Book contents
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
1 - Introduction
Published online by Cambridge University Press: 04 October 2009
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
Summary
Then we shall rise and view ourselves with clearer eyes.
Henry King, bishop of Chichester (1592–1669)Scientific rationale
The subject of this book is remote sensing, that is, seeing “with clearer eyes.” In particular, it is concerned with how light is emitted and scattered by media composed of discrete particles and what can be learned about such a medium from its scattering properties.
If you stop reading now and look around, you will notice that most of the surfaces you see consist of particulate materials. Sometimes the particles are loose, as in soils or clouds. Sometimes they are embedded in a transparent matrix, as in paint, which consists of white particles in a colored binder. Or they may be fused together, as in rocks, or in tiles, which consist of sintered ceramic powder. Even vegetation is a kind of particulate medium in which the “particles” are leaves and stems. These examples show that if we wish to interpret quantitatively the electromagnetic radiation that reaches us, rather than simply form an image from it, it is necessary to consider the scattering and propagation of light within nonuniform media.
One of the first persons to use remote sensing to learn about the surface of a planet was Galileo Galilei.
- Type
- Chapter
- Information
- Theory of Reflectance and Emittance Spectroscopy , pp. 1 - 5Publisher: Cambridge University PressPrint publication year: 1993
- 1
- Cited by