Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T22:24:15.041Z Has data issue: false hasContentIssue false

10 - Low-dimensional models

from PART THREE - THE BOUNDARY LAYER

Published online by Cambridge University Press:  05 June 2012

Philip Holmes
Affiliation:
Princeton University, New Jersey
John L. Lumley
Affiliation:
Cornell University, New York
Gahl Berkooz
Affiliation:
Ford Motor Company
Clarence W. Rowley
Affiliation:
Princeton University, New Jersey
Get access

Summary

In the preceding nine chapters we have developed our basic tools and techniques. In this chapter and the next we illustrate their use in the derivation and analysis of low-dimensional models of the wall region of a turbulent boundary layer. First, the Navier– Stokes equations are rewritten in a form that highlights the dynamics of the coherent structures (CS) and their interaction with the mean flow. To do this, both the neglected (high) wavenumber modes and the mean flow must be modeled, unlike a large eddy simulation (LES), in which only the neglected high modes are modeled. Second, using physical considerations, we select a family of empirical subspaces upon which to project the equations. Galerkin projection is then carried out. In doing this, we restrict ourselves to a small physical flow domain, and so the response of the (quasi)local mean flow to the coherent structures must also be modeled. This chapter describes each step of the process in some detail, drawing on material presented in Chapters 2, 3, and 4. After deriving the family of low-dimensional models, in the last three sections we discuss in more depth the validity of assumptions used in their derivation. In Chapter 11 we describe use of the dynamical systems ideas presented in Chapters 6 through 9 in the analysis of these models, and interpret their solutions in terms of the dynamical behavior of the fluid flow.

Our presentation is based on a series of papers, beginning with [22] and including [24, 43, 44, 158, 161]. We have selected the boundary layer as our main illustrative example largely because we are most familiar with it.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×