Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T04:56:47.346Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 January 2010

David Ruelle
Affiliation:
Institut des Hautes Études Scientifiques, France
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Thermodynamic Formalism
The Mathematical Structure of Equilibrium Statistical Mechanics
, pp. 167 - 171
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, L. M., “On the entropy of a flow,” Dokl. Akad. Nauk SSSR 128, 873–875 (1959). English translation, Amer. Math. Soc. Transl., Ser. 2, 49, 167–170 (1966)Google Scholar
Adler, R. L., Konheim, A. G., and McAndrew, M. H., “Topological entropy,” Trans. Amer. Math. Soc. 114, 309–319 (1965)CrossRefGoogle Scholar
Anosov, D. V., “Geodesic flows on a compact Riemann manifold of negative curvature,” Trudy Mat. Inst. Steklov 90 (1967). English translation, Proc. Steklov Math. Inst. 90 (1967)Google Scholar
Araki, H., “Gibbs states of a one-dimensional quantum lattice,” Commun. Math. Phys. 14, 120–157 (1969)CrossRefGoogle Scholar
Berger, R., “The undecidability of the domino problem,” Mem. Amer. Math. Soc., No. 66, 1966CrossRefGoogle Scholar
P. Billingsley, Ergodic Theory and Information. John Wiley, New York, 1965
N. Bourbaki, Eléments de mathématique. Intégration. Chapitres 1, 2, 3, et 4, 2e éd. Hermann, Paris, 1965
N. Bourbaki, Eléments de mathématique. Intégration. Chapitre 5, 2e éd. Hermann, Paris, 1967
Bowen, R., “Markov partitions for axiom A diffeomorphisms,” Amer. J. Math. 92, 725–747 (1970)CrossRefGoogle Scholar
Bowen, R., “Markov partitions and minimal sets for axiom A diffeomorphisms,” Amer. J. Math. 92, 907–918 (1970)CrossRefGoogle Scholar
Bowen, R., “Entropy for group endomorphisms and homogeneous spaces,” Trans. Amer. Math. Soc. 153, 401–414 (1971)CrossRefGoogle Scholar
Bowen, R., “Symbolic dynamics for hyperbolic flows,” Amer. J. Math. 95, 429–459 (1973)CrossRefGoogle Scholar
Bowen, R., “Some systems with unique equilibrium states,” Math. Systems Theory 8, 193–202 (1974)CrossRefGoogle Scholar
R. Bowen Equilibrium States and the Ergodic Theory of Anosov diffeomorphisms. Lecture Notes in Math. No. 470. Springer, Berlin, 1975
Bowen, R. and Ruelle, D., “The ergodic theory of axiom A flows,” Inventiones Math. 29, 181–202 (1975)CrossRefGoogle Scholar
Bunimovič, L. A., “Imbedding of Bernoulli shifts in certain special flows,” Uspehi Mat. Nauk 28, No. 3, 171–172 (1973)Google Scholar
Capocaccia, D., “A definition of Gibbs state for a compact set with Zν action,” Commun. Math. Phys. 48, 85–88 (1976)CrossRefGoogle Scholar
Choquet, G. and Meyer, P.-A., “Existence et unicité des représentations intégrales dans les convexes compacts quelconques,” Ann. Inst. Fourier 13, 139–154 (1963)CrossRefGoogle Scholar
K. L. Chung, Markov Chains with Stationary Transition Probabilities. Springer, Berlin, 1967
Conze, J. P., “Entropie d'un groupe abélien de transformations,” Zeitschr. Wahrschein-lichkeitstheorie Verw. Gebiete 25, 11–30 (1972)CrossRefGoogle Scholar
Denker, M., “Remarques sur la pression pour les transformations continues,” C. R. Acad. Sci. Paris 279, A967–A970 (1974)Google Scholar
M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics No. 527. Springer, Berlin, 1976
Dinaburg, E. I., “The relation between topological entropy and metric entropy,” Dokl. Akad. Nauk SSSR 190, No. 1, 19–22 (1970). English translation, Soviet Math. Dok.11, 13–16 (1970)Google Scholar
Dobrushin, R. L., “The description of a random field by means of conditional probabilities and conditions of its regularity,” Teorija Verojatn. i ee Prim. 13, 201–229 (1968). English translation, Theory Prob. Applications 13, 197–224 (1968)Google Scholar
Dobrushin, R. L., “Gibbsian random fields for lattice systems with pairwise interactions,” Funkts. Analiz i ego Pril. 2, No. 4, 31–43 (1968). English translation, Functional Anal. Appl.2, 292–301 (1968)Google Scholar
Dobrushin, R. L., “The problem of uniqueness of a Gibbsian random field and the problem of phase transitions,” Funkts. Analiz i ego Pril. 2, No. 4, 44–57 (1968). English translation, Functional Anal. Appl.2, 302–312 (1968)Google Scholar
Dobrushin, R. L., “Analyticity of correlation functions in one-dimensional classical systems with slowly decreasing potentials,” Commun. Math. Phys. 32, 269–289 (1973)CrossRefGoogle Scholar
Dyson, F. J., “Existence of a phase-transition in a one-dimensional Ising ferromagnet,” Commun. Math. Phys. 12, 91–107 (1969)CrossRefGoogle Scholar
Elsanousi, S. A., “A variational principle for the pressure of a continuous Z2-action on a compact metric space,” Amer. J. Math. 99, 77–106 (1977)CrossRefGoogle Scholar
Fisher, M. E., “The theory of condensation and the critical point,” Physics 3, 255–283 (1967)CrossRefGoogle Scholar
Franks, J. M., “A reduced zeta function for diffeomorphisms,” Amer. J. Math. 100, No. 2 (1978)CrossRefGoogle Scholar
Furstenberg, H. and Kesten, H., “Products of random matrices,” Ann. Math. Statist. 31, 457–469 (1960)CrossRefGoogle Scholar
Gallavotti, G., “Ising model and Bernoulli schemes in one dimension,” Commun. Math. Phys. 32, 183–190 (1973)CrossRefGoogle Scholar
Gallavotti, G., “Funzioni zeta ed insiemi basilari,” Accad. Lincei. Rend. Sc. fis. mat. e nat. 61, 309–317 (1976)Google Scholar
Gallavotti, G. and Miracle-Sole, S., “Statistical mechanics of lattice systems,” Commun. Math. Phys. 5, 317–323 (1967)CrossRefGoogle Scholar
F. R. Gantmaher, The Theory of Matrices. Nauka, Moscow, 1967. English translation, Chelsea, New York, 1964
H.-O. Georgii, Phasenübergang 1. Art bei Gittergasmodellen. Lecture Notes in Physics No. 16. Springer, Berlin, 1972
Georgii, H.-O., “Two remarks on extremal equilibrium states,” Commun. Math. Phys. 32, 107–118 (1973)CrossRefGoogle Scholar
Goodman, T. N. T., “Relating topological entropy and measure entropy,” Bull. London Math. Soc. 3, 176–180 (1971)CrossRefGoogle Scholar
Goodwyn, L. W., “Topological entropy bounds measure-theoretic entropy,” Proc. Amer. Math. Soc. 23, 679–688 (1969)CrossRefGoogle Scholar
Griffiths, R. B. and Ruelle, D., “Strict convexity (‘continuity’) of the pressure in lattice systems,” Commun. Math. Phys. 23, 169–175 (1971)CrossRefGoogle Scholar
Gurevič, B. M., “Topological entropy of enumerable Markov chains,” Dokl. Akad. Nauk SSSR 187, No. 4, 754–757 (1969). English translation, Soviet Math. Dokl. 10, 911–915 (1969)Google Scholar
Gurevič, B. M. and Oseledec, V. I., “Gibbs distributions and dissipativeness of U-diffeomorphisms,” Dokl. Akad. Nauk SSSR 209, No. 5, 1021–1023 (1973). English translation, Soviet Math. Dokl.14, 570–573 (1973)Google Scholar
H. Halmos, Measure Theory. D. Van Nostrand, Princeton, 1950
Hirsch, M. W., “Expanding maps and transformation groups,” in Global Analysis Proc. Symp. Pure Math. 14, 1970, pp. 125–131CrossRefGoogle Scholar
Israel, R. B., “Existence of phase transitions for long-range interactions,” Commun. Math. Phys. 43, 59–68 (1975)CrossRefGoogle Scholar
R. B. Israel Tangents to the Pressure as Invariant Equilibrium States in Statistical Mechanics of Lattice Systems, Princeton University Press, Princeton, 1978
Keane, M., “Sur les mesures invariantes d'un recouvrement régulier,” C. R. Acad. Sci. Paris 272, A585–A587 (1971)Google Scholar
G. Köthe, Topologische lineare Räume I. Springer, Berlin, 1960
O. E. Lanford, “Selected topics in functional analysis,” in Mécanique statistique et théorie quantique des champs. Les Houches 1970. (C. De Witt, and R. Stora, eds.), pp. 109–214. Gordon and Breach, New York, 1971
O. E. Lanford “Entropy and equilibrium states in classical statistical mechanics,” in Statistical mechanics and mathematical problems, Lecture Notes in Physics No. 20, pp. 1–113. Springer, Berlin, 1973
Lanford, O. E. and Robinson, D. W., “Statistical mechanics of quantum spin systems III,” Commun. Math. Phys. 9, 327–338 (1968)CrossRefGoogle Scholar
Lanford, O. E. and Ruelle, D., “Observables at infinity and states with short range correlations in statistical mechanics,” Commun. Math. Phys. 13, 194–215 (1969)CrossRefGoogle Scholar
Lasota, A. and Yorke, J. A., “On the existence of invariant measures for piecewise monotonic transformations,” Trans. Amer. Math. Soc. 186, 481–488 (1973)CrossRefGoogle Scholar
Ledrappier, F.Mesures d'équilibre sur un réseau,” Commun. Math. Phys. 33, 119–128 (1973)CrossRefGoogle Scholar
Ledrappier, F., “Principe variationnel et systémes dynamiques symboliques,” Z. Wahrschein-lichkeitstheorie Verw. Gebiete 30, 185–202 (1974)CrossRefGoogle Scholar
Ledrappier, F. and Walters, P., “A relativised variational principle for continuous transformations,” J. London Math. Soc. 16, 568–576 (1977)CrossRefGoogle Scholar
Livšic, A. N., “Homology properties of Y-systems,” Mat. Zametki 10, No. 5, 555–564 (1971). English translation, Math. Notes10, 758–763 (1971)Google Scholar
Livšic, A. N., “Cohomology of dynamical systems,” Izv. Akad. Nauk SSSR. Ser. Mat. 36, No. 6, 1296–1320 (1972). English translation, Math. USSR Izvestija6, 1276–1301 (1972)Google Scholar
Manning, A., “Axiom A diffeomorphisms have rational zeta functions,” Bull. London Math. Soc. 3, 215–220 (1971)CrossRefGoogle Scholar
A. Manning “Topological entropy and the first homology group,” in Dynamical Systems. Warwick 1974, Lecture Notes in Mathematics No. 468, pp. 185–190. Spinger, Berlin, 1975
Mazur, S., “Öber konvexe Mengen in linearen normierten Räumen,” Studia Math. 4, 70–84 (1933)CrossRefGoogle Scholar
Misiurewicz, M., “A short proof of the variational Principle for a Z+N action on a compact space,” Astérisque 40, 147–157 (1976)Google Scholar
D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems. Yale Mathematical Monographs 5. Yale University Press, New Haven, 1974
Oseledec, V. I., “A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems,” Trudy Moscov. Mat. Obšč. 19, 179–210 (1968). English translation, Trans. Moscow Math. Soc.19, 197–231 (1968)Google Scholar
Parry, W., “Intrinsic Markov chains,” Trans. Amer. Math. Soc. 112, 55–66 (1964)CrossRefGoogle Scholar
W. Parry “Topological Markov chains and suspensions,” Warwick preprint, 1974
R. Phelps, Lectures on Choquet's Theorem. Van Nostrand Mathematical Studies No. 7. D. Van Nostrand, Princeton, 1966
C. J. Preston, Gibbs States on Countable Sets. Cambridge Tracts in Mathematics No. 68. Cambridge University Press, Cambridge, 1974
C. J. Preston, Random Fields. Lecture Notes in Mathematics No. 534. Springer, Berlin, 1976
Ratner, M., “The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature,” Israel J. Math. 16, 181–197 (1973)CrossRefGoogle Scholar
Ratner, M., “Anosov flows with Gibbs measures are also Bernoullian,” Israel J. Math. 17, 380–391 (1974)CrossRefGoogle Scholar
Robinson, R. M., “Undecidability and nonperiodicity for tilings of the plane,” Inventiones Math. 12, 177–209 (1971)CrossRefGoogle Scholar
Robinson, D. W. and Ruelle, D., “Mean entropy of states in classical statistical mechanics.” Commun. Math. Phys. 5, 288–300 (1967)CrossRefGoogle Scholar
Rohlin, V. A., “On the fundamental ideas of measure theory,” Mat. Sbornik (N. S.) 25, 107–150 (1949). English translation, Amer. Math. Soc. Transl., Ser. 1, 10, 1–54 (1952)Google Scholar
Ruelle, D., “A variational formulation of equilibrium statistical mechanics and the Gibbs phase rule,” Commun. Math. Phys. 5, 324–329 (1967)CrossRefGoogle Scholar
Ruelle, D., “Statistical mechanics of a one-dimensional lattice gas,” Commun. Math. Phys. 9, 267–278 (1968)CrossRefGoogle Scholar
D. Ruelle Statistical Mechanics. Rigorous Results. Benjamin, New York, 1969
Ruelle, D., “Statistical mechanics on a compact set with Zθ-action satisfying expansiveness and specification,” Bull. Amer. Math. Soc. 78, 988–991 (1972); Trans. Amer. Math. Soc. 185, 237–251 (1973)CrossRefGoogle Scholar
Ruelle, D., “A measure associated with axiom A attractors,” Amer. J. Math. 98, 619–654 (1976)CrossRefGoogle Scholar
Ruelle, D., “Generalized zeta-functions for axiom A basic sets,” Bull. Amer. Math. Soc. 82, 153–156 (1976)CrossRefGoogle Scholar
Ruelle, D., “Zeta-functions for expanding maps and Anosov flows,” Inventiones Math. 34, 231–242 (1976)CrossRefGoogle Scholar
Ruelle, D., “A heuristic theory of phase transitions,” Commun. Math. Phys., 53, 195–208 (1977)CrossRefGoogle Scholar
Ruelle, D. and Sullivan, D., “Currents, flows and diffeomorphisms,” Topology 14, 319–327 (1975)CrossRefGoogle Scholar
P. Shields, The Theory of Bernoulli Shifts. University of Chicago Press, Chicago, 1973
Shub, M., “Endomorphisms of compact differentiable manifolds,” Amer. J. Math. 91, 175–199 (1969)CrossRefGoogle Scholar
B. Simon, The Pφ2Euclidean (Quantum) Field Theory. Princeton University Press, Princeton, 1974
Sinai, Ia. G., “Markov partitions and C-diffeomorphisms,” Funkts. Analiz i Ego Pril. 2, No. 1, 64–89 (1968). English translation, Functional Anal. Appl. 2, 61–82 (1968)Google Scholar
Sinai, Ia. G., “Construction of Markov partition,” Funkts. Analiz i Ego Pril. 2, No. 3, 70–80 (1968). English translation, Functional Anal. Appl. 2, 245–253 (1968)Google Scholar
Ia. G. Sinai “Mesures invariantes des Y-systémes,” in Actes, Congrés intern. Math., Nice, 1970, Vol. 2 pp. 929–940. Gauthier-Villars, Paris, 1971
Sinai, Ia. G., “Gibbsian measures in ergodic theory,” Uspehi Mat. Nauk 27, No. 4, 21–64 (1972). English translation, Russian Math. Surveys 27, No. 4, 21–69 (1972)Google Scholar
Smale, S., “Differentiable dynamical systems,” Bull. Amer. Math. Soc. 73, 747–817 (1967)CrossRefGoogle Scholar
M. Smorodinsky, Ergodic Theory, Entropy. Lecture Notes in Mathematics No. 214. Springer, Berlin, 1971
Sullivan, W. G., “Potentials for almost Markovian random fields,” Commun. Math. Phys. 33, 61–74 (1973)CrossRefGoogle Scholar
G. Velo and A. S. Wightman (eds.), Constructive Quantum Field Theory. Lecture Notes in Physics No. 25. Springer, Berlin, 1973
Walters, P., “A variational principle for the pressure of continuous transformations,” Amer. J. Math. 97, 937–971 (1976)CrossRefGoogle Scholar
P. Walters Ergodic Theory. Introductory Lectures. Lecture Notes in Mathematics No. 458. Springer, Berlin, 1975
Walters, P., “A generalized Ruelle Perron—Frobenius theorem and some applications,” Astérisque 40, 183–192 (1976)Google Scholar
Walters, P., “Invariant measures and equilibrium states for some mappings which expand distances,” Trans. Amer. Math. Soc., to appear
Williams, R. F., “Classification of subshifts of finite type,” Ann. of Math. 98, 120–153 (1973). Errata, Ann. of Math.99, 380–381 (1974)CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Ruelle, Institut des Hautes Études Scientifiques, France
  • Book: Thermodynamic Formalism
  • Online publication: 15 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617546.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Ruelle, Institut des Hautes Études Scientifiques, France
  • Book: Thermodynamic Formalism
  • Online publication: 15 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617546.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Ruelle, Institut des Hautes Études Scientifiques, France
  • Book: Thermodynamic Formalism
  • Online publication: 15 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617546.020
Available formats
×