diogenites. Geochimica et Cosmochimica Acta, 74, 62186231.Google Scholar
Best, M. G. (2002) Igneous and Metamorphic Petrology, 2nd ed. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Bizzarro, M., Baker, J. A., & Haack, H. (2004) Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.Google Scholar
Boyet, M., Carlson, R. W., & Horan, M. (2010) Old Sm–Nd ages for cumulate eucrites and redetermination of the Solar System initial 146Sm/144Sm ratio. Earth and Planetary Science Letters, 291, 172181.Google Scholar
Brearley, A. J., & Jones, R. H. (1998) Chondritic meteorites. In Papike, J. J. (ed.), Planetary Materials. Reviews in Mineralogy, Vol. 36. Washington, DC: Mineralogical Society of America, pp. 339.Google Scholar
Britt, D. T., & Consolmagno, S. J. (2003) Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science, 38, 11611180.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M. J., et al. (2014) The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.Google Scholar
Cameron, A. G. W. (1993) Nucleosynthesis and star formation. In Levy, E. H., & Lunine, J. I. (eds.), Protostars and Planets III. Tucson: University of Arizona Press, p. 47.Google Scholar
Castillo-Rogez, J., Johnson, T. V., Lee, M. H., et al. (2009) 26Al decay: Heat production and a revised age for Iapetus. Icarus, 204, 658662.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. (2015). Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
Dodson, M. H. (1973) Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259274.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Formisano, M., Federico, C., DeAngelis, S., DeSantis, M. C., & Magni, G. (2016) A core dynamo in Vesta? Monthly Notices of the Royal Astronomical Society, 458, 695707.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the differentiation of Vesta. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Fu, R. R., Hager, B. H., Ermakov, A. I., & Zuber, M. T. (2014) Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133145.Google Scholar
Fu, R. R., Weiss, B. P., Schuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 238241.Google Scholar
Ganguly, J., Ito, M., & Zhang, X. (2007) Cr diffusion in orthopyroxene: Experimental determination, 53Mn–53Cr thermochronology, and planetary applications. Geochimica et Cosmochimica Acta, 71, 39153925.Google Scholar
Ghosh, A., & McSween, H. Y. Jr. (1988) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Gupta, G., & Sahijpal, S. (2010) Differentiation of Vesta and the parent bodies of other achondrites. Journal of Geophysical Research, 115, E08001.Google Scholar
Güttler, C., Krause, M., Geretshauser, R., Speith, R., & Blum, J. (2009) The physics of protoplanetesimal dust agglomerates. IV. Towards a dynamical collision model. The Astrophysical Journal, 701, 130141.Google Scholar
Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W. H., & Kleine, T. (2012) Thermal history modelling of the h chondrite parent body. Astronomy and Astrophysics, 545, A135.Google Scholar
Hevey, P. J., & Sanders, I. S. (2006) A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Hublet, G., Debaille, V., Wimpenny, J., & Yin, Q. (2017) Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites. Geochimica et Cosmochimica Acta 218, 7397.Google Scholar
Iizuka, T., Jourdan, F., Yamaguchi, A., et al. (2019) The geologic history of Vesta inferred from combined 207Pb/206Pb and 40Ar/39Ar chronology of basaltic eucrites. Geochimica et Cosmochimica Acta, 267, 275299.Google Scholar
Iizuka, T., Yamaguchi, A., Haba, M. K., et al. (2015) Timing of global crustal metamorphism on Vesta as revealed by high-precision U-Pb dating and trace element chemistry. Earth and Planetary Science Letters, 409, 182192.Google Scholar
Jones, J. H. (1984) The composition of the mantle of the eucrite parent body and the origin of eucrites. Geochimica et Cosmochimica Acta, 48, 641648.Google Scholar
Jourdan, F., Kennedy, T., Benedix, G. K., Eroglu, E., & Mayer, C. (2020) Timing of the magmatic activity and upper crustal cooling of differentiated asteroid 4 Vesta. Geochimica et Cosmochimica Acta, 273, 205225.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J. A., & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Kennedy, A. K., Lofgren, G. E., & Wasserburg, G. J. (1993) An experimental study of trace element partitioning between olivine, orthopyroxene, and melt in chondrules: equilibrium values and kinetic effects. Earth and Planetary Science Letters, 115, 177195.Google Scholar
Kleine, T., Mezger, K., Münker, C., Palme, H., & Bischoff, A. (2004) 182Hf–182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta, 68, 29352946.Google Scholar
Laporte, D., & Provost, A. (2000) The grain-scale distribution of silicate, carbonate and metallosulfide partial melts: A review of theory and experiments. In Bagdassarov, N., Laporte, D., & Thompson, A. B. (eds.), Physics and Chemistry of Partially Molten Rocks. Dordrecht: Springer, pp. 93140.Google Scholar
Lee, T., Papanastassiou, D. A., & Wasserburg, G. J. (1976) Demonstration of 25Mg excess in Allende and evidence for 26Al. Geophysical Research Letters, 3, 4144.Google Scholar
Lejeune, A.-M., & Richet, P. (1995) Rheology of crystal bearing silicate melts: An experiment study at high viscosities. Journal of Geophysical Research, 100, 42154229.Google Scholar
Lichtenberg, T., Keller, T., Katz, R. F., Golabek, G. J., & Gerya, T. V. (2019) Magma ascent in planetesimals: Control by grain size. Earth and Planetary Science Letters, 507, 154165.Google Scholar
Lugmair, G. W., & Shukolyukov, A. (1998) Early Solar System timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
MacPherson, G. J., Davis, A. M., & Zinner, E. K. (1995) The distribution of aluminium-26 in the early Solar System – A reappraisal. Meteoritics, 30, 365386.Google Scholar
Mandler, B. E., & Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 303307.Google Scholar
Marsh, C. A., Della-Giustina, D. N., Giacalone, J., & Lauretta, D. S. (2006) Experimental tests of the induction heating hypothesis for planetesimals. 37th Annual Lunar and Planetary Science Conference, March 13–17, Houston, TX, 2078 (abstract).Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., & Wilson, L. (1997) Partial melting and melt migration in the acapulcoite-lodranite parent body. Geochimica and Cosmochimica Acta, 61, 639650.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. (2013) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research: Planets, 118, 335346.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., Mayne, R. G., & McCoy, T. J. (2010) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
Mittlefehldt, D. W. (1994) The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta, 58, 15371552.Google Scholar
Mizzon, H. (2015) The Magmatic Crust of Vesta. PhD thesis, Universite Toulouse III Paul Sabatier.Google Scholar
Montmerle, T., Augereau, J.-C., Chaussidon, M., et al. (2006) From suns to life: A chronological approach to the history of life on Earth 3. Solar System formation and early evolution: The first 100 million years. Earth Moon and Planets, 98, 3995.Google Scholar
Morse, S. A. (1980) Basalts and Phase Diagrams: An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology. New York: Springer-Verlag.Google Scholar
Moskovitz, N., & Gaidos, E. (2011) Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics & Planetary Science, 46, 903918.Google Scholar
Moskovitz, N. A. (2009) Spectroscopic and Theoretical Constraints on the Differentiation of Planetesimals. PhD thesis, University of Hawaii.Google Scholar
Mostefaoui, S., Lugmair, G. W., & Hoppe, P. (2005) 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. The Astrophysical Journal, 625, 271277.Google Scholar
Neri, A., Guignard, J., Monnereau, M., Toplis, M. J., & Quitté, G. (2019) Melt segregation in planetesimals: Constraints from experimentally constrained interfacial energies. Earth and Planetary Science Letters, 518, 4052.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2012) Differentiation and core formation in accreting planetesimals. Astronomy & Astrophysics, 543, 121.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Nyquist, L. E., Takeda, H., Bansal, B. M., et al. (1986) Rb-Sr and Sm-Nd internal isochron ages of a subophitic basalt clast and matrix sample from the Y75011 eucrite. Journal of Geophysical Research, 91, 81378150.Google Scholar
Ogliore, R. C., Huss, G. R., & Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments and Methods, Physics Research B: Beam Interactions with Materials and Atoms, 269, 19101918.CrossRefGoogle Scholar
Pack, A., & Palme, H. (2003) Partitioning of Ca and Al between forsterite and silicate melt in dynamic systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites. Meteoritics & Planetary Science, 38, 12631281.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., Bills, B. G., & Gaskell, R. W. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.CrossRefGoogle Scholar
Quitté, G., Markowski, A., Latkoczy, C., Gabriel, A., & Pack, A. (2010) Iron-60 heterogeneity and incomplete isotope mixing in the early Solar System. The Astrophysical Journal, 720, 12151224.Google Scholar
Rao, A. S., & Chaklader, A. C. D. (1972) Plastic flow during hot-pressing. Journal of the American Ceramic Society, 55, 596601.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2016) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals. Cambridge: Cambridge University Press, pp. 321340.Google Scholar
Righter, K., & Drake, M. J. (1997). A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Russell, C. T., & Raymond, C. A. (2012) The Dawn mission to Vesta and Ceres. Space Science Reviews, 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite, and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sahijpal, S., Soni, P., & Gupta, G. (2007) Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science, 42, 15291548.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011). Rapid timescales for magma ocean crystallization on the Howardites–Eucrite–Diogenite parent body. The Astrophysical Journal, 740, L22.Google Scholar
Scott, T., & Kohlstedt, D. L. (2006) The effect of large melt fraction on the deformation behavior of peridotite. Earth and Planetary Science Letters, 246, 177187.Google Scholar
Shearer, C. K., Fowler, G. W., & Papike, J. J. (1997) Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites. Meteoritics & Planetary Science, 32, 877889.Google Scholar
Shukolyukov, A., & Lugmair, G. W. (1993) Fe-60 in eucrites. Earth and Planetary Science Letters, 119, 159166.Google Scholar
Smoliar, M. I. (1993) A survey of Rb-Sr systematics of eucrites. Meteoritics, 28, 105113.Google Scholar
Sonnett, C. P., Colburn, D. S., & Schwartz, K. (1968) Electrical heating of meteorite parent bodies and planets by dynamo induction from a premain sequence t tauri solar wind. Nature, 219, 924926.Google Scholar
Šrámek, O., Milelli, L., Ricard, Y., & Labrosse, S. (2012) Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339354.Google Scholar
Srinivasan, G., Goswami, J. N., & Bhandari, N. (1999) Al-26 in eucrite Piplia Kalan: Plausible heat source and formation chronology. Science, 284, 13481350.Google Scholar
Stolper, E. M. (1975) Petrogenesis of eucrite, howardite and diogenite meteorites. Nature, 258, 220222.Google Scholar
Tachibana, S., & Huss, G. R. (2003) The initial abundance of 60Fe in the Solar System. The Astrophysical Journal Letters, 588, L41L44.Google Scholar
Takahashi, E. (1983) Melting of a Yamato L3 chondrite (Y-74191) up to 30 kbar. National Institute of Polar Research, Memoirs, Special Issue (ISSN 0386-0744), no. 30.Google Scholar
Takahashi, K., & Masudat, A. (1990) Young ages of two diogenites and their genetic implications. Nature, 343, 540542.Google Scholar
Taylor, G. J. (1992) Core formation in asteroids. Journal of Geophysical Research, 97, 1471714726.Google Scholar
Taylor, G. J., Keil, K., McCoy, T. J., Haack, H., & Scott, E. R. D. (1993) Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 3452.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., Nagashima, K., & Tachibana, S. (2012) Recalculation of data for short-lived radionuclide systems using less-biased ratio estimation. Meteoritics & Planetary Science, 47, 20132030.Google Scholar
Terasaki, H., Frost, D. J., Rubie, D. C., & Langenhorst, F. (2008) Percolative core formation in planetesimals. Earth and Planetary Science Letters, 273, 132137.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B., & Kleine, T. (2015) Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., Göpel, C., & Ulfbeck, D. (2008) (53)Mn-(53)Cr systematics of the early Solar System revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Turcotte, D. L., & Phipps Morgan, J. (1992) The physics of magma migration and mantle flow beneath a mid-ocean ridge. Mantle flow and melt migration beneath oceanic ridges: Models derived from observations in ophiolites. In: Phipps Morgan, J., Blackman, D. K., & Sinton, J. M. (eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges, vol. 71, Geophysical Monograph. Washington, DC: American Geophysical Union, pp. 155182.Google Scholar
Urey, H. C. (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balance of the earth, the moon, and mars. Proceedings of the National Academy of Sciences (USA), 41, 127144.Google Scholar
Villeneuve, J., Chaussidon, M., & Libourel, G. (2009) Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.Google Scholar
von Bargen, N., & Waff, H. S. (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. Journal of Geophysical Research, 91, 92619276.CrossRefGoogle Scholar
Waff, H. S., & Bulau, J. R. (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research, 84, 61096114.Google Scholar
Walker, D., & Agee, C. B. (1988) Ureilite compaction. Meteoritics, 23, 8191.Google Scholar
Wark, D. A., Williams, C. A., Watson, E. B., & Price, J. D. (2003). Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. Journal of Geophysical Research, 108, 2050.Google Scholar
Wasson, J. T., & Kallemeyn, G. W. (1990) Compositions of chondrites. Philosophical Transactions of the Royal Society of London, 325, 535544.Google Scholar
Wiggins, C., & Spiegelman, M. (1995) Magma migration and magmatic solitary waves in 3D. Geophysical Research Letter, 22, 12891292.Google Scholar
Wilson, L., & Keil, K. (2012) Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde – Geochemistry, 72, 289321.Google Scholar
Yamaguchi, A., Barrat, J.-A., Greenwood, R. C., et al. (2009) Crustal partial melting on Vesta: Evidence from highly metamorphosed eucrites. Geochimica et Cosmochimica Acta, 73, 71627182.Google Scholar
Yamaguchi, A., Taylor, G. J., & Keil, K. (1996) Global crustal metamorphism of the eucrite parent body. Icarus, 124, 97112.Google Scholar
Yomogida, K., & Matsui, T. (1984) Multiple parent bodies of ordinary chondrites. Earth and Planetary Science Letters, 68, 3442.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. (2013) SIMS Pb–Pb and U-Pb age determination of eucrite zircons at < 5 µm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.Google Scholar

References

Asphaug, E., Moore, J. M., Morrison, D., et al. (1996) Mechanical and geological effects of impact cratering on Ida. Icarus, 120, 158184.Google Scholar
Barrat, J. A., Yamaguchi, A., Zanda, B., Bollinger, C., & Bohn, M. (2010) Relative chronology of crust formation on asteroid Vesta: Insights form the geochemistry of diogenites. Geochimica et Cosmochimica Acta, 74, 62186231.Google Scholar
Beck, A. W., & McSween, H. Y. (2010) Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, B. H., et al. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images, Icarus, 128, 95103.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244.Google Scholar
Bogard, D. D. (2011) K–Ar ages of meteorites: Clues to parent-body thermal histories. Chemie der Erde – Geochemistry, 71, 207226.Google Scholar
Bogard, D. D., & Garrison, D. H. (2003) 39Ar–40Ar ages of eucrites and thermal history of asteroid 4Vesta. Meteoritics and Planetary Science, 38, 669710.Google Scholar
Bowling, T. J., Johnson, B. C., & Melosh, H. J. (2013a) Formation of equatorial graben following the Rheasilvia impact on asteroid 4 Vesta. 44th Lunar & Planetary Science Conference, March 18–22, Houston, TX, abs. 1673.Google Scholar
Bowling, T. J., Johnson, B. C., Melosh, H. J., et al. (2013b) Antipodal terrains created by the Rheasilvia basin forming impact on asteroid 4 Vesta. Journal of Geophysical Research, 118, 18211834.Google Scholar
Boyce, J. M., Wilson, L., Mouginis-Mark, P. J., Hamilton, C. W., & Tornabene, L. L. (2012) Origin of small pits in martian impact craters. Icarus, 221, 262.Google Scholar
Buczkowski, D. L., Barnouin, O. S., & Prockter, L. M. (2008) 433 Eros lineaments: Global mapping and analysis. Icarus, 193, 3952.Google Scholar
Buczkowski, D. L., Schmidt, B., Williams, D. A., et al. (2016) The geomorphology of Ceres. Science, 353, aaf4332.CrossRefGoogle ScholarPubMed
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al. (2012) Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M., et al. (2014) The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.Google Scholar
Carsenty, U., Wagner, R. J., Buczkowski, D. L., et al. (2013) The “swarm” – A peculiar crater chain on Vesta. 44th Lunar & Planetary Science Conference, March 18–22, Houston, TX, abs. 1492.Google Scholar
Cohen, B. A. (2013) The Vestan cataclysm: Impact-melt clasts in howardites and the bombardment history of 4 Vesta. Meteoritics & Planetary Science, 48, 771785.Google Scholar
Consolmagno, G. J., & Drake, M. J. (1977) Composition of the eucrite parent body: Evidence from rare Earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
De Sanctis, M. C., Ammannito, E., Buczkowski, D., et al. (2014) Compositional evidence of magmatic activity on Vesta. Geophysical Research Letters, 41, 30383044.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C, Combe, J.–Ph., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Drake, M. J. (1979) Geochemical evolution of the eucrite parent body: Possible evolution of Asteroid 4 Vesta? In Gehrels, T., & Matthews, M. S. (eds.), Asteroids. Tucson: University of Arizona Press, pp. 765782.Google Scholar
Drake, M. J. (2001) Presidential address: The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.Google Scholar
Ferrill, D. A., & Morris, A. P. (2003) Dilational normal faults. Journal of Structural Geology, 25, 183196.Google Scholar
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W., & Franklin, N. M. (2004) Dilational fault slip and pit chain formation on Mars, GSA Today, 14, 412.Google Scholar
Ferrill, D. A., Wyrick, D. Y., & Smart, K. J. (2011) Coseismic, dilational‐fault and extension‐fracture related pit chain formation in Iceland: Analog for pit chains on Mars. Lithosphere, 3, 133142.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus, 127, 130157.Google Scholar
Garry, W. B., Williams, D. A., Yingst, R. A., et al. (2014) Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta. Icarus, 244, 104119.Google Scholar
Hartmann, W. K., Quantin, C., Werner, S. C., & Popova, O. (2010) Do young Martian ray craters have ages consistent with the crater count system? Icarus, 208, 621.Google Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters, 30, 2123.Google Scholar
Horstman, K. C., & Melosh, H. J. (1989) Drainage pits in cohesionless materials – Implications for the surface of PHOBOS. Journal of Geophysical Research, 94, 1243312441.Google Scholar
Ivanov, B. A., & Melosh, H. J. (2013) Two-dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical Research, 118, 15451557. doi:10.1002/jgre.20108Google Scholar
Jaumann, R., Nass, A., Otto, K., et al. (2014) The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus, 240, 319.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jutzi, M., & Asphaug, E. (2011) Mega‐ejecta on asteroid Vesta. Geophysical Research Letters, 38, L01102.Google Scholar
Keil, K. (2002) Geologial history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Bottke, W. F., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 573584.CrossRefGoogle Scholar
Keil, K., Stoffler, D., Love, S. G., & Scott, E. R. D. (1997) Constraints on the role of impact heating and melting in asteroids. Meteoritics and Planetary Science, 32, 349363.Google Scholar
Keil, K., & Wilson, L. (2012) Volcanic eruption and intrusion processes on 4 Vesta: A reappraisal. 43rd Lunar Planetary Science Conference, Abs. 1127, Houston, TX: Lunar Planetary Institute.Google Scholar
Krohn, K., Jaumann, R., Elbeshausen, D., et al. (2014a) Bimodal craters: Impacts on slopes. Planetary and Space Science, 103, 3656.Google Scholar
Krohn, K., Jaumann, R., Otto, K., et al. (2014b) Mass movement on Vesta at steep scarps and crater rims. Icarus, 244, 120132.Google Scholar
Liu, Z., Yue, Z., Michael, G., et al. (2018) A global database and statistical analyses of (4) Vesta craters. Icarus, 311, 242257.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013a) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 411.Google Scholar
Marchi, S., Bottke, W. F., O’Brien, D. P., et al. (2013b) Small crater populations on Vesta. Planetary and Space Science, 103, 96103.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of Asteroid 4 Vesta. Science, 336, 690.Google Scholar
Martin, E. S., & Kattenhorn, S. A. (2013) Probing regolith depths on Enceladus by exploring a pit chain proxy. Lunar and Planetary Science Conference XLIV, #2047.Google Scholar
Martin, E. S., Kattenhorn, S. A., Collins, G. C., et al. (2017) Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains. Icarus, 294, 209217.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 491, 8386.Google Scholar
McEwen, A. S., Hansen, C. J., Delamere, W. A., et al. (2007) A closer look at water-related geologic activity on Mars. Science, 317, 1706.Google Scholar
McSween, H. Y. J., Binzel, R. P., De Sanctis, M. C., et al. (2013) Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
McSween, H. Y. J., Mittledfehldt, D. W., Beck, A. W., Mayne, R. G., & McCoy, T. J. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission, Space Science Review, 163, 141174.Google Scholar
McSween, H. Y. J., Raymond, C. A., Stolper, E. M., et al. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Geochemistry, 79, 125526.Google Scholar
Michaud, R. L., Pappalardo, R. T., & Collins, G. C. (2008) Pit chains on Enceladus: A discussion of their origin. Lunar and Planetary Science, XXXIX, abs. #1678.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., & Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Papike, J. J. (ed.), Planetary Materials. Washington, DC: Mineralogical Society of America, pp. 4-1–4-195.Google Scholar
Mouginis-Mark, P. J., & Garbeil, H. (2007) Crater geometry and ejecta thickness of the Martian impact crater Tooting. Meteoritics & Planetary Science, 42, 16151625.Google Scholar
O’Brien, D. P., Marchi, S., Morbidelli, A., et al. (2014) Constraining the cratering chronology of Vesta. Planetary and Space Science, 103, 131142.Google Scholar
Okubo, C. H., & Martel, S. J. (1998) Pit crater formation on Kilauea volcano, Hawaii. Journal of Volcanology and Geothermal Research, 86, 118.Google Scholar
Otto, K. A., Jaumann, R., Krohn, K., et al. (2013) Mass-wasting features and processes in Vesta’s south polar basin Rheasilvia. Journal of Geophysical Research, 118, 22792294.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y. Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. (2012) Topography of Vesta from Dawn FC stereo images. 43rd Lunar Planetary Science Conference, Abs. 2012. Houston, TX: Lunar and Planetary Institute.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. (2014) Global shape of Vesta from Dawn FC stereo images. 45th Lunar Planetary Science Conference, abs. 2027. Houston, TX: Lunar and Planetary Institute.Google Scholar
Prockter, L., Thomas, P., Robinson, M., et al. (2002) Surface expressions of structural features on Eros. Icarus, 155, 7593.Google Scholar
Raymond, C. A., Park, R. S., Asmar, S. W., et al. (2013) Vestalia Terra: An ancient mascon in the southern hemisphere of Vesta. 44th Lunar Planetary Science Conference, Abs. 2882. Houston, TX: Lunar and Planetary Institute.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321340.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012a) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Reddy, V., Nathues, A., Le Corre, L., et al. (2012b) Color and albedo heterogeneity of Vesta from Dawn. Science, 336, 700704.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Schaefer, M., Natheus, A., Williams, D. A., et al. (2014) Imprint of the Rheasilvia impact on Vesta – Geologic mapping of quadrangles Gegania and Lucaria. Icarus, 244, 6073.Google Scholar
Schenk, P., O’Brien, D., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694.Google Scholar
Schiller, M., Baker, J. A., Bizzaro, M., Creech, J., & Irving, A. J. (2010) Timing and mechanisms of the evolution of the magma ocean on the HED parent body. 73rd Annual Meteorical Society Meeting, Abst. 5042. New York: Lunar Planetary Institute.Google Scholar
Schmedemann, N., Kneissl, T., Ivanov, B., et al. (2014) The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of the HED meteorites. Planetary and Space Science, 103, 104130.Google Scholar
Scully, J. E. C., Buczkowski, D. L., Schmedemann, N., et al. (2017) Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44, 95649572.Google Scholar
Scully, J. E. C., Russell, C. T., Yin, A., et al. (2015) Geomorphical evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 411, 151163.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Stephan, K., Jaumann, R., De Sanctis, M. C., et al. (2014) A compositional and geological view of fresh ejecta of small impact craters on Asteroid 4 Vesta. Journal of Geophysical Research, 119, 2013JE004388.Google Scholar
Stickle, A. M., Schultz, P. H., & Crawford, D. A. (2015) Subsurface failure in spherical bodies: A formation scenario for linear troughs on Vesta’s surface. Icarus, 247, 1834.Google Scholar
Sullivan, R., Greeley, R., Pappalardo, R., et al. (1996) Geology of 243 Ida. Icarus, 120, 119139.Google Scholar
Takeda, H. (1979) A layered-crust model of a howardite parent body. Icarus, 40, 455470.Google Scholar
Takeda, H. (1997) Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta. Meteoritic and Planetary Science, 32, 841853.Google Scholar
Thomas, N., Barbieri, C., Keller, H. U., et al. (2012) The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA’s Rosetta spacecraft. Planetary and Space Science, 66, 96124.Google Scholar
Thomas, P. (1979) Surface features of Phobos and Deimos. Icarus, 40, 223243.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 14921495.Google Scholar
Tornabene, L. L., Osinski, G. R., McEwen, A. S., et al. (2012) Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 220, 348.Google Scholar
Trombka, J. I., Squyres, S. W., Bruckner, J., et al. (2000) The elemental composition of asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray spectrometer. Science, 289, 21012105.Google Scholar
Veverka, J., Thomas, P., Simonelli, D., et al. (1994) Discovery of grooves on Gaspra. Icarus, 107, 399411.Google Scholar
Whitten, J. L., & Martin, E. S. (2019) Icelandic pit chains as planetary analogs: Using morphologic measurements of pit chains to determine regolith thickness. Journal of Geophysical Research, 124, 2983–99.Google Scholar
Williams, D. A., Denevi, B. W., Mittlefehldt, D. W., et al. (2014a) The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters. Icarus, 244, 7488.Google Scholar
Williams, D. A., O’Brien, D. P., Schenk, P. M., et al. (2013) Lobate and flow-like features on asteroid Vesta, Planetary and Space Science, 103, 2435.Google Scholar
Williams, D. A., Yingst, R. A., & Garry, B. (2014b) Introduction: The geologic mapping of Vesta. Icarus, 244, 112.Google Scholar
Wilson, L., Bland, P., Buczkowski, D., Keil, K., & Krot, S. (2015) Hydrothermal and magmatic fluid flow in asteroids. In Michel, P., DeMeo, F., & Bottke, W. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 553572.Google Scholar
Wilson, L., & Keil, K. (1996) Volcanic eruptions and intrusions on the asteroid 4 Vesta. Journal of Geophysical Research, 101, 18927.Google Scholar
Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., & Sims, D. W. (2004) Distribution, morphology and origins of Martian pit crater chains. Journal of Geophysical Research, 109, E06005.Google Scholar
Wyrick, D. Y., Buczkowski, D. L., Bleamaster, L. F., & Collins, G. C. (2010) Pit crater chains across the Solar System. 41st Lunar Planetary Science Conference, Abs. 1413. Houston, TX: Lunar and Planetary Institute.Google Scholar
Zellner, B. H., Albrecht, R., Binzel, R. P., et al. (1997) Hubble Space Telescope images of Asteroid 4 Vesta in 1994. Icarus, 128, 8387.Google Scholar
Zellner, N. E. B., Gibbard, S., de Pater, I., Marchis, F., & Gaffey, M. J. (2005) Near-IR imaging of asteroid 4 Vesta. Icarus, 177, 190195.Google Scholar

References

Adams, J. B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research 79, 4829– 4836.Google Scholar
Adams, J. B. (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Karr, C. Jr. (ed.), Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals. New York: Academic Press, Inc., pp. 91116.Google Scholar
Adams, J. B., & Goullaud, L. H. (1978) Plagioclase feldspars: Visible and near infrared diffuse reflectance spectra as applied to remote sensing. Proceedings of the 9th Lunar and Planetary Science Conference, March 13–17, Houston, TX, pp. 2901–2909.Google Scholar
Ammannito, E., De Sanctis, M. C., Combe, J.-P, et al. (2015) Compositional variations in the Vestan Rheasilvia basin. Icarus, 259, 194202.Google Scholar
Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature 504, 122125.Google Scholar
Batista, S. F. A., Seixas, T. M., Salgueiro da Silva, M. A., & de Albuquerque, R. M. G. (2014) Mineralogy of V-type asteroids as a constraining tool of their past history. Planetary and Space Science 104, 295309.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2015) Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics & Planetary Science 50, 13111337.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2017) Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data. Icarus 286, 3545.Google Scholar
Beck, A. W., McCoy, T. J., Sunshine, J. M., et al. (2013) Challenges in detecting olivine on the surface of 4 Vesta. Meteoritics & Planetary Science 48, 21552165.Google Scholar
Beck, A. W., & McSween, H. Y. (2010) Diogenites as polymict breccias composed of or- thopyroxenite and harzburgite. Meteoritics & Planetary Science 45, 850872.Google Scholar
Bell, P. M., & Mao, H. K. (1973) Optical and chemical analysis of iron in Luna 20 plagioclase. Geochimica et Cosmochimica Acta 37, 755758.Google Scholar
Blewett, D. T., Denevi, B. W., Le Corre, L., et al. (2016) Optical space weathering on Vesta: Radiative transfer models and Dawn observations. Icarus 265, 161174Google Scholar
Bradley, J. P., Keller, L. P., Brownlee, D. E., & Thomas, L. (1996) Reflectance spectroscopy of interplanetary dust particles. Meteoritics & Planetary Science 31, 394402.Google Scholar
Brunetto, R., Loeffler, M. J., Nesvorný, D., et al. (2015) Asteroid surface alteration by space weathering processes. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 597616.Google Scholar
Buchanan, P. C., & Mittlefehldt, D. W. (2003) Lithic components in the paired howardites EET 87503 and EET 87513: Characterization of the regolith of 4 Vesta. Antartic Meteorite Research 16, 128151.Google Scholar
Buchanan, P. C., Zolensky, M. E., & Reid, A. M. (1993) Carbonaceous chondrite clasts in the howardites Bholghati and EET87513. Meteoritics 28, 659669.Google Scholar
Burbine, T. H., Buchanan, P. C., Dolkar, T., & Binzel, R. P. (2009) Pyroxene mineralogies of near-Earth vestoids. Meteoritics & Planetary Science 44, 13311341.Google Scholar
Burbine, T. H., DeMeo, F. E., Rivkin, A. S., & Reddy, V. (2017) Evidence for differentiation among asteroid families. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 298320.Google Scholar
Burns, R. G. (1970) Crystal field spectra and evidence of cation ordering in olivine minerals. American Mineralogist 55, 16081632.Google Scholar
Burns, R. G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge: Cambridge University Press.Google Scholar
Busarev, V. V. (2011) Asteroids 10 Hygiea, 135 Hertha, and 196 Philomela: Heterogeneity of the material from the reflectance spectra. Solar System Research 45, 4352.Google Scholar
Cahill, J. T. S., Blewett, D. T., Nguyen, N. V., et al. (2012) Determination of iron metal optical constants: Implications for ultraviolet, visible, and near-infrared remote sensing of airless bodies. Geophysical Research Letters 39, L10204.Google Scholar
Carrozzo, F. G., Raponi, A., Sanctis, M. C., et al. (2016) Artefacts removal in VIR/DAWN data. Review of Scientific Instruments 87, 124501.Google Scholar
Chapman, C. R., & Salisbury, J. W. (1973) Comparisons of meteorite and asteroid spectral reflectivities. Icarus 19, 507552.Google Scholar
Cheek, L. C., & Pieters, C. M. (2014) Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. American Mineralogist 99, 18711892.Google Scholar
Clark, R. N. (1983) Spectral properties of mixtures of montmorillonite and dark grains – Implications for remote sensing minerals containing chemically and physically adsorbed water. Journal of Geophysical Research 88, 1063510644.Google Scholar
Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V., & Calvin, W. M. (1993) The US Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 µm, US Geological Survey, Open File Report 93-5922.Google Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. (2014) A deep crust-mantle boundary in the asteroid 4 Vesta. Nature 511, 303306.Google Scholar
Cloutis, E. A., & Gaffey, M. J. (1991) Pyroxene spectroscopy revisited – Spectral–compositional correlations and relationship to geothermometry. Journal of Geophysical Research 96, 22,80922,826.Google Scholar
Cloutis, E. A., Izawa, M. R. M., Pompilio, L., et al. (2013) Spectral reflectance properties of HED meteorites + CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta. Icarus 223, 850877.Google Scholar
Combe, J.-Ph. (in preparation) Calcium-poor pyroxenes and plagioclase on the northern regions of Vesta: An alternative interpretation to olivine. Planetary Science Journal.Google Scholar
Combe, J.-Ph., Ammannito, E., Tosi, F., et al. (2015a) Reflectance properties and hydrated material distribution on Vesta: Global investigation of variations and their relationship using improved calibration of Dawn VIR mapping spectrometer. Icarus 259, 2138.Google Scholar
Combe, J.-Ph., Le Mouélic, S., Launeau, P., Irving, A. J., & McCord, T. B. (2011) Imaging spectrometry of meteorite samples relevant to Vesta and the Moon. 42nd Lunar and Planetary Science Conference, March 7–11, The Woodlands, Texas. LPI Contribution No. 1608, p. 2449.Google Scholar
Combe, J.-Ph., Le Mouélic, S., Sotin, C., et al. (2008) Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM): Methodology and first results. Planetary and Space Science 56, 951975.Google Scholar
Combe, J.-Ph., McCord, T. B., McFadden, L. A., et al. (2015b) Composition of the northern regions of Vesta analyzed by the Dawn mission. Icarus 259, 5371.Google Scholar
Conel, J. E., & Nash, D. B. (1970) Spectral reflectance and albedo of Apollo 11 lunar samples: Effects of irradiation and vitrification and comparison with telescopic observations. Proceedings of the Apollo 11 Lunar Science Conference 3, 20132024.Google Scholar
Consolmagno, G. J. (1979) REE patterns versus the origin of the basaltic achondrites. Asteroids and Icarus 40, 522530.Google Scholar
Consolmagno, G. J., & Drake, M. J. (1977) Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta 41, 12711282.Google Scholar
Dalton, J. B., & Pitman, K. M. (2012) Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces. Journal of Geophysical Research 117.Google Scholar
Daly, R. T., & Schultz, P. H. (2016) Delivering a projectile component to the vestan regolith. Icarus 264, 919.Google Scholar
Day, J. M. D., Walker, R. J., Qing, L., et al. (2012) Late accretion as a natural consequence of planetary growth. Nature Geoscience 9, 614617.Google Scholar
De Sanctis, M.-C., Ammannito, E., Capria, M.-T., et al. (2013) Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics & Planetary Science 48, 21662184.Google Scholar
De Sanctis, M. C., Combe, J.-P., Ammannito, E., et al. (2012) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. The Astrophysical Journal Letters 758, L36.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews 163, 329369.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science 338, 246.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science 36, 501513.CrossRefGoogle Scholar
Feierberg, M. H., Larson, H., Fink, U., & Smith, H. (1980) Spectroscopic evidence for at least two achondritic parent bodies. Geochimica et Cosmochimica Acta 44, 513521.Google Scholar
Feierberg, M. H., Lebofsky, L. A., & Tholen, D. J. (1985) The nature of C-class asteroids from 3-μm spectrophotometry. Icarus 63, 183191.Google Scholar
Fornasier, S., Lantz, C., Barucci, M. A., & Lazzarin, M. (2014) Aqueous alteration on Main Belt primitive asteroids: Results from visible spectroscopy. Icarus 233, 163178.Google Scholar
Fornasier, S., Mottola, S., Barucci, M. A., et al. (2011) Photometric observations of asteroid 4 Vesta by the OSIRIS cameras onboard the Rosetta spacecraft. Astronomy & Astrophysics 533, 131146.Google Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research 81, 905920.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of Asteroid 4 Vesta Icarus 127, 130157.Google Scholar
Gaffey, M. J. (2010) Space weathering and the interpretation of asteroid reflectance spectra. Icarus 209, 564574.Google Scholar
Gaffey, M. J., Reddy, V., Fieber-Beyer, S., & Cloutis, E. A. (2015) Asteroid (354) Eleonora: Plucking an odd duck. Icarus 250, 623638.Google Scholar
Gounelle, M. J., Zolensky, M. E., Liou, J.-C., Bland, P. A., & Alard, O. (2003) Mineralogy of carbonaceous chondritic microclasts in howardites: Identification of C2 fossil micrometeorites. Geochimica et Cosmochimica Acta 67, 507527.Google Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A., & Burbine, T. H. (2006) Oxygen isotope variation in stony-iron meteorites. Science 313, 17631765.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research 86, 30393054.Google Scholar
Hasegawa, S., Hiroi, T., Ishiguro, M., et al. (2004) Spectroscopic observations of asteroid 4 Vesta from 1.9 to 3.5 microns: Evidence of hydrated and/or hydroxylated minerals. 35th Lunar and Planetary Science Conference, March 15–19, League City, TX, abstract# 1458.Google Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters 30, 2123.Google Scholar
Hazen, R. M., Bell, P. M., & Mao, H. K. (1978) Effects of compositional variation on absorption spectra of lunar pyroxenes. Proceedings of the 9th Lunar and Planetary Science Conference, March 13–17, Houston, TX, 3. (A79–39253 16-91) New York, Pergamon Press, Inc., pp. 2919–2934.Google Scholar
Hiroi, T., Abe, M., Kitazato, K., et al. (2006) Developing space weathering on the asteroid 25143 Itokawa. Nature 443, 5658.Google Scholar
Hunt, G. R. (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501513.Google Scholar
Ikeda, Y., & Takeda, H. (1985) A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research 90, C649C663.Google Scholar
Jaumann, R., Nass, A., Otto, K., et al. (2014) The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus 240, 319.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A., & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207210.Google Scholar
Klima, R. L., Dyar, M. D., & Pieters, C. M. (2011) Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics & Planetary Science 46, 379395.Google Scholar
Klima, R. L., Pieters, C. M., & Dyar, M. D. (2007) Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared. Meteoritics & Planetary Science 42, 235253.Google Scholar
Klima, R. L., Pieters, C. M., & Dyar, M. D. (2008) Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks. Meteoritics & Planetary Science 43, 15911604.Google Scholar
Lantz, C., Binzel, R. P., & DeMeo, F. E. (2018) Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu’s blue slope? Icarus 302, 1017.Google Scholar
Lapôtre, M. G. A., Ehlmann, B. L., & Minson, S. E. (2017) A probabilistic approach to remote compositional analysis of planetary surfaces. Journal of Geophysical Research Planets 122, 9831009.Google Scholar
Larson, H. P. (1977) Asteroid surface compositions from infrared spectroscopic observations: Results and prospects. In Delsemme, A. H. (ed.), Comet, Asteroids, MeteoritesToledo, OH: University of Toledo Press, pp. 219228.Google Scholar
Lawrence, D. J., Peplowski, P. N., Prettyman, T. H., et al. (2013) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s gamma ray and neutron detector. Meteoritics & Planetary Science 48, 22712288.Google Scholar
Le Corre, L., Reddy, V., Sanchez, J. A., et al. (2015) Exploring exogenic sources for the olivine on Asteroid (4) Vesta. Icarus 258, 483499.Google Scholar
Le Corre, L., Reddy, V., Schmedemann, N., et al. (2013) Olivine or impact melt: Nature of the “Orange” material on Vesta from Dawn. Icarus 226, 15681594.Google Scholar
Lebofsky, L. A. (1980) Infrared reflectance spectra of asteroids: A search for water of hydration. Astronomical Journal 85, 573585.Google Scholar
Li, J.-Y., Mittlefehldt, D. W., Pieters, C. M., et al. (2012) Investigating the origin of bright materials on Vesta: Synthesis, conclusions, and implications. Lunar and Planetary Science Conference, 43, Abstract #2381.Google Scholar
Loeffler, M. J., Baragiola, R. A., & Murayama, M. (2008) Laboratory simulations of redeposition of impact ejecta on mineral surfaces. Icarus 196, 285292.Google Scholar
Loeffler, M. J., Dukes, C. A., & Baragiola, R. A. (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. Journal of Geophysics Research 114, E03003.Google Scholar
Mann, A. (2018) Bashing holes in the tale of Earth’s troubled youth. Nature 553, 393395.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience 6, 303307.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy 3, 140145.Google Scholar
Matsuoka, M., Nakamura, T., Hiroi, T., et al. (2020) Space weathering simulation with low-energy laser irradiation of Murchison CM chondrite for reproducing micrometeoroid bombardments on C-type asteroids. The Astrophysical Journal Letters 890, 112.Google Scholar
Mayne, R. G., McSweenJr., H. Y., McCoy, T. J., & Gale, A. (2009) Petrology of the unbrecciated eucrites, Geochimica et Cosmochimica Acta 73, 794819.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 14451447.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature 491, 8386.Google Scholar
McCord, T. B., & Scully, J. E. C. (2015) The composition of Vesta from the Dawn mission. Icarus 259, 19.Google Scholar
McFadden, L. A., McCord, T. B., & Pieters, C. M. (1977) Vesta: The first pyroxene band from new spectroscopic measurements. Icarus 31, 439446.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. (2013) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research: Planets 118, 335346.Google Scholar
Mittlefehldt, D. W. (1994) The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta 58, 15371552.Google Scholar
Mittlefehldt, D. W. (2015) Asteroid (4) Vesta: I. The howardite–eucrite–diogenite (HED) clan of meteorites. Chemie der Erde 75, 155183.Google Scholar
Mittlefehldt, D. W., & Lindstrom, M. M. (1993) Geochemistry and petrology of a suite of ten Yamato HED meteorites. Seventeenth Symposium on Antarctic Meteorites. Proceedings of the NIPR Symposium, No. 6, August 19–21, 1992, National Institute of Polar Research, Tokyo, 268.Google Scholar
Murchie, S., Robinson, M., Clark, B. E., et al. (2002) Color variations on Eros from NEAR multispectral imaging. Icarus 155, 145168.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., et al. (2011) Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science 333, 1113.Google Scholar
Nathues, A., Hoffmann, M., Cloutis, E. A., et al. (2014) Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data. Icarus 239, 222237.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. (2015) Exogenic olivine on Vesta from Dawn Framing Camera color data. Icarus 258, 467482.Google Scholar
Noble, S. K., Keller, L. P., & Pieters, C. M. (2011) Evidence of space weathering in regolith breccias II: Asteroidal regolith breccias. Meteoritics & Planetary Science 45, 20072015.Google Scholar
Noble, S. K., Pieters, C. M., & Keller, L. P. (2005) Evidence of space weathering in regolith breccias I: Lunar regolith breccias. Meteoritics & Planetary Science 40, 397408.Google Scholar
Noble, S. K., Pieters, C. M., & Keller, L. P. (2007) An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629642.Google Scholar
Noble, S. K., Pieters, C. M., Taylor, L. A., et al. (2001) The optical properties of the finest fraction of lunar soil: Implications for space weathering. Meteoritics & Planetary Science 36, 3142.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. (2011) Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121.Google Scholar
O’Brien, D. P., & Sykes, M. V. (2011) The origin and evolution of the asteroid belt – Implications for Vesta and Ceres. Space Science Reviews 163, 4161.Google Scholar
Palomba, E., Combe, J. P., McCord, T. B., et al. (2012) Composition and mineralogy of dark material deposits on Vesta. 43rd Lunar and Planetary Science Conference, March 19–23, The Woodlands, TX. LPI Contribution No. 1659, id. 1930.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M., et al. (2014) Composition and mineralogy of dark material units on Vesta. Icarus, 240, 5872.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M., et al. (2015) Detection of new olivine-rich locations on Vesta. Icarus 258, 120134.Google Scholar
Peplowski, P. N., Lawrence, D. J., Prettyman, T. H., et al. (2013) Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high‐energy gamma rays. Meteoritics & Planetary Science 48, 22522270.Google Scholar
Pieters, C. M. (1983) Strength of mineral absorption features in the transmitted component of near-infrared reflected light’ first results from RELAB. Journal of Geophysical Research 88, 95349544.Google Scholar
Pieters, C. M., Ammannito, E., Blewett, D. T., et al. (2012) Distinctive space weathering on Vesta from regolith mixing processes. Nature 491, 7982.Google Scholar
Pieters, C. M., Taylor, L. A., & Noble, S. K. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics & Planetary Science 35, 11011107.Google Scholar
Poulet, F., Ruesch, O., Langevin, Y., & Hiesinger, H. (2015) Modal mineralogy of the urface of Vesta: Evidence for ubiquitous olivine and identification of meteorite analogue. Icarus 253, 364377.Google Scholar
Prettyman, T. H. (2014) Dawn GRaND map of hydrogen on Vesta, data set DAWN-A-GRAND-5-VESTA-HYDROGEN-MAP-V1.0. NASA Planetary Data System.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science 338, 242.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science 48, 22112236.Google Scholar
Prettyman, T. H., Yamahita, Y., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus 259, 3952.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2019) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus 318, 4255.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals – Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321340.Google Scholar
Rayner, J. T., Toomey, D. W., Onaka, P. M., et al. (2003) SpeX: A medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA infrared telescope facility. The Publications of the Astronomical Society of the Pacific 115, 362382.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012a) Delivery of dark material to Vesta via carbonaceous chondritic impacts [Erratum: 2013Icar..223.632R]. Icarus 221, 544559.Google Scholar
Reddy, V., Li, J.-Y., Le Corre, L., et al. (2013) Comparing Dawn, Hubble Space Telescope, and ground-based interpretations of (4) Vesta. Icarus 226, 11031114.Google Scholar
Reddy, V., Nathues, A., & Gaffey, M. J. (2011) First fragment of Asteroid 4 Vesta’s mantle detected. Icarus 212, 175179.Google Scholar
Reddy, V., Nathues, A., Le Corre, L., et al. (2012b) Color ad albedo heterogeneity of Vesta from Dawn. Science 336, 700704.Google Scholar
Righter, K., & Drake, M. J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science 32, 929944.Google Scholar
Rivkin, A. S., McFadden, L. A., Binzel, R. P., & Sykes, M. (2006) Rotationally-resolved spectroscopy of Vesta I: 2 4 μm region. Icarus 180, 464472.Google Scholar
Rousseau, B., Raponi, A., Ciarniello, M., et al. (2019) Correction of the VIR-visible data set from the Dawn mission. Review of Scientific Instruments 90, 123110.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M., et al. (2014) Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research: Planets 119, 20782108.Google Scholar
Russell, C. T., & Raymond, C. A. (2011) The Dawn mission to Vesta and Ceres. Space Science Reviews 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science 336, 684.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science 32, 825840.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694697.Google Scholar
Schröder, S. E., Mottola, S., & Keller, H. (2013) Resolved photometry of Vesta reveals physical properties of Crater Regolith. Planetary and Space Science 85, 198213.Google Scholar
Scott, E. R. D., Bottke, W. F., Marchi, S., & Delaney, J. S. (2014) How did mesosiderites form and do they come from Vesta or a Vesta-like body? 45th Lunar and Planetary Science Conference, March 17–21, The Woodlands, TX, 2260.Google Scholar
Shearer, C. K., Fowler, G. W., & Papike, J. J. (1997) Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites. Meteoritics & Planetary Science 32, 877889.Google Scholar
Spohn, T., Sohl, F., & Breuer, D. (1998) Mars. The Astronomy and Astrophysics Review 8, 181235.Google Scholar
Sunshine, J. M., & Pieters, C. M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. Journal of Geophysical Research 98, 90759087.Google Scholar
Sunshine, J. M., & Pieters, C. M. (1998) Determining the composition of olivine from reflectance spectroscopy. Journal of Geophysical Research 103, 1367513688.Google Scholar
Sunshine, J. M., Pieters, C. M. & Pratt, S. F. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research 95, 69556966.Google Scholar
Takeda, H. (1979) A layered-crust model of a Howardite parent body. Icarus 40, 455470.Google Scholar
Takeda, H. (1997) Mineralogical records of early planetary processes on the HED parent body with reference to Vesta. Meteoritics & Planetary Science 32, 841853.Google Scholar
Takeda, H., & Mori, H. (1985) The diogenite–eucrite links and the crystallization history of a crust of their parent body. Journal of Geophysical Research 90(Suppl.), C636C648.Google Scholar
Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V., & McKay, D. S. (2001) Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. Journal of Geophysical Research 106, 2798528000.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. (2014) Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC. Meteoritics & Planetary Science 49, 18311850.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. (2016) Three-dimensional spectral analysis of compositional heterogeneity at Arruntia crater on (4) Vesta using Dawn FC. Icarus 267, 344363.Google Scholar
Tosi, F., Frigeri, A., Combe, J.-P., et al. (2015) Mineralogical analysis of the Oppia quadrangle of asteroid (4) Vesta: Evidence for occurrence of moderate-reflectance hydrated minerals. Icarus 259, 129149.Google Scholar
Turrini, D., Combe, J.-P., McCord, T. B., et al. (2014) The contamination of the surface of Vesta by impacts and the delivery of the dark material. Icarus 240, 86102.Google Scholar
Turrini, D., Svetsov, V., Consolmagno, G., Sirono, S., & Pirani, S. (2016) Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta’s collisional history and from impact simulations. Icarus 280, 328339.Google Scholar
Veeder, G. J., Jonson, T. V., & Matson, D L. (1975) Narrowband spectrophotometry of Vesta (abstract). Bulletin of the American Astronomical Society 7, 377.Google Scholar
Vernazza, P., Brunetto, R., Strazzulla, G., et al. (2006) Asteroid colors: A novel tool for magnetic field detection? The case of Vesta. Astronomy & Astrophysics 451, 4346.Google Scholar
Veverka, J., Helfenstein, P., Lee, P., et al. (1996) Ida and Dactyl: Spectral and color variations. Icarus 120, 6676.Google Scholar
Warren, P. H. (1997) MgO-FeO mass balance constraints and a more detailed model for the relationship between eucrites and diogenites. Meteoritics & Planetary Science 32, 945963.Google Scholar
Wasson, J. T. (2013) Vesta and extensively melted asteroid: Why HED meteorites are probably not from Vesta. Earth and Planetary Science Letters 381, 138146.Google Scholar
Yamashita, N., Prettyman, T. H., Mittlefehldt, D. W., et al. (2013) Distribution of iron on Vesta. Meteoritics & Planetary Science 48, 22372251.Google Scholar
Zambon, F., De Sanctis, M., Schröder, S., et al. (2014) Spectral analysis of the bright materials on the asteroid Vesta. Icarus 240, 7385.Google Scholar
Zambon, F., Tosi, F., Carli, C., et al. (2016) Lithologic variation within bright material on Vesta revealed by linear spectral unmixing. Icarus 272, 1631.Google Scholar
Zolensky, M. E., & Barrett, R. (1992) Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. Meteoritics 27, 312.Google Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C., & Mittlefehldt, D. W. (1996) Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon, Meteoritics & Planetary Science 31, 518537.Google Scholar

References

Ammannito, E., De Sanctis, M. C., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Beran, A. (2002) Infrared spectroscopy of micas. Reviews in Mineralogy and Geochemistry, 46, 351369.Google Scholar
Berg, B. L., Cloutis, E. A., Beck, P., et al. (2016) Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids. Icarus, 265, 218237.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of Asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Bishop, J. L., Banin, A., Mancinelli, R. L., & Klovstad, M. R. (2002) Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: A potential tool for planetary surface exploration. Planetary and Space Science, 50, 11.Google Scholar
Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 3554.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 320, 110118.Google Scholar
Bowling, T. J., Johnson, B. C., Marchi, S., et al. (2020) An endogenic origin of cerean organics. Earth and Planetary Science Letters, 534, 116069.Google Scholar
Brown, M. E., & Rhoden, A. R. (2014) The 3 μm spectrum of Jupiter’s irregular satellite Himalia. The Astrophysical Journal, 793, L44.Google Scholar
Buczkowski, D. L., Schmidt, B. E., Williams, D. A., et al. (2016) The geomorphology of Ceres. Science, 353, aaf4332.Google Scholar
Bus, S. J., & Binzel, R. P. (2002a) Phase II of the small main-belt asteroid spectroscopic survey. The observations. Icarus, 158, 106.Google Scholar
Bus, S. J., & Binzel, R. P. (2002b) Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.Google Scholar
Carrozzo, F. G., Raponi, A., De Sanctis, M. C., et al. (2016) Artifacts reduction in VIR/Dawn data. Review of Scientific Instruments, 87, 124501.Google Scholar
Castillo-Rogez, J. C., Neveu, M., McSween, H. Y., et al. (2018). Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 1820.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Chapman, C. R., & Gaffey, M. J. (1979) Reflectance spectra for 277 asteroids. In Gehrels, T., & Matthews, M. S. (eds.), Asteroids. Tucson: University of Arizona Press, pp. 655687.Google Scholar
Chapman, C. R., McCord, T. B., & Johnson, T. V. (1973) Asteroid spectral reflectivities. The Astronomical Journal, 78, 126140.Google Scholar
Chapman, C. R., & Salisbury, J. W. (1973) Comparisons of meteorite and asteroid spectral reflectivities. Icarus, 19, 507522.Google Scholar
Ciarniello, M., De Sanctis, M. C., Ammannito, E., et al. (2017). Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy and Astrophysics, 598, A130.Google Scholar
Clark, B. E., Hapke, B., Pieters, C., & Britt, D. (2002) Asteroid space weathering and regolith evolution. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 585599.Google Scholar
Combe, J.-P., McCord, T. B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Combe, J.-P., Raponi, A., Tosi, F., et al. (2019) Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. Icarus, 318, 2241.Google Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. F., & Brown, R. H. (1991) Three basaltic earth-approaching asteroids and the source of the basaltic meteorites. Icarus, 89, 113.Google Scholar
De Angelis, S., Ferrari, M., De Sanctis, M. C., et al. (2021) High-temperature VIS-IR spectroscopy of NH4-phyllosilicates. Journal of Geophysical Research: Planets, 126, e2020JE006696Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, F. G., et al. (2018) Ceres’s global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritics & Planetary Science, 53, 1844.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
De Sanctis, M. C., Vinogradoff, V., Raponi, A., et al. (2019) Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. Monthly Notices of the Royal Astronomical Society, 482, 24072421.Google Scholar
dos Santos, R., Patel, M., Cuadros, J., & Martins, Z. (2016) Influence of mineralogy on the preservation of amino acids under simulated Mars conditions. Icarus, 277, 342.Google Scholar
Ehlmann, B. L., Hodyss, R., Bristow, T. F., et al. (2018) Ambient and cold-temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other Solar System bodies. Meteoritics & Planetary Science, 53, 1884.Google Scholar
Farinella, P., Gonczi, R., Froeschle, C., & Froeschle, C. (1993) The injection of asteroid fragments into resonances. Icarus, 101, 174187.Google Scholar
Farmer, V. C. (1974) The layer silicates. In Farmer, V. C. (ed.), The Infrared Spectra of Minerals, Monograph 4. London: Mineralogical Society, pp. 331363.Google Scholar
Ferrari, M., De Angelis, S., De Sanctis, M. C., et al. (2019) Reflectance spectroscopy of ammonium-bearing phyllosilicates. Presented at EPSC-DPS Joint Meeting 2019, September 15–20, Geneva, id. EPSC-DPS2019–1864.Google Scholar
Formisano, M., Federico, C., De Sanctis, M. C., et al. (2018) Thermal stability of water ice in Ceres’ craters: The case of Juling crater. Journal of Geophysical Research (Planets), 123, 24452463.Google Scholar
Frigeri, A., De Sanctis, M. C., Ammannito, E., et al. (2019) The spectral parameter maps of Ceres from NASA/DAWN VIR data. Icarus, 318, 1421.Google Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Greenberg, J. M., Li, A., Mendoza-Gomez, C. X., et al. (1995) Approaching the interstellar grain organic refractory component. The Astrophysical Journal, 455, L177.Google Scholar
Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy. New York: Cambridge University Press.Google Scholar
Hapke, B. (2012) Theory of Reflectance and Emittance Spectroscopy, 2nd ed. New York: Cambridge University Press.Google Scholar
Hendrix, A. R., Vilas, F., & Li, J.-Y. (2016) Ceres: Sulfur deposits and graphitized carbon. Geophysical Research Letters, 43, 8920.Google Scholar
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587.Google Scholar
Hoyle, F., Wickramasinghe, N. C., Al-Mufti, S., Olavesen, A. H., & Wickramasinghe, D. T. (1982) Infrared spectroscopy over the 2.9–3.9 μm waveband in biochemistry and astronomy. Astrophysics and Space Science, 83, 405409.Google Scholar
Kaplan, H. H., Milliken, R. E., & Alexander, C. M. O’D. (2018) New constraints on the abundance and composition of organic matter on Ceres. Geophysical Research Letters, 45, 52745282.Google Scholar
King, T. V. V., & Clark, R. N. (1989) Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. Journal of Geophysical Research, 94, 1399714008.Google Scholar
King, T. V. V., Clark, R. N., Calvin, W. M., Sherman, D. M., & Brown, R. H. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.Google Scholar
Krohn, M. D. (1987) Near-infrared detection of ammonium minerals. Geophysics, 52, 924.Google Scholar
Landis, M. E., Byrne, S., Combe, J.-P., et al. (2019) Water vapor contribution to Ceres’ exosphere from observed surface ice and postulated ice-exposing impacts. Journal of Geophysical Research: Planets, 124, 6175.Google Scholar
Larson, H. P., Feierberg, M. A., Fink, U., & Smith, H. A. (1979) Remote spectroscopic identification of carbonaceous chondrite mineralogies: Applications to Ceres and Pallas. Icarus, 39, 257271.Google Scholar
Lazzaro, D., Ferraz-Mello, S., & Fernández, J. A. (eds.) (2006) Asteroids, Comets, Meteors, IAU Symposium. New York: Cambridge University Press.Google Scholar
Le Guillou, C., Bernard, S., Brearley, A. J., & Remusat, L. (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta, 131, 368.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., Larson, H. P., & Johnson, J. R. (1981) The 1.7- to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Li, J.-Y., McFadden, L. A., Parker, J. W., et al. (2006) Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 182, 143160.Google Scholar
Li, J.-Y., Reddy, V., Nathues, A., et al. (2016) Surface albedo and spectral variability of Ceres. The Astrophysical Journal, 817, L22.Google Scholar
Li, J.-Y., Schröder, S. E., Mottola, S., et al. (2019) Spectrophotometric modeling and mapping of Ceres. Icarus, 322, 144167.Google Scholar
Licandro, J., Campins, H., Kelley, M., et al. (2011) (65) Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy and Astrophysics, 525, A34.Google Scholar
Longobardo, A., Palomba, E., Carrozzo, F. G., et al. (2019a) Mineralogy of the Occator quadrangle. Icarus, 318, 205211.Google Scholar
Longobardo, A., Palomba, E., Galiano, A., et al. (2019b) Photometry of Ceres and Occator faculae as inferred from VIR/Dawn data. Icarus, 320, 97109.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
McCollom, T. M., & Seewald, J. S. (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chemical Reviews, 107, 382401.Google Scholar
McCord, T. B., & Castillo-Rogez, J. C. (2018) Ceres’s internal evolution: The view after Dawn. Meteoritics & Planetary Science, 53, 17781792.Google Scholar
McCord, T. B., & Zambon, F. (2019) The surface composition of Ceres from the Dawn mission. Icarus, 318, 2.Google Scholar
Mennella, V., Baratta, G. A., Esposito, A., Ferini, G., & Pendleton, Y. J. (2003) The effects of ion irradiation on the evolution of the carrier of the 3.4 micron interstellar absorption band. The Astrophysical Journal, 587, 727.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Moroz, L. V., Arnold, G., Korochantsev, A. V., & Wäsch, R. (1998) Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens. Icarus, 134, 253268.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2017). Evolution of Occator crater on (1) Ceres. The Astronomical Journal, 153, 112.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2019) Occator crater in color at highest spatial resolution. Icarus, 320, 2438.Google Scholar
Neesemann, A., van Gasselt, S., Schmedemann, N., et al. (2019) The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus, 320, 6082.Google Scholar
Orthous-Daunay, F.-R., Quirico, E., Beck, P., et al. (2013) Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus, 223, 534543.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M. C., et al. (2019) Compositional differences among bright spots on the Ceres surface. Icarus, 320, 202212.Google Scholar
Parker, J. W., Stern, S. A., Thomas, P. C., et al. (2002) Analysis of the first disk-resolved images of Ceres from ultraviolet observations with the Hubble Space Telescope. The Astronomical Journal, 123, 549.Google Scholar
Pearson, V. K., Sephton, M. A., Kearsley, A. T., et al. (2002) Clay mineral-organic matter relationships in the early Solar System. Meteoritics & Planetary Science, 37, 18291833.Google Scholar
Pendleton, Y. J., & Allamandola, L. J. (2002) The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints. The Astrophysical Journal Supplement Series, 138, 7598.Google Scholar
Pieters, C. M., Nathues, A., Thangjam, G., et al. (2018) Geologic constraints on the origin of red organic-rich material on Ceres. Meteoritics & Planetary Science, 53, 19831998.Google Scholar
Pieters, C. M., & Noble, S. K. (2016) Space weathering on airless bodies. Journal of Geophysical Research (Planets), 121, 1865.Google Scholar
Poch, O., Istiqomah, I., Quirico, E., et al. (2020) Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science, 367, aaw7462.Google Scholar
Poch, O., Jaber, M., Stalport, F., et al. (2015) Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions. Astrobiology, 15, 221.Google Scholar
Postberg, F., Kempf, S., Schmidt, J., et al. (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474, 620622.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raponi, A., Carrozzo, F. G., Zambon, F., et al. (2019a) Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres. Icarus, 318, 99110.Google Scholar
Raponi, A., Ciarniello, M., Capaccioni, F., et al. (2020) Infrared detection of aliphatic organics on a cometary nucleus. Nature Astronomy, 4, 500.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019b) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raponi, A., De Sanctis, M. C., Frigeri, A., et al. (2018) Variations in the amount of water ice on Ceres’ surface suggest a seasonal water cycle. Science Advances, 4, eaao3757.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020). Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Rivkin, A. S., & Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 1322.Google Scholar
Rivkin, A. S., Li, J.-Y., Milliken, R. E., et al. (2011) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Roatsch, T., Kersten, E., Matz, K.-D., et al. (2016) Ceres survey atlas derived from Dawn Framing Camera images. Planetary and Space Science, 121, 115120.Google Scholar
Roettger, E. E., & Buratti, B. J. (1994) Ultraviolet spectra and geometric albedos of 45 asteroids. Icarus, 112, 496.Google Scholar
Rousseau, B., De Sanctis, M. C., Raponi, A., et al. (2020) Correction of the VIR-visible dataset from the Dawn mission at Vesta. Review of Scientific Instruments, 91, 123102.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Schröder, S. E., Mottola, S., Carsenty, U., et al. (2017) Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 288, 201225.Google Scholar
Schulte, M., & Shock, E. (2004) Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteoritics & Planetary Science, 39, 15771590.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2019) The formation and evolution of bright spots on Ceres. Icarus, 320, 188201.Google Scholar
Takir, D., & Emery, J. P. (2012) Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.Google Scholar
Takir, D., Emery, J. P., McSween, H. Y., et al. (2013) Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteoritics & Planetary Science, 48, 16181637.Google Scholar
Tosi, F., Carrozzo, F. G., Zambon, F., et al. (2019) Mineralogical analysis of the Ac-H-6 Haulani quadrangle of the dwarf planet Ceres. Icarus, 318, 170187.Google Scholar
Vernazza, P., Mothé-Diniz, T., Barucci, M. A., et al. (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy and Astrophysics, 436, 11131121.Google Scholar
Vinogradoff, V., Bernard, S., Le Guillou, C., & Remusat, L. (2018) Evolution of interstellar organic compounds under asteroidal hydrothermal conditions. Icarus, 305, 358370.Google Scholar
Vinogradoff, V., Le Guillou, C., Bernard, S., et al. (2017) Paris vs. Murchison: Impact of hydrothermal alteration on organic matter in CM chondrites. Geochimica et Cosmochimica Acta, 212, 234.Google Scholar
Vu, T. H., Hodyss, R., Johnson, P. V., & Choukroun, M. (2017) Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines – Implications for Ceres’ bright spots. Planetary and Space Science, 141, 7377.Google Scholar
Waite, Jr., J. H., Lewis, W. S., Magee, B. A., et al. (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460, 487490.Google Scholar
Williams, D. A., Buczkowski, D. L., Mest, S. C., et al. (2018) Introduction: The geologic mapping of Ceres. Icarus, 316, 113.Google Scholar
Williams, L. B., Canfield, B., Voglesonger, K. M., & Holloway, J. R. (2005) Organic molecules formed in a “primordial womb”. Geology, 33, 913916.Google Scholar
Zambon, F., Raponi, A., Tosi, F., et al. (2017) Spectral analysis of Ahuna Mons from Dawn mission’s visible-infrared spectrometer. Geophysical Research Letters, 44, 97104.Google Scholar
Zolotov, M. Y. (2007) An oceanic composition on early and today’s Enceladus. Geophysical Research Letters, 34, L23203.Google Scholar
Zolotov, M. Y., & Shock, E. L. (2001) Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 3281532827.Google Scholar

References

Alexander, C. M. O’d., Bowden, R., Fogel, M. L., et al. (2012) The provenances of asteroids, and their contributions to the volatile inventory of the terrestrial planets. Science, 337, 721723.Google Scholar
Alexander, C. M. O’d., Bowden, R., Fogel, M. L., & Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.Google Scholar
Alexander, C. M. O’d., Cody, G. D., Kebukawa, Y., et al. (2014) Elemental, isotopic, and structural changes in Tagish Lake insoluble organic matter produced by parent body processes. Meteoritics & Planetary Science, 49, 503525.Google Scholar
Anders, E., & Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.Google Scholar
Armitage, P. J. (2020) Astrophysics of Planet Formation. Cambridge: Cambridge University PressGoogle Scholar
Bally, J., O’Dell, C. R., & McCaughrean, M. J. (2000) Disks, microjets, windblown bubbles, and outflows in the Orion nebula. The Astronomical Journal, 119, 29192959.Google Scholar
Beck, P., Eschrig, J., Potin, S., et al. (2021) “Water” abundance at the surface of C-complex main-belt asteroids. Icarus, 357, 114125.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538.Google Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. (2009) Why aqueous alteration in asteroids was isochemical: High porosity≠high permeability. Earth and Planetary Science Letters, 287, 559568.Google Scholar
Bland, P. A., & Travis, B. J. (2017) Giant convecting mud balls of the early Solar System. Science Advances, 3, e1602514.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 320, 110118.Google Scholar
Bowling, T. J., Johnson, B. C., Marchi, S., et al. (2020) An endogenic origin of cerean organics. Earth and Planetary Science Letters, 534, 116069.Google Scholar
Brandt, J. C. (2014) Physics and chemistry of comets. In Spohn, T., Breuer, D., & Johnson, T. (eds.), Encyclopedia of the Solar System, 3rd ed. Amsterdam: Elsevier, pp. 683703.Google Scholar
Brasser, R., & Mojzsis, S. J. (2020) The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 4, 492499.Google Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711.Google Scholar
Bu, C., Rodriguez Lopez, G., Dukes, C. A., et al. (2019) Stability of hydrated carbonates on Ceres. Icarus, 320, 136149.Google Scholar
Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E. (2010) Detection of C60 and C70 in a young planetary nebula. Science, 329, 1180.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.Google Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo-Rogez, J. C., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Chan, Q. H. S., Zolensky, M. E., Bodnar, R. J., Farley, C., & Cheung, J. C. H. (2017) Investigation of organo-carbonate associations in carbonaceous chondrites by Raman spectroscopy. Geochimica et Cosmochimica Acta, 201, 392409.Google Scholar
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., et al. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 4, eaao3521.Google Scholar
Charnley, S. B. (1994) Chemistry of star‐forming cores. AIP Conference Proceedings, 312, 155159.Google Scholar
Cronin, J. R., & Chang, S. (1993) Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite. In Greenberg, J. M., Mendoza-Gómez, C. X., & Pirronello, V. (eds.), The Chemistry of Life’s Origins Dordrecht: Springer Netherlands, pp. 209258.Google Scholar
Daly, R. T., & Schultz, P. H. (2015) Predictions for impactor contamination on Ceres based on hypervelocity impact experiments. Geophysical Research Letters, 42, 78907898.Google Scholar
De Leuw, S., Rubin, A. E., & Wasson, J. T. (2010) Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites. Meteoritics & Planetary Science, 45, 513530.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
De Sanctis, M. C., Vinogradoff, V., Raponi, A., et al. (2018) Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. Monthly Notices of the Royal Astronomical Society, 482, 24072421.Google Scholar
Duprat, J., Dobrică, E., Engrand, C., et al. (2010) Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow. Science, 328, 742.Google Scholar
Ehrenfreund, P., & Charnley, S. B. (2000) Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annual Review of Astronomy and Astrophysics, 38, 427483.Google Scholar
Endreß, M., & Bischoff, A. (1996) Carbonates in CI chondrites: Clues to parent body evolution. Geochimica et Cosmochimica Acta, 60, 489507.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research: Planets, 122, 22672293.Google Scholar
Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., & Jacobsen, C. (2003) The origin of organic matter in the Solar System: evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta, 67, 47914806.Google Scholar
Fomenkova, M. N., Chang, S., & Mukhin, L. M. (1994) Carbonaceous components in the comet Halley dust. Geochimica et Cosmochimica Acta, 58, 45034512.Google Scholar
Fray, N., Bardyn, A., Cottin, H., et al. (2016) High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature, 538, 7274.Google Scholar
Fu, R. R., Ermakov, A. I., Marchi, S., et al. (2017) The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.Google Scholar
Garvie, L. A. J., & Buseck, P. R. (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites. Meteoritics & Planetary Science, 42, 21112117.Google Scholar
Grimm, R. E., & McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653.Google Scholar
Hasegawa, T. I., Herbst, E., & Leung, C. M. (1992) Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. The Astrophysical Journal Supplement Series, 82, 167195.Google Scholar
Hendrix, A. R., Vilas, F., & Li, J.-Y. (2016a) Ceres: Sulfur deposits and graphitized carbon. Geophysical Research Letters, 43, 89208927.Google Scholar
Hendrix, A. R., Vilas, F., & Li, J.-Y. (2016b) The UV signature of carbon in the Solar System. Meteoritics & Planetary Science, 51, 105115.Google Scholar
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587600.Google Scholar
Jessberger, E. K., Christoforidis, A., & Kissel, J. (1988) Aspects of the major element composition of Halley’s dust. Nature, 332, 691695.Google Scholar
Kaplan, H. H., & Milliken, R. E. (2016) Reflectance spectroscopy for organic detection and quantification in clay-bearing samples: Effects of albedo, clay type, and water content. Clays and Clay Minerals, 64, 167184.Google Scholar
Kaplan, H. H., Milliken, R. E., & Alexander, C. M. O. D. (2018) New constraints on the abundance and composition of organic matter on Ceres. Geophysical Research Letters, 45, 52745282.Google Scholar
Kaplan, H. H., Milliken, R. E., Alexander, C. M. O. D., & Herd, C. D. K. (2019) Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous meteorites. Meteoritics & Planetary Science, 54, 10511068.Google Scholar
Kebukawa, Y., Ito, M., Zolensky, M. E., et al. (2019) A novel organic-rich meteoritic clast from the outer Solar System. Scientific Reports, 9, 3169.Google Scholar
Kretke, K. A., Bottke, W. F., Levinson, H. F., & Kring, D. A. (2017) Mixing of the asteroid belt due to the formation of the giant planets. Accrection: Building New Worlds, LPI Topical Conference, August 15–18, Lunar and Planetary Institute, Houston, TX, #2027.Google Scholar
Kurokawa, H., Ehlmann, B. L., De Sanctis, M. C., et al. (2020) A probabilistic approach to determination of Ceres’ average surface composition from Dawn VIR and GRaND data. Journal of Geophysical Research: Planets, n/a, e2020JE006606.Google Scholar
Le Guillou, C., Bernard, S., Brearley, A. J., & Remusat, L. (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta, 131, 368392.Google Scholar
Lodders, K., & Fegley, B. Jr. (1998) The Planetary Scientist’s Companion. Oxford: Oxford University Press on Demand.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2017) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Nuth, J. A., Johnson, N. M., & Manning, S. (2008) A self-perpetuating catalyst for the production of complex organic molecules in protostellar nebulae. Proceedings of the International Astronomical Union, 4, 403408.Google Scholar
Pieters, C. M., Nathues, A., Thangjam, G., et al. (2018) Geologic constraints on the origin of red organic-rich material on Ceres. Meteoritics & Planetary Science, 53, 19831998.Google Scholar
Pizzarello, S., Davidowski, S. K., Holland, G. P., & Williams, L. B. (2013) Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. Proceedings of the National Academy of Sciences (USA), 110, 15614.Google Scholar
Prettyman, T. H., Englert, P. A. J., & Yamashita, N. (2019a) Neutron, gamma-ray, and X-ray spectroscopy: Theory and applications. In Bishop, J. L., Bell, J. F., & Moersch, J.E. (eds.), Remote Compositional Analysis. Cambridge: Cambridge University Press, pp. 191238.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y. Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2019b) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T. H., Yamashita, N., & McSween, H. Y. (2018) Carbon on Ceres: Implications for origins and interior evolution. 49th Lunar and Planetary Science Conference, March 19–23, The Woodlands, TX, #1151.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2021) Organic material on Ceres: Insights from visible and infrared space observations. Life, 11, 9.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Raymond, S. N., & Izidoro, A. (2017) Origin of water in the inner solar system: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus, 297, 134148.Google Scholar
Riebe, M. E. I., Foustoukos, D. I., Alexander, C. M. O. D., et al. (2020) The effects of atmospheric entry heating on organic matter in interplanetary dust particles and micrometeorites. Earth and Planetary Science Letters, 540, 116266.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Rubin, A. E., Zolensky, M. E., & Bodnar, R. J. (2002) The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body. Meteoritics & Planetary Science, 37, 125141.Google Scholar
Ruesch, O., Genova, A., Neumann, W., et al. (2019) Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 12, 505509.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L., & Lewis, R. S. (1998) A stellar origin for the short-lived nuclides in the early solar system. Nature, 391, 559561.Google Scholar
Schulte, M., & Shock, E. (2004) Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteoritics & Planetary Science, 39, 15771590.Google Scholar
Scott, E. R. D., Krot, A. N., & Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. The Astrophysical Journal, 854, 164.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Sephton, M. A. (2002) Organic compounds in carbonaceous meteorites. Natural Product Reports, 19, 292311.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Thomas, K. L., Blanford, G. E., Keller, L. P., Klöck, W., & McKay, D. S. (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta, 57, 15511566.Google Scholar
Travis, B. J., Bland, P. A., Feldman, W. C., & Sykes, M. V. (2018) Hydrothermal dynamics in a CM-based model of Ceres. Meteoritics & Planetary Science, 53, 20082032.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. The Astronomical Journal, 152, 39.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Weisberg, M. K., McCoy, T. J., & Krot, A. N. (2006) Systematics and evaluation of meteorite classification. In Lauretta, D. S., & McSween, H. Y. Jr. (eds.), Meteorites and the Early Solar System II. Tucson: University of Arizona Press, pp. 1952.Google Scholar
Zolensky, M. E., Mittlefehldt, D. W., Lipschutz, M. E., et al. (1997) CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta, 61, 50995115.Google Scholar
Zolotov, M. Y. (2017) Aqueous origins of bright salt deposits on Ceres. Icarus, 296, 289304.Google Scholar

References

Ammannito, E., DeSanctis, M. C., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Bauer, J. M., Roush, R. L., Geballe, T. R., et al. (2002) The near-infrared spectrum of Miranda. Icarus, 158, 178190.Google Scholar
Berg, B. L., Cloutis, E. A., Beck, P., et al. (2016) Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroid. Icarus, 265, 218237.Google Scholar
Bishop, J. L., Banina, A., Mancinelli, R. L., & Klovstad, M. R. (2002) Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: A potential tool for planetary surface exploration. Planetary and Space Science, 50, 1119.Google Scholar
Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 3554.Google Scholar
Brown, M. E., & Calvin, W. M. (2000) Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science, 287, 107109.Google Scholar
Brown, M. E., Schaller, E. L., & Fraser, W. C. (2011) A hypothesis for the color diversity of the Kuiper Belt. Astrophysics Journal Letters, 739, L60L64.Google Scholar
Bruno, T. J., & Svoronos, P. D. N. (1989) CRC Handbook of Basic Tables for Chemical Analysis. Boca Raton, FL: CRC Press.Google Scholar
Busigny, V., Cartigny, P., Philippot, P., & Javoy, M. (2003) Ammonium quantification in muscovite by infrared spectroscopy. Chemical Geology, 198, 2131.Google Scholar
Callahan, M. P., Smith, K., Cleaves, H., et al. (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Acadamy of Sciences (USA), 108, 1399513998.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.Google Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo-Rogez, J., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Ciarniello, M., De Sanctis, M. C., Ammannito, E., et al. (2017) Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy & Astrophysics, 598, A130.Google Scholar
Chourabi, B., & Fripiat, J. J. (1981). Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays and Clay Minerals, 29, 260268.Google Scholar
Dalle Ore, C. M., Cruikshank, D. P., Protopapa, S. et al. (2019) Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism. Science Advances, 5, eaav5731.Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, F. G., et al. (2018) Ceres’s global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritics & Planetary Science, 53, 18441865.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M. C., Frigeri, A., Ammannito, E., et al. (2019) Ac-H-11 Sintana and Ac-H-12 Toharu quadrangles: Assessing the large and small scale heterogeneities of Ceres’ surface. Icarus, 318, 230240.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 14.Google Scholar
Dodson-Robinson, S. E., Willacy, K., Bodenheimer, P., Turner, N. J., & Beichman, C. A. (2009) Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus, 200, 672693.Google Scholar
Ehlmann, B. L., Hodyss, R., Bristow, T. F., et al. (2018) Ambient and cold-temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other Solar System bodies. Meteoritics & Planetary Science, 53, 18841901.Google Scholar
Farmer, V. C., & Russell, J. D. (1967) Infrared absorption spectrometry in clay studies. Clays and Clay Minerals, 15, 121142.Google Scholar
Ferrari, M., De Angelis, S., De Sanctis, M. C., et al. (2019) Reflectance spectroscopy of ammonium-bearing phyllosilicates. Icarus, 321, 522530.Google Scholar
Fox, V. K., Kupper, R. J., Ehlmann, B. L., et al. (2021) Synthesis and characterization of Fe(III)-Fe(II)-Mg-Al smectite solid solutions and implications for planetary science. American Mineralogist, 106, 964982.Google Scholar
Fu, R. R., Ermakov, A. I., Marchi, S., et al. (2017) The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.Google Scholar
Honma, H. (1996) High ammonium contents in the 3800 Ma Isua supracrustal rocks, central West Greenland. Geochimica et Cosmochimica Acta, 60, 21732178.Google Scholar
Itihara, Y., & Honma, H. (1979) Ammonium in biotite from metamorphic and granitic rocks of Japan. Geochimica et Cosmochimica Acta, 43, 503509.Google Scholar
Jewitt, D. C., & Luu, J. (2004) Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature, 432, 731733.Google Scholar
Kargel, J. S. (1992) Ammonia-water volcanism on icy satellites: Phase relations at 1 atmosphere. Icarus, 100, 556574.Google Scholar
King, T. V. V., Clark, R. N., Calvin, W. M., Sherman, D. M., & Brown, R. H. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.Google Scholar
Krohn, M. D., & Altaner, S. P. (1987) Near infrared detection of ammonium minerals. Geophysics, 52, 924930.Google Scholar
Kurokawa, H., Ehlmann, B. L., De Sanctis, M. C., (2020) A probabilistic approach to determination of Ceres’ average surface composition from Dawn visible-infrared mapping spectrometer and gamma ray and neutron detector data. Journal of Geophysical Research: Planets, 125, e06606.Google Scholar
Lebofsky, L. (1978) Asteroid 1 Ceres: Evidence for water of hydration. Monthly Notices of the Royal Astronomical Society, 182, 17P-21P.Google Scholar
Lebofsky, L., Feierberg, M., Tokunaga, A., Larson, H., & Johnson, J. (1981) The 1.7–4.2 μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Li, J.-Y., Reddy, V., Nathues, A., et al. (2016) Surface albedo and spectral variability of Ceres. The Astrophysical Journal Letters, 817, L22.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
Matson, D. L., Castillo, J. C., Lunine, J., & Johnson, T. V. (2007) Enceladus’ plume: Compositional evidence for a hot interior. Icarus, 187, 569573.Google Scholar
McCord, T., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research, 110, E05009.Google Scholar
McKinnon, W. B. (2008) Could Ceres be a refugee from the Kuiper Belt? Asteroids, Comets, Meteors Conference, July 14–18, Baltimore, MD, No 1405, abstract #8389.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Mookherjee, M., Redfern, S. A. T., Zhang, M., & Harlov, D. E. (2002) Orientational order–disorder of N(D,H)4+ in tobelite. American Mineralogist, 87, 16861691.Google Scholar
Neesemann, A., van Gasselt, S., Schmedemann, N., et al. (2019) The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus, 320, 6082.Google Scholar
Papineau, D., Mojzsis, S. J., Karhu, J. A., & Marty, B. (2005) Nitrogen isotopic composition of ammoniated phyllosilicates: Case studies from precambrian metamorphosed sedimentary rocks. Chemical Geology, 216, 3758.Google Scholar
Pizzarello, S., & Williams, L. B. (2012) Ammonia in the early Solar System: An account from carbonaceous meteorites. The Astrophysical Journal, 749, 161.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Reddy, V., Li, J.-Y., Gary, B. L., et al. (2015) Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters. Icarus, 260, 332345.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Rivkin, A. S., Howell, E. S., & Emery, J. P. (2019) Infrared spectroscopy of large, low‐albedo asteroids: Are Ceres and Themis archetypes or outliers? Journal of Geophysical Research: Planets, 124, 13931409.Google Scholar
Robinson, J. W. (1974) CRC Handbook of Spectroscopy. Boca Raton, FL: CRC Press.Google Scholar
Rognini, E., Capria, M. T., Tosi, F., et al. (2020) High thermal inertia zones on Ceres from Dawn data. Journal of Geophysical Research: Planets, 125, e05733.Google Scholar
Russell, C. T., & Raymond, C. A. (2011) The Dawn mission to Vesta and Ceres. Space Science Reviews 163, 323.Google Scholar
Schenk, P., Scully, J., Buczkowski, D., et al. (2020) Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. Nature Communications, 11, 3679.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991) Spectrometric Identification of Organic Compounds, 5th ed. New York: Wiley.Google Scholar
Srasra, E., Bergaya, F., & Fripiat, J. J. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite‐smectite clay. Clays and Clay Minerals, 42, 237241.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2019) The formation and evolution of bright spots on Ceres. Icarus, 320, 188201.Google Scholar
Stephan, K., Jaumann, R., Zambon, F., et al. (2019) Ceres’ impact craters – Relationships between surface composition and geology. Icarus, 318, 5674.Google Scholar
Takir, D., & Emery, J. P. (2012) Outer Main Belt asteroids: Identification and distribution of four 3-mm spectral groups. Icarus, 219, 641654.Google Scholar
Thomas, E. C., Vu, T. H., Hodyss, R., et al. (2019) Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots. Icarus, 320, 150158.Google Scholar
Usui, F., Hasegawa, S., Ootsubo, T., & Onaka, T. (2019) AKARI/IRC near-infrared asteroid spectroscopic survey: AcuA-spec. Publications: Astronomical Society of Japan, 71.Google Scholar
Vedder, T. V. (1965) Ammonium in muscovite. Geochimica et Cosmochimica Acta, 29, 221228.Google Scholar
Vernazza, P., Mothé-Diniz, T., Barucci, M. A., et al. (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy and Astrophysics, 436, 11131121.Google Scholar
Vu, T. H., Hodyss, R., Johnson, P. V., & Choukroun, M. (2017) Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines – Implications for Ceres’ bright spots. Planetary and Space Science, 141, 7377.Google Scholar
Waite, J. H., Jr., Lewis, W. S., Magee, B. A., et al. (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460, 487490.Google Scholar
Zolotov, M. Y. (2017) Aqueous origins of bright salt deposits on Ceres. Icarus, 296, 289304.Google Scholar

References

Ammannito, E., De Sanctis, M. C., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Bland, M. T. (2013) Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 226, 510521.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538542.Google Scholar
Bland, M. T., Sizemore, H. G., Buczkowski, D. L., et al. (2018) Why is Ceres lumpy? Surface deformation induced by solid-state subsurface flow. 49th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #1627.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 320, 110118.Google Scholar
Boyce, J., Wilson, L., Mouginis-Mark, P. J., Hamilton, C. W., & Tornabene, L. L. (2012) Origin of small pits in martian impact craters. Icarus, 221, 262275.Google Scholar
Buczkowski, D. L., Schmidt, B. E., Williams, D. A., et al. (2016) The geomorphology of Ceres. Science, 353.Google Scholar
Buczkowski, D. L., Scully, J. E. C., Quick, L., et al. (2019) Tectonic analysis of fracturing associated with Occator crater. Icarus, 320, 4959.Google Scholar
Buczkowski, D. L., Sizemore, H. G., Bland, M. T., et al. (2018) Floor-fractured craters on Ceres and implications for interior processes. Journal of Geophysical Research, 123, 31883204.Google Scholar
Buczkowski, D. L., Williams, D. A., Scully, J. E. C., et al. (2017) The geology of the Occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism, Icarus, 316, 128139.Google Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Chamberlain, M. A., Sykes, M. V., & Esquerdo, G. A. (2007) Ceres lightcurve analysis – Period determination. Icarus, 188, 451456.Google Scholar
Chilton, H. T., Schmidt, B. E., Duarte, K., et al. (2019) Landslides on Ceres: Inferences into ice content and layering in the upper crust. Journal of Geophysical Research, 124, 15121524.Google Scholar
Combe, J.-Ph., McCord, T. B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Combe, J.-Ph., Raponi, A., Zambon, F., et al. (2019) Exposed H2O-rich areas detected on Ceres with the Dawn visible and infrared mapping spectrometer. Icarus, 318, 2241.Google Scholar
Crown, D. A., Sizemore, H. G., Yingst, R. A., et al. (2018) Geologic mapping of the Urvara and Yalode Qudrangles of Ceres. Icarus, 316, 167190.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, F. G., et al. (2018) Ceres’ global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritic & Planetary Science, 53, 18441865.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H., et al. (2017) Localized aliphatic organic material on the Surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Duarte, K., Schmidt, B. E., Chilton, H., et al. (2019) Landslides on Ceres: Diversity and geologic context. Journal of Geophysical Research, 124, 33293343.Google Scholar
Frigeri, A., Schmedemann, N., Williams, D. A., et al. (2018) The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin. Icarus, 316, 114127.Google Scholar
Greeley, R. (2013) Introduction to Planetary Geomorphology. New York: Cambridge University Press.Google Scholar
Hendrix, A. R., Hurford, T. A., Barge, L. M., et al. (2019) The NASA roadmap to ocean worlds. Astrobiology, 19, 1.Google Scholar
Hesse, M. A., & Castillo-Rogez, J. C. (2018) Thermal evolution of the impact-induced cryomagma chamber beneath Occator crater on Ceres. Geophysical Research Letters, 46, 12131221.Google Scholar
Hiesinger, H., Marchi, S., Schmedemann, N., et al. (2016) Cratering on Ceres: Implications for its crust and evolution. Science, 353, 4759.Google Scholar
Hughson, K., Russell, C. T., Schmidt, B. E., et al. (2019) Fluidized appearing ejecta on Ceres: Implications for the mechanical properties, frictional properties, and composition of its shallow subsurface. Journal of Geophysical Research, 124, 18191839.Google Scholar
Hughson, K., Russell, C. T., Williams, D. A., et al. (2018) The Ac-H-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus, 316, 6383.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jaumann, R., Preusker, F., Krohn, K., et al. (2017) Topography and geomorphology of the interior of Occator crater on Ceres. 48th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #1440.Google Scholar
Jones, K.B., Head, J., Pappalardo, R. T., & Moore, J. M. (2003) Morphology and origin of palimpsests on Ganymede from Galileo observations. Icarus, 164, 197212.Google Scholar
Krohn, K., Jaumann, R., Otto, K. A., et al. (2018) The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. Icarus, 316, 8498.Google Scholar
Krohn, K., Jaumann, R., Stephan, K., et al. (2016) Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism on dwarf planet Ceres. Geophysical Research Letters, 43, 1199412003.Google Scholar
Lebofsky, L. A., Sykes, M. V., Tedesco, E. F., et al. (1986) A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus, 68, 239251.Google Scholar
Li, J.-Y., Mcfadden, L. A., Parker, J. W., et al. (2006) Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 182, 143160.Google Scholar
Marchi, S., Ermakov, A., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690693.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., Castillo-Rogez, J. C., & Rivkin, A. (2011) Ceres: Its origin, evolution and structure and Dawn’s potential contribution. Space Science Reviews, 163, 6376.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research, 110, E05009.Google Scholar
Mest, S. C., Crown, D. A., Berman, D. C., et al. (2018) The HAMO-based global geologic map and chronostratigraphy of Ceres. 49th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #2730.Google Scholar
Michalak, G. (2000) Determination of asteroid masses – I. (1) Ceres, (2) Pallas and (4) Vesta. Astronomy & Astrophysics, 360, 363374.Google Scholar
Millis, R. L., Wasserman, L. H., Franz, O. G., et al. (1987) The size, shape, density, and albedo of Ceres from its occultation of BD+8°471. Icarus, 72, 507518.Google Scholar
Mitchell, D. L., Ostro, S. J., Hudson, R. S., et al. (1996) Radar observations of asteroids 1 Ceres, 2 Pallas, and 4 Vesta. Icarus, 124, 113133.Google Scholar
Nathues, A., Hoffmann, M., Platz, T., et al. (2016) FC color images of dwarf planet Ceres reveal a complicated geological history. Planetary and Space Science, 134, 122127.Google Scholar
Nathues, A., Platz, T., Hoffmann, M., et al. (2017a) Oxo crater on (1) Ceres: Geological history and the role of water-ice. Astronomical Journal, 154, 8496.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2017b) Evolution of Occator crater on (1) Ceres. Astronomical Journal, 153,112123.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2019) Occator crater in color at highest spatial resolution. Icarus, 320, 2438.Google Scholar
Nathues, A., Schmedemann, N., Thangjam, G., et al. (2020) Recent cryovolcanic activity at Occator crater on Ceres. Nature Astronomy, 4, 794801.Google Scholar
Neesemann, A., van Gesselt, S., Schmedemann, N., et al. (2019) The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus, 320, 6082.Google Scholar
Ostro, S. J., Pettengill, G. H., Shapiro, I. I., Campbell, D. B., & Green, R. R. (1979) Radar observations of asteroid 1 Ceres. Icarus, 40, 355358.Google Scholar
Otto, K. A., Marchi, S., Trowbridge, A., Melosh, H. J., & Sizemore, H. G. (2019) Ceres crater degradation inferred from concentric fracturing. Journal of Geophysical Research: Planets, 124, 11881203.Google Scholar
Park, R. S., Vaughan, A. T., Konopliv, A. S., et al. (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn imaging data. Icarus, 319, 812827.Google Scholar
Pasckert, J. H., Hiesinger, H., Ruesch, O., et al. (2018) Geologic mapping of the Ac-2 Coniraya Quadrangle of Ceres from NASA’s Dawn Mission: Implications for a heterogeneously composed crust. Icarus, 316, 2845.Google Scholar
Pitjeva, E. V., & Standish, E. M. (2009) Proposals for the masses of the three largest asteroids, the Moon–Earth mass ratio and the astronomical unit. Celestial Mechanics & Dynamical Astronomy, 103, 365372.Google Scholar
Platz, T., Natheus, A., Sizemore, H. G., et al. (2018) Geological mapping of the Ac-10 Rongo Quadrangle of Ceres. Icarus, 316, 140153.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. (2016) Dawn at Ceres – Shape model and rotational state. 47th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #1954.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019) Mineralogy of Occator crater on Ceres and insight into evolution from the properties carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raponi, A., De Sanctis, M. C., Frigeri, A., et al. (2018) Variations in the amount of water ice on Ceres’ surface suggest a seasonal water cycle. Science Advances, 4, eaao3757.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747,Google Scholar
Rivkin, A. S., Li, J.-Y., Milliken, R. E., et al. (2011) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, Volume 353.Google Scholar
Ruesch, O., Quick, L., Landis, M. E., et al. (2019) Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus, 320, 3948.Google Scholar
Ruiz, J., Jiménez-Díaz, A., Mansilla, F., et al. (2019) Evidence of thrust faulting and widespread contraction of Ceres. Nature Astronomy, 3, 916921.Google Scholar
Russell, C. T., & Raymond, C. A. (2011) The Dawn mission to Vesta and Ceres. Space Science Reviews, 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, C. A., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanet paradigm. Science, 336, 684686.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694697.Google Scholar
Schenk, P., Scully, J., Buczkowski, D., et al. (2020) Impact-driven brine-melt, volatile distribution, and brine effusion in crater floor deposits on a transitional ice-salt-silicate-rich dwarf planet at Occator crater, Ceres. Nature Commications, 11, 3679.Google Scholar
Schenk, P., Sizemore, H. G., Schmidt, B., et al. (2019) The central pit and dome at Cerealia Facula bright deposit and floor deposits in Occator crater, Ceres: Morphology, comparisons and formation. Icarus, 320, 159187.Google Scholar
Schmedemann, N., Kneissl, T., Neesemann, A., et al. (2016) Timing of optical maturation of recently exposed material on Ceres. Geophysical Research Letters, 43, 1198711993.Google Scholar
Schmidt, B. E., Hughson, K. H. G., Chilton, H. T., et al. (2017) Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 10, 338343.Google Scholar
Schmidt, B. E., Sizemore, H. G., Hughson, K. H. G., et al. (2020) Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’ Occator crater. Nature Geoscience, 13, 605610.Google Scholar
Schröder, S. E., Mottola, S., Carsenty, U., et al. (2017) Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 288, 201225.Google Scholar
Scully, J. E. C., Bowling, T., Bu, , C., et al. (2019a) Synthesis of the special issue: The formation and evolution of Occator crater. Icarus, 320, 213225.Google Scholar
Scully, J. E. C., Buczkowski, D. L., Raymond, C. A., et al. (2019b) Ceres’ Occator crater and its faculae explored through geologic mapping. Icarus, 320, 723.Google Scholar
Scully, J. E. C., Buczkowski, D. L., Schmedemann, N., et al. (2017) Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44, 95649572.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater, emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263328.Google Scholar
Sizemore, H. G., Platz, T., Prettyman, T. H., et al. (2017) Pitted terrain on dwarf planet Ceres: Morphological evidence for shallow volatiles at low and mid latitudes. Geophysical Research Letters, 44, 65706578.Google Scholar
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., et al. (2019) A global inventory of ice-related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere. Journal of Geophysical Research, 124, 16501689.Google Scholar
Sori, M. M., Byrne, S., Bland, M. T., et al. (2017) The vanishing cryovolcanoes of Ceres. Geophysical Research Letters, 44, 12431250,Google Scholar
Spencer, J. R., Lebofsky, L. A., & Sykes, M. V. (1989) Systematic biases in radiometric diameter determinations. Icarus, 78, 337354.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2019) The formation and evolution of bright spots on Ceres. Icarus, 320, 188201.Google Scholar
Stephan, K., Jaumann, R., Krohn, K., et al. (2017) An investigation of the bluish material on Ceres. Geophysical Research Letters, 44, 16601668.Google Scholar
Stephan, K., Jaumann, R., Wagner, R., et al. (2018) Dantu’s mineralogical properties – A view into the composition of Ceres’ crust. Meteoritics & Planetary Science, 53, 18661883.Google Scholar
Stephan, K., Jaumann, R., Zambon, F., et al. (2019) Ceres’ craters – relationships between surface composition and geology. Icarus, 318, 5674.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997a) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 14921495.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997b) Vesta: Spin pole, size and shape from HST images, Icarus, 128, 8894.Google Scholar
Thomas, P. C., Parker, J. W., McFadden, L. A., et al. (2005) Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Tornabene, L., Osinski, G. R., McEwen, A. S., et al. (2012) Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 220, 348368.Google Scholar
Viateau, B., & Rapport, N. (2001) Mass and density of asteroids (4) Vesta and (11) Parthenope. Astronomy & Astrophysics, 370, 602609.Google Scholar
Williams, D. A., Buczkowski, D. L., Mest, S. C., et al. (2018a) Introduction: The geological mapping of Ceres. Icarus, 316, 113.Google Scholar
Williams, D. A., Kneissl, T., Neesemann, A., et al. (2018b) The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres’ oldest impact basin. Icarus, 316, 99113.Google Scholar
Zolotov, M. Y. (2009) On the composition and differentiation of Ceres. Icarus, 204, 183193.Google Scholar

References

Alexander, C. M. O’D., Bowden, R., Fogel, M. L., & Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.Google Scholar
Allen, D. E., & Seyfried, W. E. Jr. (2004) Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68, 13471354.Google Scholar
Anderson, J. D., Jacobson, R. A., McElrath, T. P., et al. (2001) Shape, mean radius, gravity field and interior structure of Callisto. Icarus, 153, 157161.Google Scholar
Benedix, G. K., Leshin, L. A., Jackson, T., & Thiemens, M. H. (2003) Carbonates in CM2 chondrites: Constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochimica et Cosmochimica Acta, 67, 15771588.Google Scholar
Bland, P. A., Collins, G. S., Davison, T. M., et al. (2014) Pressure-temperature evolution of primordial Solar System solids during impact-induced compaction. Nature Communications, 5, 54515451.Google Scholar
Bland, P. A., Howard, L. E., Prior, D. J., et al. (2011) Earliest rock fabric formed in the Solar System preserved in a chondrule rim. Nature Geoscience, 4, 244247.Google Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. (2009) Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559568.Google Scholar
Bland, P. A., & Travis, B. J. (2017) Giant convecting mud balls of the early Solar System. Science Advances, 3, e1602514.Google Scholar
Blum, J. (2004) Grain growth and coagulation. In Witt, A. N., Clayton, G. C., & Draine, B. T. (eds.), Astrophysics of Dust. San Francisco, CA: Astronomical Society of the Pacific, pp. 369391.Google Scholar
Blum, J., & Schrapler, R. (2004) Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Physical Review Letters, 93: 115503-1–115503-4.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on Asteroid 1 Ceres. Icarus, 320.Google Scholar
Brearley, A. J. (2003) Nebular versus parent body processing. in Davis, A. M. (ed.), Treatise on Geochemistry, Vol. 1. Amsterdam: Elsevier, pp. 247268.Google Scholar
Brearley, A. J. (2006) The action of water. In Lauretta, D. S., & McSween, H. Y. Jr. (eds.), Meteorites and the Early Solar System II (pp. 587624). Tucson: University of Arizona Press.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.s.Google Scholar
Castillo-Rogez, J. C. (2011) Ceres – Neither a porous nor salty ball. Icarus, 215, 599602.Google Scholar
Castillo-Rogez, J. C., Hesse, M., Formisano, M., et al. (2019) Conditions for the long‐term preservation of a deep brine Rreservoir in Ceres. Geophysical Research Letters, 46, 19631972.Google Scholar
Castillo-Rogez, J. C., & Lunine, J. I. (2010) Evolution of Titan’s rocky core constrained by Cassini observations. Geophysical Research Letters, 37, L20205.Google Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo-Rogez, J. C., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’ evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Castillo-Rogez, J. C., & Schmidt, B. E. (2010) Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.Google Scholar
Castillo-Rogez, J. C., & Young, E. D. (2016) Origin and evolution of volatile-rich planetesimals. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimal Differentiation. Cambridge: Cambridge University Press, pp. 92114.Google Scholar
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., et al. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 4, eaao3521.Google Scholar
Choblet, G., Tobie, G., Sotin, C., et al. (2017) Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy, 1, 841847.Google Scholar
Choukroun, M., Kieffer, S., Lu, X., & Tobie, G. (2013) Clathrate hydrates: Implication for exchange processes in the outer Solar System. In Gudipati, S. M., & Castillo-Rogez, J. C. (eds.), Science of Solar System Ices, 3rd ed. (Astrophysics and Space Science Library, 356, pp. 409454). New York: Springer.Google Scholar
Clauser, C., & Huenges, E. (1995) Thermal conductivity of rocks and minerals. In Ahrens, T. J. (ed.), Rock Physics & Phase Relations. Washington, DC: American Geophysical Union.Google Scholar
Clayton, R. N., & Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
De Sanctis, M. C., Ammanito, E., Raponi, E., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Recent emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
Desch, S. J., Kalyaan, A., & Alexender, C. M. O’D. (2018) The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. The Astrophysical Journal Supplement Series, 238, 11.Google Scholar
Dullien, F. A. L. (1992) Porous Media, Fluid Transport and Pore Structure, 2nd ed. Cambridge, MA: Academic Press.Google Scholar
Durham, W. B., Prieto-Ballesteros, O., Goldsby, D. L., & Kargel, J. S. (2010) Rheological and thermal properties of icy materials. Space Science Reviews, 153, 273298.Google Scholar
Dyl, K. A., Manning, C. E., & Young, E. D. (2010) The implications of cronstedtite formation in water-rich planetesimals and asteroids. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, April 2010, League City, TX. LPI Contrib. 1538, #5627.Google Scholar
El-Dessouky, H. T., & Ettouney, H. M. (2002) Fundamentals of Salt Water Desalination. Amsterdam: Elsevier Science B.V.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research: Planets, 122, 22672293.Google Scholar
Formisano, M., Federico, C., Castillo-Rogez, J., De Sanctis, M. C., & Magni, G. (2020) Thermal convection in the crust of the dwarf planet Ceres. Monthly Notices of the Royal Astronomical Society, 494, 57045712.Google Scholar
Fu, R., Ermakov, E., Marchi, S., et al. (2017) Interior structure of the dwarf planet Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.Google Scholar
Fujiya, W., Sugiura, N., Marrocchi, Y., et al. (2015) Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite. Geochimica et Cosmochimica Acta, 70, 101117.Google Scholar
Gao, P., & Stevenson, D. J. (2013) Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus, 226, 11851191.Google Scholar
Glein, C. R., Desch, S. J., & Shock, E. L. (2009) The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen. Icarus, 204, 637644.Google Scholar
Gounelle, M., & Zolensky, M. E. (2001) A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science, 36, 13211329.Google Scholar
Guo, W., & Eiler, J. M. (2007) Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.Google Scholar
Hendrix, A. R., Hurford, T. A., Barge, L. M., et al. (2019) The NASA roadmap to ocean worlds. Astrobiology, 19.Google Scholar
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587600.Google Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., & Cressey, G. (2009) Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica et Cosmochimica Acta, 73, 45764589.Google Scholar
Hsieh, H. H. (2012) Main-belt comets as tracers of ice in the inner Solar System. Proceedings of the International Astronomical Union 8, Issue S293 (Formation, Detection, and Characterization of Extrasolar Habitable Planets), 212–218.Google Scholar
Hussmann, H., Sohl, F., & Spohn, T. (2006) Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus, 185, 258273.Google Scholar
Iess, L., Stevenson, D. J., Parisi, M., et al. (2014) The gravity field and interior structure of Enceladus. Science, 344, 7880.Google Scholar
Jogo, K., Nakamura, T., Ito, M., et al. (2017) Mn-Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta, 199, 5874.Google Scholar
Kamata, S., Nimmo, F., Sekine, Y., et al. (2019) Pluto’s ocean is capped and insulated by gas hydrates. Nature Geoscience, 12, 407410.Google Scholar
Keil, K. (2000) Thermal alteration of asteroids: Evidence from meteorites. Planetary and Space Science, 48, 887903.Google Scholar
King, S. D., Castillo-Rogez, J. C., Toplis, M. J., et al. (2018) Ceres internal structure from geophysical constraints. Meteoritics & Planetary Science, 53, 19992007.Google Scholar
Kivelson, M. G., Khurana, K. K., & Volwerk, M. (2002) The permanent and inductive magnetic moments of Ganymede. Icarus, 157, 507522.Google Scholar
Kranck, K. (1973) Flocculation of suspended sediment in the sea. Nature, 246, 348350.Google Scholar
Le Guillou, C., Bernard, S., Brearley, A. J., & Remusat, L. (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta, 131, 368392.Google Scholar
Lee, M. R., Lindgren, P., & Sofe, M. R. (2014) Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration. Geochimica et Cosmochimica Acta, 144, 126156.Google Scholar
Leshin, L. A., Rubin, A. E., & McKeegan, K. D. (1997) The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta, 61, 835845.Google Scholar
Lodders, K., Palme, H., & Gail, H. P. (2009) Abundances of elements in the Solar System, in Trumper, J. E. (ed.), Landolt-Bornstein, New Series, Astronomy and Astrophysics. Berlin: Springer Verlag.Google Scholar
Macke, R. J., Consolmagno, G. J., & Britt, D. T. (2011) Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteoritics & Planetary Science, 46, 18421862.Google Scholar
Maiorca, E., Uitenbroek, H., Uttenthaler, S., et al. (2014) A new solar fluorine abundance and a fluorine determination in the two open clusters M67 and NGC 6404. The Astrophysical Journal, 788, 149.Google Scholar
Mao, X., & McKinnon, W. B. (2018) Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres’ present-day shape and gravity. Icarus, 299, 430442.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
Marsset, M., Brož, M., Vernazza, P., et al. (2020) The violent collisional history of aqueously evolved (2) Pallas. Nature Astronomy, 4, 569576.Google Scholar
Marsset, M., Vernazza, P., Birlan, M., et al. (2016) Compositional characterization of the Themis family. Astronomy & Astrophysics, 586, id.A15.Google Scholar
Marzari, F., Davis, D., & Vanzani, V. (1995) Collisional evolution of asteroid families. Icarus, 113, 168187.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research, 110, EO5009EO5014.Google Scholar
McKinnon, W. B., & Zolensky, M. E. (2003) Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 879897.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrite analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Mueller, S., & McKinnon, W. B. (1989) Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution. Icarus, 76, 437464.Google Scholar
Néri, A., Guyot, F., Reynard, B., & Sotin, C. (2019) A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth and Planetary Science Letters, 530, id. 115920.Google Scholar
Neumann, W., Jaumann, R., Castillo-Rogez, J. C., Raymond, C. A., & Russell, C. T. (2020) Ceres’ partial differentiation: Undifferentiated crust mixing with a water-rich mantle. Astronomy and Astrophysics, 633, A117.Google Scholar
Neveu, M., & Desch, S. J. (2015) Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy mantle. Geophysical Research Letters, 42, 10,19710,206.Google Scholar
Neveu, M., Desch, S.J., & Castillo-Rogez, J. C. (2015) Core cracking and hydrothermal circulation can profoundly affect Ceres’ geophysical evolution. Journal of Geophysical Research, 120, 123154.Google Scholar
Neveu, M., Desch, S. J., & Castillo-Rogez, J. C. (2017) Aqueous geochemistry in icy world interiors: Fate of antifreezes and radionuclides. Cosmochimica et Geochimica Acta, 212, 324371.Google Scholar
Neveu, M., & Vernazza, P. (2019) IDP-like asteroids formed later than 5 Myr after Ca-Al-rich inclusions. The Astrophysical Journal, 875, id. 30.Google Scholar
Ormel, C. W., Cuzzi, J. N., & Tielens, A. G. G. M. (2008) Co-accretion of chondrules and dust in the solar nebula. The Astrophysical Journal, 679, 15881610.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M. C., et al. (2019) Compositional differences among Bright Spots on the Ceres surface. Icarus, 320, 202212.Google Scholar
Park, R. S., Konopliv, A. S., Ermakov, A. I., et al. (2020) Evidence of non-uniform crust of Ceres from Dawn’s high-resolution gravity data. Nature Astronomy, 4, 748755.Google Scholar
Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. (2011) A salt-water reservoir as a source of compositionally stratified plume on Enceladus. Nature, 474, 620622.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2018) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Raponi, M. C., De Sanctis, F. G., Carrozzo, M., et al. (2019) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raymond, C. A., Castillo-Rogez, I., Ermakov, S., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Rivkin, A. S., & Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Rivkin, A. S., Howell, E. S., & Emery, J. P. (2019) Infrared spectroscopy of large, low-albedo asteroids: Are Ceres and Themis archetypes or outliers? Journal of Geophysical Research, 124, 13931409.Google Scholar
Roberts, J. H. (2015) The flully core of Enceladus. Icarus, 258, 5466.Google Scholar
Rubin, A. E., Zolensky, M. E., & Bodnar, R. J. (2002) The halite‐bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H‐chondrite parent body. Meteoritics & Planetary Science, 37, 125141.Google Scholar
Ruesch, O., Genova, A., Neumann, W., et al. (2019) Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 12, 505509.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Santibanez, P. A., Michaud, A. B., Vick-Majors, T. J., et al. (2019) Differential incorporation of bacteria, organic matter, and inorganic ions into lake ice during ice formation. Journal of Geophysical Research – Biogeosciences, 124, 585600.Google Scholar
Sasso, M. R., Macke, R. J., Boesenberg, J. S., et al. (2009) Incompletely compacted equilibrated ordinary chondrites. Meteoritics & Planetary Science, 44, 17431753.Google Scholar
Schenk, P. M. (2002) Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes. Nature, 417, 419421.Google Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochimica et Cosmochimica Acta, 75, 308325.Google Scholar
Scott, H. P., Williams, Q., & Ryerson, F. J. (2002) Experimental constraints on the chemical evolution of icy satellites. Earth and Planetary Science Letters, 203, 399412.Google Scholar
Scully, J. E. C., Schenk, P. M., Buczkowski, D. L., et al. (2020) Formation of the bright faculae in Ceres’ Occator crater via long-lived brine effusion in a hydrothermal system. Nature Communications, 11, 3680.Google Scholar
Sheppard, S. S., & Trujillo, C. (2015) Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the Main Belt. Astronomy Journal, 149, id. 44.Google Scholar
Sirono, S.-I. (2013) Differentiation of silicates from H2O ice in an icy body induced by ripening. Earth, Planets and Space, 65, 15631568.Google Scholar
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., et al. (2019) A global inventory of ice‐related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere. Journal of Geophysical Research, 124, 16501689.Google Scholar
Sleep, N. H., Meibom, A., Fridriksson, Th., Coleman, R. G., & Bird, D. K. (2004) H2-rich fluids from serpentinization: Geochemical and biotic implications. Proceedings of the National Academy of Sciences (USA), 101, 1281812823.Google Scholar
Stein, N. T., Ehlmann, B. L., Bland, M., Castillo-Rogez, J., & Stevenson, D. (2019) The formation and timing of near-surface Na-carbonate deposits on Ceres. Europlanet Science Congress, 13, EPSC-DPS2019–1194-1.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2017) The formation and evolution of bright spots on Ceres, Icarus, 320, 188201.Google Scholar
Tosi, F., Carrozzo, F. G., Raponi, A., et al. (2018) Mineralogy and temperature of crater Haulani on Ceres. Meteoritics & Planetary Science, 53, 19021924.Google Scholar
Travis, B. J., Bland, P. A., Feldman, W. C., & Sykes, M. (2018) Hydrothermal dynamics in a CM-based model of Ceres. Meteoritics & Planetary Science, 53, 20082032.Google Scholar
Travis, B. J., & Schubert, G. (2015) Keeping Enceladus warm. Icarus, 250, 3242.Google Scholar
Vance, S. E., Harnmeijer, J., Kimura, J., et al. (2007) Hydrothermal systems in small ocean planets. Astrobiology, 7, 9871005.Google Scholar
Vance, S. E., & Melwani Daswani, M. (2020) Serpentinite and the search for life beyond Earth. Philosophical Transactions of the Royal Society A, 378, 20180421.Google Scholar
Vernazza, P., Brož, M., Drouard, A., et al. (2018) The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astronomy & Astrophysics, 618, id.A154.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Vernazza, P., Jorda, L., Ševeček, P., et al. (2019) A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy, 4, 136141.Google Scholar
Young, E. D., Ash, R. D., England, P. & Rumble, D. (1999) Fluid flow in chondritic parent bodies: Deciphering the composition of planetesimals. Science, 286, 13311335.Google Scholar
Young, E. D., Zhang, K. K., & Schubert, G. (2003) Conditions for water pore convection within carbonaceous chondrite parent bodies – Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249259.Google Scholar
Zambon, F., Raponi, A., Tosi, F., et al. (2017) Spectral analysis of Ahuna Mons mission’s visible-infrared spectrometer. Geophysical Research Letters, 44, 97104.Google Scholar
Ziffer, J., Campins, H., Licandro, J., et al. (2011) Near-infrared spectroscopy of primitive asteroid families. Icarus, 213, 538546.Google Scholar
Zimmer, C., Khurana, K. K., & Kivelson, M. G. (2000) Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus, 147, 329347.Google Scholar
Zolensky, M. E., Bourcier, W. L., & Gooding, J. L. (1989) Aqueous alteration on the hydrous asteroids – Results of EQ3/6 computer simulations. Icarus, 78, 411425.Google Scholar
Zolotov, M. Y. (2014) Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres. Icarus, 228, 1326.Google Scholar
Zolotov, M. Y. (2020) The composition and structure of Ceres’ interior. Icarus, 335, 113404.Google Scholar
Zolotov, M. Y., & Shock, E. L. (2001) Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 3281532827.Google Scholar

References

Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Bangerth, W., Hartmann, R., & Kanschat, G. (2007) Deal. II – a general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software (TOMS), 33, 24-es.Google Scholar
Barrat, J. A., Yamaguchi, A., Zanda, B., Bollinger, C., & Bohn, M. (2010) Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites. Geochimica et Cosmochimica Acta, 74, 62186231.Google Scholar
Beck, A. W., & McSween, H. Y. Jr (2010) Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.Google Scholar
Beuthe, M., Rivoldini, A., & Trinh, A. (2016) Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophysical Research Letters, 43, 10088.Google Scholar
Bills, B. G., & Ermakov, A. I. (2019) Simple models of error spectra for planetary gravitational potentials as obtained from a variety of measurement configurations. Planetary and Space Science, 179, 104744.Google Scholar
Bills, B. G., & Scott, B. R. (2017) Secular obliquity variations of Ceres and Pallas. Icarus, 284, 5969.Google Scholar
Bills, B. G., Asmar, S. W., Konopliv, A. S., Park, R. S., & Raymond, C. A. (2014) Harmonic and statistical analyses of the gravity and topography of Vesta. Icarus, 240, 161173.Google Scholar
Bland, M. T. (2013) Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 226, 510521.Google Scholar
Bland, M. T., Ermakov, A. I., Raymond, C. A., et al. (2018) Morphological indicators of a mascon beneath Ceres’s largest crater, Kerwan. Geophysical Research Letters, 45, 12971304.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538542.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M., et al. (2014) The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.Google Scholar
Čadek, O., Souček, O., & Běhounková, M. (2019) Is Airy isostasy applicable to icy moons? Geophysical Research Letters, 46, 1429914306.Google Scholar
Carry, B., Dumas, C., Fulchignoni, M., et al. (2008) Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astronomy & Astrophysics, 478, 235244.Google Scholar
Castillo-Rogez, J. C., Matson, D. L., Sotin, C., et al. (2007) Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 190, 179202.Google Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo‐Rogez, J., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Chamberlain, M. A., Sykes, M. V., & Esquerdo, G. A. (2007) Ceres lightcurve analysis – Period determination. Icarus, 188, 451456.Google Scholar
Clenet, H., Jutzi, M., Barrat, J. A., et al. (2014) A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. (2015) Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
Dermott, S. F. (1979) Shapes and gravitational moments of satellites and asteroids. Icarus, 37, 575586.Google Scholar
Dobrovolskis, A. R., & Burns, J. A. (1984) Angular momentum drain: A mechanism for despinning asteroids. Icarus, 57, 464476.Google Scholar
Dobson, D. P., Crichton, W. A., Vocadlo, L., et al. (2000) In situ measurement of viscosity of liquids in the Fe–FeS system at high pressures and temperatures. American Mineralogist, 85, 18381842.Google Scholar
Durante, D., Hemingway, D. J., Racioppa, P., Iess, L., & Stevenson, D. J. (2019) Titan’s gravity field and interior structure after Cassini. Icarus, 326, 123132.Google Scholar
Ermakov, A. I. (2017) Geophysical Investigation of Vesta, Ceres and the Moon Using Gravity and Topography Data. Doctoral dissertation, Massachusetts Institute of Technology.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo‐Rogez, J. C., et al. (2017a) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research: Planets, 122, 22672293.Google Scholar
Ermakov, A. I., Mazarico, E., Schröder, S. E., et al. (2017b) Ceres’s obliquity history and its implications for the permanently shadowed regions. Geophysical Research Letters, 44, 26522661.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the onset of differentiation. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Freed, A. M., Johnson, B. C., Blair, D. M., et al. (2014). The formation of lunar mascon basins from impact to contemporary form. Journal of Geophysical Research: Planets, 119, 23782397.Google Scholar
Fu, R. R., Ermakov, A. I., Marchi, S., et al. (2017) The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.Google Scholar
Fu, R. R., Hager, B. H., Ermakov, A. I., & Zuber, M. T. (2014) Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133145.Google Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 238241.Google Scholar
Gaskell, R. W. (2012) SPC shape and topography of Vesta from DAWN imaging data. AAS/Division for Planetary Sciences Meeting Abstracts, # 44 (Vol. 44), October, Reno, NV.Google Scholar
Ghosh, A., & McSween, H. Y. Jr (1998) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Hemingway, D., Nimmo, F., Zebker, H., & Iess, L. (2013) A rigid and weathered ice shell on Titan. Nature, 500, 550552.Google Scholar
Hesse, M. A., & Castillo‐Rogez, J. C. (2019) Thermal evolution of the impact‐induced cryomagma chamber beneath Occator crater on Ceres. Geophysical Research Letters, 46, 12131221.Google Scholar
Hiesinger, H., Marchi, S., Schmedemann, N., et al. (2016) Cratering on Ceres: Implications for its crust and evolution. Science, 353, aaf4759.Google Scholar
Hirth, G., & Kohlstedt, D. L. (1996) Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93108.Google Scholar
Hughson, K. H., Russell, C. T., Schmidt, B. E., et al. (2019) Normal faults on Ceres: Insights into the mechanical properties and thermal history of Nar Sulcus. Geophysical Research Letters, 46, 8088.Google Scholar
Ivanov, B. A., & Melosh, H. J. (2013) Two‐dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical Research: Planets, 118, 15451557.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Johnson, T. V., & McGetchin, T. R. (1973) Topography on satellite surfaces and the shape of asteroids. Icarus, 18, 612620.Google Scholar
Jutzi, M., & Asphaug, E. (2011) Mega‐ejecta on asteroid Vesta. Geophysical Research Letters, 38, 15.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J. A., & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Keane, J. T., & Ermakov, A. I. (2019) No evidence for true polar wander of Ceres. Nature Geoscience, 12, 972974.Google Scholar
King, S. D., Castillo‐Rogez, J. C., Toplis, M. J., et al. (2018) Ceres internal structure from geophysical constraints. Meteoritics & Planetary Science, 53, 19992007.Google Scholar
Konopliv, A. S., Asmar, S. W., Bills, B. G., et al. (2011a) The Dawn gravity investigation at Vesta and Ceres. Space Science Reviews, 163, 461486.Google Scholar
Konopliv, A. S., Asmar, S. W., Folkner, W. M., et al. (2011b) Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus, 211, 401428.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.Google Scholar
Konopliv, A. S., Park, R. S., & Ermakov, A. I. (2020) The Mercury gravity field, orientation, love number, and ephemeris from the MESSENGER radiometric tracking data. Icarus, 335, 113386.Google Scholar
Konopliv, A. S., Park, R. S., Vaughan, A. T., et al. (2018) The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 299, 411429.Google Scholar
Kovačević, A., & Kuzmanoski, M. (2007) A new determination of the mass of (1) Ceres. Earth, Moon, and Planets, 100, 117123.Google Scholar
Lebofsky, L. A. (1978) Asteroid 1 Ceres: Evidence for water of hydration. Monthly Notices of the Royal Astronomical Society, 182, 17P21P.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., Larson, H. P., & Johnson, J. R. (1981) The 1.7-to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Li, S., & Milliken, R. E. (2015) Estimating the modal mineralogy of eucrite and diogenite meteorites using visible–near infrared reflectance spectroscopy. Meteoritics & Planetary Science, 50, 18211850.Google Scholar
Lichtenberg, T., Golabek, G. J., Gerya, T. V., & Meyer, M. R. (2016). The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus, 274, 350365.Google Scholar
Mandler, B. E., & Elkins‐Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Mao, X., & McKinnon, W. B. (2018a) Effect of impacts on Ceres’ spin evolution. Lunar and Planetary Science Conference (Vol. 49). The Woodlands, TX.Google Scholar
Mao, X., & McKinnon, W. B. (2018b) Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres’ present-day shape and gravity. Icarus, 299, 430442.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research: Planets, 110, 114.Google Scholar
McSweenJr, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013) Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
Melosh, H. J. (2011) Planetary Surface Processes. Cambridge: Cambridge University Press.Google Scholar
Melosh, H. J., Freed, A. M., Johnson, B. C., et al. (2013) The origin of lunar mascon basins. Science, 340, 15521555.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Moore, W. B., & Webb, A. A. G. (2013) Heat-pipe earth. Nature, 501, 501505.Google Scholar
Morbidelli, A., & Nesvorny, D. (2019) Kuiper belt: formation and evolution. In Prialnik, D., Barucci, M. A., & Young, L. (eds.), The Trans-Neptunian Solar System. Amsterdam: Elsevier, p. 25.Google Scholar
Muller, P. M., & Sjogren, W. L. (1968) Mascons: Lunar mass concentrations. Science, 161, 680684.Google Scholar
Nathues, A., Schmedemann, N., Thangjam, G., et al. (2020) Recent cryovolcanic activity at Occator crater on Ceres. Nature Astronomy, 4, 794801.Google Scholar
Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. (2019) Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 3, 808812.Google Scholar
Neumann, G. A., Zuber, M. T., Smith, D. E., & Lemoine, F. G. (1996) The lunar crust: Global structure and signature of major basins. Journal of Geophysical Research: Planets, 101, 1684116863.Google Scholar
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., et al. (2004) Crustal structure of Mars from gravity and topography. Journal of Geophysical Research: Planets, 109, 118.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Neumann, W., Jaumann, R., Castillo-Rogez, J., Raymond, C. A., & Russell, C. T. (2020) Ceres’ partial differentiation: Undifferentiated crust mixing with a water-rich mantle. Astronomy & Astrophysics, 633, A117.Google Scholar
Neveu, M., & Desch, S. J. (2015) Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophysical Research Letters, 42, 10197.Google Scholar
O’Brien, D. P., & Sykes, M. V. (2011) The origin and evolution of the asteroid belt – Implications for Vesta and Ceres. Space Science Reviews, 163, 4161.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Park, R. S., Konopliv, A. S., Bills, B. G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.Google Scholar
Park, R. S., Konopliv, A. S., Ermakov, A. I., et al. (2020) Evidence of non-uniform crust of Ceres from Dawn’s high-resolution gravity data. Nature Astronomy, 4, 748755.Google Scholar
Park, R. S., Vaughan, A. T., Konopliv, A. S., et al. (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus, 319, 812827.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Preusker, F., Scholten, F., Matz, K. D., et al. (2016). Dawn at Ceres – Shape model and rotational state. Lunar and Planetary Science Conference, March, The Woodlands, TX, Vol. 47, Abstract 1954.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia Dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Raymond, C. A., Jaumann, R., Nathues, A., et al. (2011) The Dawn topography investigation. In Russell, C. T., & Raymond, C. A. (eds.), The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. New York: Springer, pp. 487510.Google Scholar
Raymond, C. A., Park, R. S., Asmar, S. W., et al. (2013) Vestalia Terra: An ancient mascon in the southern hemisphere of Vesta. Lunar and Planetary Science Conference, March, The Woodlands, TX, Vol. 44, Abstract 2882.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321339.Google Scholar
Righter, K., & Drake, M. J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Ruesch, O., Genova, A., Neumann, W., et al. (2019) Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 12, 505509.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M. C., et al. (2014) Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research: Planets, 119, 20782108.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Scott, E. R., Greenwood, R. C., Franchi, I. A., & Sanders, I. S. (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.Google Scholar
Scully, J. E., Buczkowski, D. L., Schmedemann, N., et al. (2017) Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44, 95649572.Google Scholar
Scully, J. E., Yin, A., Russell, C. T., et al. (2014) Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta. Icarus, 244, 2340.Google Scholar
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., et al. (2019) A global inventory of ice‐related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere. Journal of Geophysical Research: Planets, 124, 16501689.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., et al. (2012) Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Sterenborg, M. G., & Crowley, J. W. (2013) Thermal evolution of early Solar System planetesimals and the possibility of sustained dynamos. Physics of the Earth and Planetary Interiors, 214, 5373.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble space telescope results. Science, 277, 14921495.Google Scholar
Thomas, P. C., Parker, J. W., McFadden, L. A., et al. (2005) Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Tkalcec, B. J., Golabek, G. J., & Brenker, F. E. (2013) Solid-state plastic deformation in the dynamic interior of a differentiated asteroid. Nature Geoscience, 6, 9397.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Travis, B. J., Bland, P. A., Feldman, W. C., & Sykes, M. V. (2018) Hydrothermal dynamics in a CM‐based model of Ceres. Meteoritics & Planetary Science, 53, 20082032.Google Scholar
Tricarico, P. (2013) Global gravity inversion of bodies with arbitrary shape. Geophysical Journal International, 195, 260275.Google Scholar
Tricarico, P. (2014) Multi-layer hydrostatic equilibrium of planets and synchronous moons: Theory and application to Ceres and to Solar System moons. The Astrophysical Journal, 782, 99.Google Scholar
Tricarico, P. (2018) True polar wander of Ceres due to heterogeneous crustal density. Nature Geoscience, 11, 819824.Google Scholar
Vaillant, T., Laskar, J., Rambaux, N., & Gastineau, M. (2019) Long-term orbital and rotational motions of Ceres and Vesta. Astronomy & Astrophysics, 622, A95.Google Scholar
Watts, A. B. (2001) Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.Google Scholar
Wieczorek, M. A. (2015) Gravity and topography of the terrestrial planets. Treatise on Geophysics, 10, 165206.Google Scholar
Wilson, L., & Keil, K. (2012) Volcanic activity on differentiated asteroids: A review and analysis. Geochemistry, 72, 289321.Google Scholar
Zharkov, V. N., & Trubitsyn, V. P. (1978) Physics of Planetary Interiors. Astronomy and Astrophysics Series. Tucson, AZ: Pachart Pub House.Google Scholar
Zolotov, M. Y. (2009) On the composition and differentiation of Ceres. Icarus, 204, 183193.Google Scholar
Zolotov, M. Y. (2020) The composition and structure of Ceres’ interior. Icarus, 335, 113404.Google Scholar
Zuber, M. T., McSween, H. Y., Binzel, R. P., et al. (2011) Origin, internal structure and evolution of 4 Vesta. Space Science Reviews, 163, 7793.Google Scholar
Zuber, M. T., Smith, D. E., Neumann, G. A., et al. (2016) Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 354, 438441.Google Scholar
Zuber, M. T., Smith, D. E., Watkins, M. M., et al. (2013) Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science, 339, 668671.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×