Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T02:27:31.929Z Has data issue: false hasContentIssue false

23 - Disorder, Synchronization, and Phase-locking in Nonequilibrium Bose-Einstein Condensates

from Part IV - Condensates in Condensed Matter Physics

Published online by Cambridge University Press:  18 May 2017

P. R. Eastham
Affiliation:
School of Physics and CRANN, Trinity College Dublin
B. Rosenow
Affiliation:
Institut für Theoretische Physik, Universität Leipzig
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Leggett, A. J. 2001. Bose-Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys., 73, 307–356.Google Scholar
[2] Fisher, M. P. A., Weichman, P. B., Grinstein, G., and Fisher, D. S. 1989. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40, 546–570.Google Scholar
[3] Pikovsky, A., Rosenblum, M., and Kurths, J. 2001. Synchronization. Cambridge, UK: Cambridge University Press.
[4] Keeling, J., and Berloff, N. G. 2008. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett., 100, 250401.Google Scholar
[5] Siegman, A. E. 1986. Lasers. Oxford, UK: Oxford University Press.
[6] Wouters, M., and Carusotto, I. 2007. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett., 99, 140402.Google Scholar
[7] Love, A. P. D., Krizhanovskii, D. N., Whittaker, D. M., Bouchekioua, R., Sanvitto, D., Rizeiqi, S. Al, Bradley, R., Skolnick, M. S., Eastham, P. R., André, R., and Dang, Le Si. 2008. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett., 101, 067404.Google Scholar
[8] Racine, D., and Eastham, P. R. 2014. Quantum theory of multimode polariton condensation. Phys. Rev. B, 90, 085308.Google Scholar
[9] Wouters, M., and Savona, V. 2009. Stochastic classical field model for polariton condensates. Phys. Rev. B, 79, 165302.Google Scholar
[10] Read, D., Rubo, Y. G., and Kavokin, A. V. 2010. Josephson coupling of Bose-Einstein condensates of exciton–polaritons in semiconductor microcavities. Phys. Rev. B, 81, 235315.Google Scholar
[11] Zapata, I., Sols, F., and Leggett, A. J. 1998. Josephson effect between trapped Bose- Einstein condensates. Phys. Rev. A, 57, R28–R31.Google Scholar
[12] Wouters, M. 2008. Synchronized and desynchronized phases of coupled nonequilibrium exciton–polariton condensates. Phys. Rev. B, 77, 121302(R).Google Scholar
[13] Borgh, M. O., Keeling, J., and Berloff, N. G. 2010. Spatial pattern formation and polarization dynamics of a nonequilibrium spinor polariton condensate. Phys. Rev. B, 81, 235302.Google Scholar
[14] Eastham, P. R. 2008. Mode locking and mode competition in a nonequilibrium solidstate condensate. Phys. Rev. B, 78, 035319.Google Scholar
[15] Lagoudakis, K. G., Pietka, B., Wouters, M., André, R., and Deveaud-Plédran, B. 2010. Coherent oscillations in an exciton–polariton Josephson junction. Phys. Rev. Lett., 105, 120403.Google Scholar
[16] Krizhanovskii, D. N., Lagoudakis, K. G., Wouters, M., Pietka, B., Bradley, R. A., Guda, K., Whittaker, D. M., Skolnick, M. S., Deveaud-Plédran, B., Richard, M, André, R, and Dang, Le Si. 2009. Coexisting nonequilibrium condensates with longrange spatial coherence in semiconductor microcavities. Phys. Rev. B, 80, 045317.Google Scholar
[17] Baas, A., Lagoudakis, K. G., Richard, M., André, R., Dang, Le Si, and Deveaud-Plédran, B. 2008. Synchronized and desynchronized phases of exciton–polariton condensates in the presence of disorder. Phys. Rev. Lett., 100, 170401.Google Scholar
[18] Thunert, M., Janot, A., Franke, H., Sturm, C., Michalsky, T., Martín, M. D., Via, L., Rosenow, B., Grundmann, M., and Schmidt-Grund, R. 2016. Cavity polariton condensate in a disordered environment. Phys. Rev. B, 93, 064203.Google Scholar
[19] Nattermann, T., and Pokrovsky, V. L. 2008. Bose-Einstein condensates in strongly disordered traps. Phys. Rev. Lett., 100, 060402.Google Scholar
[20] Malpuech, G., Solnyshkov, D. D., Ouerdane, H., Glazov, M. M., and Shelykh, I. 2007. Bose glass and superfluid phases of cavity polaritons. Phys. Rev. Lett., 98, 206402.Google Scholar
[21] Larkin, A. I. 1970. Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP, 31, 784–786.Google Scholar
[22] Imry, Y., and Ma, S.-K. 1975. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett., 35, 1399–1401.Google Scholar
[23] Janot, A., Hyart, T., Eastham, P. R., and Rosenow, B. 2013. Superfluid stiffness of a driven dissipative condensate with disorder. Phys. Rev. Lett., 111, 230403.Google Scholar
[24] Wouters, M., and Carusotto, I. 2010. Superfluidity and critical velocities in nonequilibrium Bose-Einstein condensates. Phys. Rev. Lett., 105, 020602.Google Scholar
[25] Keeling, J. 2011. Superfluid density of an open dissipative condensate. Phys. Rev. Lett., 107, 080402.Google Scholar
[26] Fisher, M. E., Barber, M. N., and Jasnow, D. 1973. Helicity modulus, superfluidity, and scaling in isotropic systems. Phys. Rev. A, 8, 1111–1124.Google Scholar
[27] Leggett, A. J. 1970. Can a solid be “superfluid”. Phys. Rev. Lett., 25, 1543–1546.Google Scholar
[28] Huang, K., and Meng, H.-F. 1992. Hard-sphere Bose gas in random external potentials. Phys. Rev. Lett., 69, 644–647.Google Scholar
[29] Meng, H.-F. 1994. Quantum theory of the two-dimensional interacting-boson system. Phys. Rev. B, 49, 1205–1210.Google Scholar
[30] Giorgini, S., Pitaevskii, L., and Stringari, S. 1994. Effects of disorder in a dilute Bose gas. Phys. Rev. B, 49, 12938–12944.Google Scholar
[31] Kulaitis, G., Krüger, F., Nissen, F., and Keeling, J. 2013. Disordered driven coupled cavity arrays: nonequilibrium stochastic mean-field theory. Phys. Rev. A, 87, 013840.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×