Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:57:25.520Z Has data issue: false hasContentIssue false

Chapter 7 - Development of the Thalamocortical Systems

from Section 4: - Development

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The thalamocortical system underlies sensory perception, brain-state regulation, movement execution, and cognition. The thalamus and cortex are generated from separate sectors of the embryonic forebrain, and their reciprocal axonal projections have to grow across a complex cellular terrain through it to innervate each other. The corticofugal and thalamocortical projections start to develop synchronously at very early stages when the distances are minimal. The initial topographical organization of these axons is guided by diencephalic and telencephalic molecular gradients. Transient axonal bundles and streams of migrating cell populations then act as a guiding scaffold for these projections. Once they reach their target, the thalamocortical fibers rearrange within the transient subplate zone and later innervate the cortical plate, whereas the corticofugal axons originate from layer 5, layer 6, and subplate/layer 6b neurons and follow a specific developmental sequence as they approach the thalamus, where some of them accumulate before they enter the first -and higher-order thalamic nuclei according to their subtypes and laminar origin. Both thalamocortical and corticothalamic projections are plastic and can reshape after alterations in sensory input or various lesions. Understanding the mechanisms underlying their development and remodeling is vital to comprehending the establishment and plasticity of cortical representations.

Type
Chapter
Information
The Thalamus , pp. 139 - 162
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackman, J. B., Burbridge, T. J. and Crair, M. C. (2012). “Retinal waves coordinate patterned activity throughout the developing visual system.Nature 490(7419): 219225.Google Scholar
Agmon, A. and Connors, B. W. (1991). “Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro.Neuroscience 41(2–3): 365379.Google Scholar
Agmon, A., Yang, L. T., Jones, E. G. and O’Dowd, D. K. (1995). “Topological precision in the thalamic projection to neonatal mouse barrel cortex.J Neurosci 15(1 Pt 2): 549561.CrossRefGoogle ScholarPubMed
Agmon, A., Yang, L. T., O’Dowd, D. K. and Jones, E. G. (1993). “Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex.J Neurosci 13(12): 53655382.Google Scholar
Allendoerfer, K. L. and Shatz, C. J. (1994). “The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex.” Annu Rev Neurosci 17: 185218.CrossRefGoogle ScholarPubMed
Altman, J. and Bayer, S. A. (1988a). “Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium.J Comp Neurol 275(3): 346377.CrossRefGoogle ScholarPubMed
Altman, J. and Bayer, S. A. (1988b). “Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium.J Comp Neurol 275(3): 378405.CrossRefGoogle ScholarPubMed
Altman, J. and Bayer, S. A. (1988c). “Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus.J Comp Neurol 275(3): 406428.Google Scholar
Angelucci, A., Clascá, F., Bricolo, E., Cramer, K. S. and Sur, M. (1997). “Experimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific patterns in a novel target.J Neurosci 17(6): 20402055.CrossRefGoogle Scholar
Angelucci, A., Clascá, F. and Sur, M. (1998). “Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.J Comp Neurol 400(3): 417439.Google Scholar
Angevine, J. B., Jr. (1970). “Time of neuron origin in the diencephalon of the mouse. An autoradiographic study.J Comp Neurol 139(2): 129187.CrossRefGoogle ScholarPubMed
Asanuma, C. and Stanfield, B. B. (1990). “Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice.Neuroscience 39(3): 533545.Google Scholar
Auladell, C., Perez-Sust, P., Super, H. and Soriano, E. (2000). “The early development of thalamocortical and corticothalamic projections in the mouse.Anat Embryol (Berl) 201(3): 169179.CrossRefGoogle ScholarPubMed
Bagri, A., Marin, O., Plump, A. S., Mak, J., Pleasure, S. J., Rubenstein, J. L. and Tessier-Lavigne, M. (2002). “Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain.Neuron 33(2): 233248.CrossRefGoogle ScholarPubMed
Bavelier, D. and Neville, H. J. (2002). “Cross-modal plasticity: where and how?Nat Rev Neurosci 3(6): 443452.Google Scholar
Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M. and Matthews, P. M. (2003). “Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.Nat Neurosci 6(7): 750757.Google Scholar
Bielle, F., Marcos-Mondejar, P., Keita, M., Mailhes, C., Verney, C., Nguyen Ba-Charvet, K., Tessier-Lavigne, M., Lopez-Bendito, G. and Garel, S. (2011). “Slit2 activity in the migration of guidepost neurons shapes thalamic projections during development and evolution.Neuron 69(6): 10851098.Google Scholar
Bishop, K. M., Goudreau, G. and O’Leary, D. D. (2000). “Regulation of area identity in the mammalian neocortex by Emx2 and Pax6.Science 288(5464): 344349.CrossRefGoogle ScholarPubMed
Bishop, P. O., Burke, W. and Davis, R. (1959). “Activation of single lateral geniculate cells by stimulation of either optic nerve.Science 130(3374): 506507.Google Scholar
Blakey, D. (2007). The Role of Neural Activity in the Development of Thalamocortical Connections. D.Phil, University of Oxford.Google Scholar
Blakey, D., Wilson, M. C. and Molnár, Z. (2012). “Termination and initial branch formation of SNAP-25-deficient thalamocortical fibres in heterochronic organotypic co-cultures.Eur J Neurosci 35(10): 15861594.Google Scholar
Bonnin, A., Torii, M., Wang, L., Rakic, P. and Levitt, P. (2007). “Serotonin modulates the response of embryonic thalamocortical axons to netrin-1.Nat Neurosci 10(5): 588597.Google Scholar
Braisted, J. E., Catalano, S. M., Stimac, R., Kennedy, T. E., Tessier-Lavigne, M., Shatz, C. J. and O’Leary, D. D. (2000). “Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection.J Neurosci 20(15): 57925801.Google Scholar
Braisted, J. E., Ringstedt, T. and O’Leary, D. D. (2009). “Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon.Cereb Cortex 19 Suppl 1: i144151.Google Scholar
Braisted, J. E., Tuttle, R. and O’Leary, D. D (1999). “Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path.Dev Biol 208(2): 430440.CrossRefGoogle ScholarPubMed
Bronchti, G., Heil, P., Sadka, R., Hess, A., Scheich, H. and Wollberg, Z. (2002). “Auditory activation of ‘visual’ cortical areas in the blind mole rat (Spalax ehrenbergi).Eur J Neurosci 16(2): 311329.Google Scholar
Bronchti, G., Heil, P., Scheich, H. and Wollberg, Z. (1989). “Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers.J Comp Neurol 284(2): 253274.CrossRefGoogle ScholarPubMed
Brooks, J. M., Su, J., Levy, C., Wang, J. S., Seabrook, T. A., Guido, W. and Fox, M. A. (2013). “A molecular mechanism regulating the timing of corticogeniculate innervation.Cell Rep 5(3): 573581.Google Scholar
Butler, A. B. (2008). “Evolution of the thalamus: a morphological and functional review.Thalamus & Related Systems 4(1): 3558.Google Scholar
Butler, A. B. and William, H. (2005). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. Hoboken, NJ: Wiley-Liss.Google Scholar
Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. and Nowakowski, T. J. (2019). “Development and arealization of the cerebral cortex.Neuron 103(6): 9801004.Google Scholar
Carney, R. S., Alfonso, T. B., Cohen, D., Dai, H., Nery, S., Stoica, B., Slotkin, J., Bregman, B. S., Fishell, G. and Corbin, J. G. (2006). “Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system.J Neurosci 26(45): 1156211574.CrossRefGoogle Scholar
Carney, R. S., Cocas, L. A., Hirata, T., Mansfield, K. and Corbin, J. G. (2009). “Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2.Cereb Cortex 19(4): 745759.CrossRefGoogle ScholarPubMed
Castillo-Paterna, M., Moreno-Juan, V., Filipchuk, A., Rodriguez-Malmierca, L., Susin, R. and Lopez-Bendito, G. (2015). “DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity.EMBO Rep 16(7): 851862.CrossRefGoogle ScholarPubMed
Catalano, S. M., Robertson, R. T. and Killackey, H. P. (1991). “Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat.Proc Natl Acad Sci USA 88(8): 29993003.Google Scholar
Catalano, S. M. and Shatz, C. J. (1998). “Activity-dependent cortical target selection by thalamic axons.Science 281(5376): 559562.Google Scholar
Caviness, V. S., Jr. and Frost, D. O. (1980). “Tangential organization of thalamic projections to the neocortex in the mouse.J Comp Neurol 194(2): 335367.CrossRefGoogle Scholar
Chabot, N., Robert, S., Tremblay, R., Miceli, D., Boire, D. and Bronchti, G. (2007). “Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants.Eur J Neurosci 26(8): 23342348.CrossRefGoogle ScholarPubMed
Chapouton, P., Schuurmans, C., Guillemot, F. and Gotz, M. (2001). “The transcription factor neurogenin 2 restricts cell migration from the cortex to the striatum.Development 128(24): 51495159.Google Scholar
Charbonneau, V., Laramee, M. E., Boucher, V., Bronchti, G. and Boire, D. (2012). “Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice.Eur J Neurosci 36(7): 29492963.Google Scholar
Chatterjee, M. and Li, J. Y. (2012). “Patterning and compartment formation in the diencephalon.Front Neurosci 6: 66.Google Scholar
Chen, Y., Magnani, D., Theil, T., Pratt, T. and Price, D. J. (2012). “Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial-subpallial boundary in the embryonic forebrain.PLoS One 7(3): e33105.CrossRefGoogle ScholarPubMed
Chou, S. J., Babot, Z., Leingartner, A., Studer, M., Nakagawa, Y. and O’Leary, D. D. (2013). “Geniculocortical input drives genetic distinctions between primary and higher-order visual areas.Science 340(6137): 12391242.CrossRefGoogle ScholarPubMed
Clascá, F., Angelucci, A. and Sur, M. (1995). “Layer-specific programs of development in neocortical projection neurons.Proc Natl Acad Sci USA 92(24): 1114511149.Google Scholar
Colonnese, M. T., Kaminska, A., Minlebaev, M., Milh, M., Bloem, B., Lescure, S., Moriette, G., Chiron, C., Ben-Ari, Y. and Khazipov, R. (2010). “A conserved switch in sensory processing prepares developing neocortex for vision.Neuron 67(3): 480498.Google Scholar
Colonnese, M. T. and Khazipov, R. (2010). “‘Slow activity transients’ in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves.J Neurosci 30(12): 43254337.Google Scholar
Cordery, P. and Molnár, Z. (1999). “Embryonic development of connections in turtle pallium.J Comp Neurol 413(1): 2654.Google Scholar
De Carlos, J. A. and O’Leary, D. D. (1992). “Growth and targeting of subplate axons and establishment of major cortical pathways.J Neurosci 12(4): 11941211.Google Scholar
Deck, M., Lokmane, L., Chauvet, S., Mailhes, C., Keita, M., Niquille, M., Yoshida, M., Yoshida, Y., Lebrand, C., Mann, F., Grove, E. A. and Garel, S. (2013). “Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections.Neuron 77(3): 472484.CrossRefGoogle ScholarPubMed
Dehay, C. and Kennedy, H. (2007). “Cell-cycle control and cortical development.Nat Rev Neurosci 8(6): 438450.Google Scholar
Dufour, A., Seibt, J., Passante, L., Depaepe, V., Ciossek, T., Frisen, J., Kullander, K., Flanagan, J. G., Polleux, F. and Vanderhaeghen, P. (2003). “Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes.Neuron 39(3): 453465.Google Scholar
Dwyer, N. D., Manning, D. K., Moran, J. L., Mudbhary, R., Fleming, M. S., Favero, C. B., Vock, V. M., O’Leary, D. D., Walsh, C. A. and Beier, D. R. (2011). “A forward genetic screen with a thalamocortical axon reporter mouse yields novel neurodevelopment mutants and a distinct emx2 mutant phenotype.Neural Dev 6: 3.Google Scholar
Dye, C. A., Abbott, C. W. and Huffman, K. J. (2012). “Bilateral enucleation alters gene expression and intraneocortical connections in the mouse.Neural Dev 7: 5.Google Scholar
Erzurumlu, R., Guido, W. and Molnár, Z. (2006). Development and Plasticity in Sensory Thalamus and Cortex. Boston, MA, Springer US.Google Scholar
Espinosa, J. S. and Stryker, M. P. (2012). “Development and plasticity of the primary visual cortex.Neuron 75(2): 230249.CrossRefGoogle ScholarPubMed
Feller, M. B., Delaney, K. R. and Tank, D. W. (1996). “Presynaptic calcium dynamics at the frog retinotectal synapse.J Neurophysiol 76(1): 381400.Google Scholar
Feng, J., Xian, Q., Guan, T., Hu, J., Wang, M., Huang, Y., So, K. F., Evans, S. M., Chai, G., Goffinet, A. M., Qu, Y. and Zhou, L. (2016). “Celsr3 and Fzd3 organize a pioneer neuron scaffold to steer growing thalamocortical axons.Cereb Cortex 26(7): 33233334.Google Scholar
Fetter-Pruneda, I., Geovannini-Acuna, H., Santiago, C., Ibarraran-Viniegra, A. S., Martinez-Martinez, E., Sandoval-Velasco, M., Uribe-Figueroa, L., Padilla-Cortes, P., Mercado-Celis, G. and Gutierrez-Ospina, G. (2013). “Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.PLoS One 8(1): e54940.Google Scholar
Firth, S. I., Wang, C. T. and Feller, M. B. (2005). “Retinal waves: mechanisms and function in visual system development.Cell Calcium 37(5): 425432.Google Scholar
Fishell, G. and Hanashima, C. (2008). “Pyramidal neurons grow up and change their mind.Neuron 57(3): 333338.Google Scholar
Frangeul, L., Pouchelon, G., Telley, L., Lefort, S., Luscher, C. and Jabaudon, D. (2016). “A cross-modal genetic framework for the development and plasticity of sensory pathways.Nature 538(7623): 9698.Google Scholar
Friauf, E., McConnell, S. K. and Shatz, C. J. (1990). “Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex.J Neurosci 10(8): 26012613.Google Scholar
Friauf, E. and Shatz, C. J. (1991). “Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex.J Neurophysiol 66(6): 20592071.Google Scholar
Garcia-Moreno, F. and Molnár, Z. (2020). “Variations of telencephalic development that paved the way for neocortical evolution.” Prog Neurobiol: 101865.Google Scholar
Garel, S., Huffman, K. J. and Rubenstein, J. L. (2003). “Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants.Development 130(9): 1903–1914.CrossRefGoogle ScholarPubMed
Garel, S., Marin, F., Grosschedl, R. and Charnay, P. (1999). “Ebf1 controls early cell differentiation in the embryonic striatum.Development 126(23): 52855294.Google Scholar
Garel, S. and Rubenstein, J. L. (2004). “Intermediate targets in formation of topographic projections: inputs from the thalamocortical system.Trends Neurosci 27(9): 533539.CrossRefGoogle ScholarPubMed
Garel, S., Yun, K., Grosschedl, R. and Rubenstein, J. L. (2002). “The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice.Development 129(24): 56215634.Google Scholar
Gezelius, H. and Lopez-Bendito, G. (2017). “Thalamic neuronal specification and early circuit formation.Dev Neurobiol 77(7): 830843.Google Scholar
Giasafaki, C., Grant, E., Hoerder-Suabedissen, A., Hayashi, S., Lee, S., Molnár, Z., (2022) Cross-hierarchical plasticity of corticofugal projections to dLGN after neonatal monocular enucleation. J Comp Neurol THAL-JCN-21-0096 Specialissue on Thalamus for the Journal of Comparative Neurology Editors: William Guido and AndrewHuberman https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25304Google Scholar
Gimeno, L. and Martinez, S. (2007). “Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh.Dev Dyn 236(8): 22852297.Google Scholar
Golding, B., Pouchelon, G., Bellone, C., Murthy, S., Di Nardo, A. A., Govindan, S., Ogawa, M., Shimogori, T., Luscher, C., Dayer, A. and Jabaudon, D. (2014). “Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits.Neuron 81(6): 1443.Google Scholar
Goldman-Rakic, P. S. (1987). “Development of cortical circuitry and cognitive function.Child Dev 58(3): 601622.Google Scholar
Grant, E., Hoerder-Suabedissen, A. and Molnár, Z. (2012). “Development of the corticothalamic projections.Front Neurosci 6: 53.Google Scholar
Grant, E., Hoerder-Suabedissen, A. and Molnár, Z. (2016). “The regulation of corticofugal fiber targeting by retinal inputs.Cereb Cortex 26(3): 13361348.CrossRefGoogle ScholarPubMed
Grove, E. A. and Fukuchi-Shimogori, T. (2003). “Generating the cerebral cortical area map.” Annu Rev Neurosci 26: 355380.Google Scholar
Guillery, R. W. and Sherman, S. M. (2002). “Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system.Neuron 33(2): 163175.Google Scholar
Halley, A. C. and Krubitzer, L. (2019). “Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals.Curr Opin Neurobiol 56: 7886.Google Scholar
Hanashima, C., Molnár, Z. and Fishell, G. (2006). “Building bridges to the cortex.Cell 125(1): 2427.Google Scholar
Hayashi, S., Hoerder-Suabedissen, A., Kiyokage, E., Maclachlan, C., Toida, K., Knott, G. and Molnár, Z. (2020).“Maturation of complex synaptic connections of layer 5 cortical axons in the posterior thalamic nucleus requires SNAP25.Cerebral Cortex. 31(5):26252638.Google Scholar
Hevner, R. F., Miyashita-Lin, E. and Rubenstein, J. L. (2002). “Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other.J Comp Neurol 447(1): 817.Google Scholar
Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T. and Kurachi, Y. (2001). “An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain.Am J Physiol Cell Physiol 281(3): C922931.Google Scholar
Higashi, S., Molnár, Z., Kurotani, T. and Toyama, K. (2002). “Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording.Neuroscience 115(4): 12311246.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P. O., Clascá, F., Kim, Y. and Molnár, Z. (2018). “Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice.Cereb Cortex 28(5): 18821897.Google Scholar
Hoerder-Suabedissen, A., Korrell, K. V., Hayashi, S., Jeans, A., Ramirez, D. M. O., Grant, E., Christian, H. C., Kavalali, E. T., Wilson, M. C. and Molnár, Z. (2019). “Cell-specific loss of SNAP25 from Cortical projection neurons allows normal development but causes subsequent neurodegeneration.Cereb Cortex 29(5): 21482159.Google Scholar
Hoerder-Suabedissen, A. and Molnár, Z. (2012). “Morphology of mouse subplate cells with identified projection targets changes with age.J Comp Neurol 520(1): 174185.Google Scholar
Hoerder-Suabedissen, A. and Molnár, Z. (2015). “Development, evolution and pathology of neocortical subplate neurons.Nat Rev Neurosci 16(3): 133146.Google Scholar
Horng, S., Kreiman, G., Ellsworth, C., Page, D., Blank, M., Millen, K. and Sur, M. (2009). “Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development.J Neurosci 29(43): 1367213683.CrossRefGoogle ScholarPubMed
Horváth, T.L., J. Hirsch, Z. Molnár (2022) Body, Brain, Behavior, Three Views and a Conversation Academic Press, An imprint of Elsevier; ISBN: 9780128180938 pp:444Google Scholar
Huberman, A. D., Feller, M. B. and Chapman, B. (2008). “Mechanisms underlying development of visual maps and receptive fields.Annu Rev Neurosci 31: 479509.Google Scholar
Huberman, A. D., Speer, C. M. and Chapman, B. (2006). “Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1.Neuron 52(2): 247254.Google Scholar
Huffman, K. J., Molnár, Z., Van Dellen, A., Kahn, D. M., Blakemore, C. and Krubitzer, L. (1999). “Formation of cortical fields on a reduced cortical sheet.J Neurosci 19(22): 99399952.Google Scholar
Hunnicutt, B. J., Long, B. R., Kusefoglu, D., Gertz, K. J., Zhong, H. and Mao, T. (2014). “A comprehensive thalamocortical projection map at the mesoscopic level.Nat Neurosci 17(9): 12761285.Google Scholar
Izraeli, R., Koay, G., Lamish, M., Heicklen-Klein, A. J., Heffner, H. E., Heffner, R. S. and Wollberg, Z. (2002). “Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour.Eur J Neurosci 15(4): 693712.Google Scholar
Jacobs, E. C., Campagnoni, C., Kampf, K., Reyes, S. D., Kalra, V., Handley, V., Xie, Y. Y., Hong-Hu, Y., Spreur, V., Fisher, R. S. and Campagnoni, A. T. (2007). “Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse.Eur J Neurosci 25(1): 1730.CrossRefGoogle Scholar
Jones, E. G. (2002). “Thalamic circuitry and thalamocortical synchrony.Philos Trans R Soc Lond B Biol Sci 357(1428): 16591673.Google Scholar
Jones, E. G. (2007). The Thalamus. Cambridge, Cambridge University Press.Google Scholar
Kaas, J. H. and Lyon, D. C. (2007). “Pulvinar contributions to the dorsal and ventral streams of visual processing in primates.Brain Res Rev 55(2): 285296.CrossRefGoogle Scholar
Kanold, P. O. (2009). “Subplate neurons: crucial regulators of cortical development and plasticity.Front Neuroanat 3: 16.Google Scholar
Kanold, P. O. and Luhmann, H. J. (2010). “The subplate and early cortical circuits.Annu Rev Neurosci 33: 2348.Google Scholar
Kataoka, A. and Shimogori, T. (2008). “Fgf8 controls regional identity in the developing thalamus.Development 135(17): 28732881.Google Scholar
Katz, L. C. and Shatz, C. J. (1996). “Synaptic activity and the construction of cortical circuits.Science 274(5290): 11331138.Google Scholar
Kirkby, L. A. and Feller, M. B. (2013). “Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits.Proc Natl Acad Sci USA 110(29): 1209012095.Google Scholar
Kostovic, I. (2020). “The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity.” Prog Neurobiol: 101883.Google Scholar
Kostovic, I. and Rakic, P. (1990). “Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain.J Comp Neurol 297(3): 441470.Google Scholar
Krsnik, Z., Majic, V., Vasung, L., Huang, H. and Kostovic, I. (2017). “Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain.Front Neurosci 11: 233.Google Scholar
Krug, K., Smith, A. L. and Thompson, I. D. (1998). “The development of topography in the hamster geniculo-cortical projection.J Neurosci 18(15): 57665776.Google Scholar
Lakhina, V., Falnikar, A., Bhatnagar, L. and Tole, S. (2007). “Early thalamocortical tract guidance and topographic sorting of thalamic projections requires LIM-homeodomain gene Lhx2.Dev Biol 306(2): 703713.Google Scholar
Laramee, M. E., Bronchti, G. and Boire, D. (2014). “Primary visual cortex projections to extrastriate cortices in enucleated and anophthalmic mice.Brain Struct Funct 219(6): 20512070.Google Scholar
Leighton, P. A., Mitchell, K. J., Goodrich, L. V., Lu, X., Pinson, K., Scherz, P., Skarnes, W. C. and Tessier-Lavigne, M. (2001). “Defining brain wiring patterns and mechanisms through gene trapping in mice.Nature 410(6825): 174179.Google Scholar
Lickiss, T., Cheung, A. F., Hutchinson, C. E., Taylor, J. S. and Molnár, Z. (2012). “Examining the relationship between early axon growth and transcription factor expression in the developing cerebral cortex.J Anat 220(3): 201211.Google Scholar
Lim, Y. and Golden, J. A. (2007). “Patterning the developing diencephalon.Brain Res Rev 53(1): 1726.Google Scholar
Little, G. E., Lopez-Bendito, G., Runker, A. E., Garcia, N., Pinon, M. C., Chedotal, A., Molnár, Z. and Mitchell, K. J. (2009). “Specificity and plasticity of thalamocortical connections in Sema6A mutant mice.PLoS Biol 7(4): e98.Google Scholar
Lopez-Bendito, G., Cautinat, A., Sanchez, J. A., Bielle, F., Flames, N., Garratt, A. N., Talmage, D. A., Role, L. W., Charnay, P., Marin, O. and Garel, S. (2006). “Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation.Cell 125(1): 127142.CrossRefGoogle ScholarPubMed
Lopez-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J. and Molnár, Z. (2002). “Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus.J Comp Neurol 451(2): 153169.Google Scholar
Lopez-Bendito, G., Flames, N., Ma, L., Fouquet, C., Di Meglio, T., Chedotal, A., Tessier-Lavigne, M. and Marin, O. (2007). “Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain.J Neurosci 27(13): 33953407.Google Scholar
Lopez-Bendito, G. and Molnár, Z. (2003). “Thalamocortical development: how are we going to get there?Nat Rev Neurosci 4(4): 276289.Google Scholar
Lozsadi, D. A., Gonzalez-Soriano, J. and Guillery, R. W. (1996). “The course and termination of corticothalamic fibres arising in the visual cortex of the rat.Eur J Neurosci 8(11): 24162427.Google Scholar
Lund, R. D. and Mustari, M. J. (1977). “Development of the geniculocortical pathway in rats.J Comp Neurol 173(2): 289306.CrossRefGoogle ScholarPubMed
Maffei, L. and Galli-Resta, L. (1990). “Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life.Proc Natl Acad Sci U S A 87(7): 28612864.Google Scholar
Majdan, M. and Shatz, C. J. (2006). “Effects of visual experience on activity-dependent gene regulation in cortex.Nat Neurosci 9(5): 650659.Google Scholar
Marin, O. (2002). “[Origin of cortical interneurons: basic concepts and clinical implications].Rev Neurol 35(8): 743751.Google Scholar
Marin-Padilla, M. (1971). “Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization.Z Anat Entwicklungsgesch 134(2): 117145.Google Scholar
Marques-Smith, A., Lyngholm, D., Kaufmann, A. K., Stacey, J. A., Hoerder-Suabedissen, A., Becker, E. B., Wilson, M. C., Molnár, Z. and Butt, S. J. (2016). “A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex.Neuron 89(3): 536549.Google Scholar
Martinez-Ferre, A. and Martinez, S. (2012). “Molecular regionalization of the diencephalon.Front Neurosci 6: 73.Google Scholar
McConnell, S. K., Ghosh, A. and Shatz, C. J. (1994). “Subplate pioneers and the formation of descending connections from cerebral cortex.J Neurosci 14(4): 1892–1907.Google Scholar
Metin, C. and Godement, P. (1996). “The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons.J Neurosci 16(10): 32193235.Google Scholar
Millar, L. J., Shi, L., Hoerder-Suabedissen, A. and Molnár, Z. (2017). “Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges.Front Cell Neurosci 11: 78.Google Scholar
Mire, E., Mezzera, C., Leyva-Diaz, E., Paternain, A. V., Squarzoni, P., Bluy, L., Castillo-Paterna, M., Lopez, M. J., Peregrin, S., Tessier-Lavigne, M., Garel, S., Galceran, J., Lerma, J. and Lopez-Bendito, G. (2012). “Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth.Nat Neurosci 15(8): 11341143.Google Scholar
Mitrofanis, J. (1992). “Patterns of antigenic expression in the thalamic reticular nucleus of developing rats.J Comp Neurol 320(2): 161181.Google Scholar
Mitrofanis, J. (1994a). “Development of the pathway from the reticular and perireticular nuclei to the thalamus in ferrets: a Dil study.Eur J Neurosci 6(12): 1864–1882.Google Scholar
Mitrofanis, J. (1994b). “Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups.Eur J Neurosci 6(2): 253263.Google Scholar
Mitrofanis, J. and Baker, G. E. (1993). “Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons.J Comp Neurol 338(4): 575587.Google Scholar
Mitrofanis, J. and Guillery, R. W. (1993). “New views of the thalamic reticular nucleus in the adult and the developing brain.Trends Neurosci 16(6): 240245.Google Scholar
Mitrofanis, J., Lozsadi, D. A. and Coleman, K. A. (1995). “Evidence for a projection from the perireticular thalamic nucleus to the dorsal thalamus in the adult rat and ferret.J Neurocytol 24(12): 891902.Google Scholar
Miyake, A., Nakayama, Y., Konishi, M. and Itoh, N. (2005). “Fgf19 regulated by Hh signaling is required for zebrafish forebrain development.Dev Biol 288(1): 259275.Google Scholar
Molliver, M. E. and Van der Loos, H. (1970). “The ontogenesis of cortical circuitry: the spatial distribution of synapses in somesthetic cortex of newborn dog.Ergeb Anat Entwicklungsgesch 42(4): 553.Google Scholar
Molnár, Z. (1998). Development of Thalamocortical Connections. Oxford, Springer.Google Scholar
Molnár, Z. (2000). “Development and evolution of thalamocortical interactions.Eur J Morphol 38(5): 313320.Google Scholar
Molnár, Z. (2019). “Cortical layer with no known function.Eur J Neurosci 49(7): 957963.Google Scholar
Molnár, Z., Adams, R. and Blakemore, C. (1998). “Mechanisms underlying the early establishment of thalamocortical connections in the rat.J Neurosci 18(15): 57235745.Google Scholar
Molnár, Z., Adams, R., Goffinet, A. M. and Blakemore, C. (1998). “The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse.J Neurosci 18(15): 57465765.Google Scholar
Molnár, Z. and Blakemore, C. (1991). “Lack of regional specificity for connections formed between thalamus and cortex in coculture.Nature 351(6326): 475477.Google Scholar
Molnár, Z. and Blakemore, C. (1995). “How do thalamic axons find their way to the cortex?Trends Neurosci 18(9): 389397.Google Scholar
Molnár, Z. and Butler, A. B. (2002). “The corticostriatal junction: a crucial region for forebrain development and evolution.Bioessays 24(6): 530541.Google Scholar
Molnár, Z. and Cordery, P. (1999). “Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat.J Comp Neurol 413(1): 125.Google Scholar
Molnár, Z., Garel, S., Lopez-Bendito, G., Maness, P. and Price, D. J. (2012). “Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain.Eur J Neurosci 35(10): 15731585.Google Scholar
Molnár, Z., Knott, G. W., Blakemore, C. and Saunders, N. R. (1998). “Development of thalamocortical projections in the South American gray short-tailed opossum (Monodelphis domestica).J Comp Neurol 398(4): 491514.Google Scholar
Molnár, Z., Kurotani, T., Higashi, S. and Toyama, K. (2003). “Development of functional thalamocortical synapses studied with current source density analysis in whole forebrain slices.Brain Res Bull 60(4): 355372.Google Scholar
Molnár, Z, López-Bendito, G, Blakey, D, Thompson, A, and Higashi, S (2006) The Earliest Thalamocortical Interactions. In Development and Plasticity in Sensory Thalamus and Cortex (Editors: Erzurumlu, R., Guido, W., Molnár, Z. ).New York: Springer, 5478.Google Scholar
Molnár, Z., Lopez-Bendito, G., Small, J., Partridge, L. D., Blakemore, C. and Wilson, M. C. (2002). “Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity.J Neurosci 22(23): 1031310323.Google Scholar
Molnár, Z., Luhmann, H. J. and Kanold, P. O. (2020). “Transient cortical circuits match spontaneous and sensory-driven activity during development.Science 370(6514).Google Scholar
Molyneaux, B. J., Arlotta, P., Menezes, J. R. and Macklis, J. D. (2007). “Neuronal subtype specification in the cerebral cortex.Nat Rev Neurosci 8(6): 427437.Google Scholar
Montiel, J. F., Wang, W. Z., Oeschger, F. M., Hoerder-Suabedissen, A., Tung, W. L., Garcia-Moreno, F., Holm, I. E., Villalon, A. and Molnár, Z. (2011). “Hypothesis on the dual origin of the Mammalian subplate.Front Neuroanat 5: 25.Google Scholar
Mooney, R., Penn, A. A., Gallego, R. and Shatz, C. J. (1996). “Thalamic relay of spontaneous retinal activity prior to vision.Neuron 17(5): 863874.Google Scholar
Mooney, R. D. and Rhoades, R. W. (1983). “Neonatal enucleation alters functional organization in hamster’s lateral posterior nucleus.Brain Res 285(3): 399404.Google Scholar
Moreno-Juan, V., Filipchuk, A., Anton-Bolanos, N., Mezzera, C., Gezelius, H., Andres, B., Rodriguez-Malmierca, L., Susin, R., Schaad, O., Iwasato, T., Schule, R., Rutlin, M., Nelson, S., Ducret, S., Valdeolmillos, M., Rijli, F. M. and Lopez-Bendito, G. (2017). “Prenatal thalamic waves regulate cortical area size prior to sensory processing.Nat Commun 8: 14172.Google Scholar
Murray, K. D., Choudary, P. V. and Jones, E. G. (2007). “Nucleus- and cell-specific gene expression in monkey thalamus.Proc Natl Acad Sci USA 104(6): 19891994.Google Scholar
Naegele, J. R., Jhaveri, S. and Schneider, G. E. (1988). “Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster.J Comp Neurol 277(4): 593607.Google Scholar
Nakagawa, Y. and O’Leary, D. D. (2001). “Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus.J Neurosci 21(8): 27112725.Google Scholar
Nakagawa, Y. and Shimogori, T. (2012). “Diversity of thalamic progenitor cells and postmitotic neurons.Eur J Neurosci 35(10): 15541562.Google Scholar
Negyessy, L., Gal, V., Farkas, T. and Toldi, J. (2000). “Cross-modal plasticity of the corticothalamic circuits in rats enucleated on the first postnatal day.Eur J Neurosci 12(5): 16541668.Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. and Kriegstein, A. R. (2004). “Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.Nat Neurosci 7(2): 136144.Google Scholar
O’Leary, D. D. (1989). “Do cortical areas emerge from a protocortex?Trends Neurosci 12(10): 400406.Google Scholar
O’Leary, D. D. and Sahara, S. (2008). “Genetic regulation of arealization of the neocortex.Curr Opin Neurobiol 18(1): 90100.Google Scholar
Oeschger, F. M., Wang, W. Z., Lee, S., Garcia-Moreno, F., Goffinet, A. M., Arbones, M. L., Rakic, S. and Molnár, Z. (2012). “Gene expression analysis of the embryonic subplate.Cereb Cortex 22(6): 13431359.Google Scholar
Osheroff, H. and Hatten, M. E. (2009). “Gene expression profiling of preplate neurons destined for the subplate: genes involved in transcription, axon extension, neurotransmitter regulation, steroid hormone signaling, and neuronal survival.Cereb Cortex 19 Suppl 1: i126134.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F. and Merabet, L. B. (2005). “The plastic human brain cortex.Annu Rev Neurosci 28: 377401.Google Scholar
Penn, A. A., Riquelme, P. A., Feller, M. B. and Shatz, C. J. (1998). “Competition in retinogeniculate patterning driven by spontaneous activity.Science 279(5359): 21082112.Google Scholar
Piche, M., Chabot, N., Bronchti, G., Miceli, D., Lepore, F. and Guillemot, J. P. (2007). “Auditory responses in the visual cortex of neonatally enucleated rats.Neuroscience 145(3): 11441156.Google Scholar
Pinon, M. C., Jethwa, A., Jacobs, E., Campagnoni, A. and Molnár, Z. (2009). “Dynamic integration of subplate neurons into the cortical barrel field circuitry during postnatal development in the Golli-tau-eGFP (GTE) mouse.J Physiol 587(Pt 9): 19031915.Google Scholar
Pinon, M. C., Tuoc, T. C., Ashery-Padan, R., Molnár, Z. and Stoykova, A. (2008). “Altered molecular regionalization and normal thalamocortical connections in cortex-specific Pax6 knock-out mice.J Neurosci 28(35): 87248734.Google Scholar
Pouchelon, G., Gambino, F., Bellone, C., Telley, L., Vitali, I., Luscher, C., Holtmaat, A. and Jabaudon, D. (2014). “Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons.Nature 511(7510): 471474.Google Scholar
Powell, A. W., Sassa, T., Wu, Y., Tessier-Lavigne, M. and Polleux, F. (2008). “Topography of thalamic projections requires attractive and repulsive functions of Netrin-1 in the ventral telencephalon.PLoS Biol 6(5): e116.Google Scholar
Pratt, T., Quinn, J. C., Simpson, T. I., West, J. D., Mason, J. O. and Price, D. J. (2002). “Disruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1.J Neurosci 22(19): 85238531.Google Scholar
Price, D. D. and Verne, G. N. (2002). “Does the spinothalamic tract to ventroposterior lateral thalamus and somatosensory cortex have roles in both pain sensation and pain-related emotions?J Pain 3(2): 105108; discussion 113–104.Google Scholar
Price, D. J., Clegg, J., Duocastella, X. O., Willshaw, D. and Pratt, T. (2012). “The importance of combinatorial gene expression in early Mammalian thalamic patterning and thalamocortical axonal guidance.Front Neurosci 6: 37.Google Scholar
Price, D. J., Kennedy, H., Dehay, C., Zhou, L., Mercier, M., Jossin, Y., Goffinet, A. M., Tissir, F., Blakey, D. and Molnár, Z. (2006). “The development of cortical connections.Eur J Neurosci 23(4): 910920.Google Scholar
Puelles, L., Harrison, M., Paxinos, G. and Watson, C. (2013). “A developmental ontology for the mammalian brain based on the prosomeric model.Trends Neurosci 36(10): 570578.Google Scholar
Puelles, L. and Rubenstein, J. L. (1993). “Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization.Trends Neurosci 16(11): 472479.Google Scholar
Puelles, L. and Rubenstein, J. L. (2003). “Forebrain gene expression domains and the evolving prosomeric model.Trends Neurosci 26(9): 469476.Google Scholar
Puelles, L. Martinez-de-la-Torres, M., Ferran, J.-L. and Watson, C. (2012). Diencephalon. In The Mouse Nervous System (Editors: Watson, Charles, Paxinos, George, Puelles, Luis). New York: Academic Press, 313336.Google Scholar
Qin, J., Wang, M., Zhao, T., Xiao, X., Li, X., Yang, J., Yi, L., Goffinet, A. M., Qu, Y. and Zhou, L. (2020). “Early forebrain neurons and scaffold fibers in human embryos.Cereb Cortex 30(3): 913928.Google Scholar
Qin, Y., Zhang, N., Chen, Y., Zuo, X., Jiang, S., Zhao, X., Dong, L., Li, J., Zhang, T., Yao, D. and Luo, C. (2020). “Rhythmic network modulation to thalamocortical couplings in epilepsy.Int J Neural Syst 30(11): 2050014.Google Scholar
Quinlan, R., Graf, M., Mason, I., Lumsden, A. and Kiecker, C. (2009). “Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain.Neural Dev 4: 35.Google Scholar
Quintana-Urzainqui, I., Hernandez-Malmierca, P., Clegg, J. M., Li, Z., Kozic, Z. and Price, D. J. (2020). “The role of the diencephalon in the guidance of thalamocortical axons in mice.Development 147(12).Google Scholar
Rakic, P. (1976). “Prenatal genesis of connections subserving ocular dominance in the rhesus monkey.Nature 261(5560): 467471.Google Scholar
Rash, B. G. and Grove, E. A. (2006). “Area and layer patterning in the developing cerebral cortex.Curr Opin Neurobiol 16(1): 2534.Google Scholar
Rauschecker, J. P. (1995). “Compensatory plasticity and sensory substitution in the cerebral cortex.Trends Neurosci 18(1): 3643.Google Scholar
Ravary, A., Muzerelle, A., Herve, D., Pascoli, V., Ba-Charvet, K. N., Girault, J. A., Welker, E. and Gaspar, P. (2003). “Adenylate cyclase 1 as a key actor in the refinement of retinal projection maps.J Neurosci 23(6): 22282238.Google Scholar
Reichova, I. and Sherman, S. M. (2004). “Somatosensory corticothalamic projections: distinguishing drivers from modulators.J Neurophysiol 92(4): 21852197.Google Scholar
Roe, A. W., Pallas, S. L., Kwon, Y. H. and Sur, M. (1992). “Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex.J Neurosci 12(9): 36513664.Google Scholar
Salinas, P. C. and Nusse, R. (1992). “Regional expression of the Wnt-3 gene in the developing mouse forebrain in relationship to diencephalic neuromeres.Mech Dev 39(3): 151160.Google Scholar
Sansom, S. N. and Livesey, F. J. (2009). “Gradients in the brain: the control of the development of form and function in the cerebral cortex.Cold Spring Harb Perspect Biol 1(2): a002519.CrossRefGoogle ScholarPubMed
Scholpp, S. and Lumsden, A. (2010). “Building a bridal chamber: development of the thalamus.Trends Neurosci 33(8): 373380.Google Scholar
Seabrook, T. A., Krahe, T. E., Govindaiah, G. and Guido, W. (2013). “Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development.Neural Dev 8: 24.Google Scholar
Seibt, J., Schuurmans, C., Gradwhol, G., Dehay, C., Vanderhaeghen, P., Guillemot, F. and Polleux, F. (2003). “Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues.Neuron 39(3): 439452.Google Scholar
Shatz, C. J. and Luskin, M. B. (1986). “The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex.J Neurosci 6(12): 36553668.Google Scholar
Shatz, C. J. and Rakic, P. (1981). “The genesis of efferent connections from the visual cortex of the fetal rhesus monkey.J Comp Neurol 196(2): 287307.Google Scholar
Shatz, C. J. and Stryker, M. P. (1988). “Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents.Science 242(4875): 8789.Google Scholar
Sherman, S. M. (2005). “Thalamic relays and cortical functioning.Prog Brain Res 149: 107126.Google Scholar
Sherman, S. M. (2016). “Thalamus plays a central role in ongoing cortical functioning.Nat Neurosci 19(4): 533541.Google Scholar
Sherman, S. M. and Guillery, R. W. (1996). “Functional organization of thalamocortical relays.J Neurophysiol 76(3): 13671395.Google Scholar
Sherman, S. M. and Guillery, R. W. (1998). “On the actions that one nerve cell can have on another: distinguishing ‘drivers’ from ‘modulators.’” Proc Natl Acad Sci USA 95(12): 71217126.Google Scholar
Sherman, S. M. and Guillery, R. W. (2013). Functional Connections of Cortical Areas: A New View from the Thalamus. London: MIT Press.Google Scholar
Shi, W., Xianyu, A., Han, Z., Tang, X., Li, Z., Zhong, H., Mao, T., Huang, K. and Shi, S. H. (2017). “Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus.Nat Neurosci 20(4): 516528.Google Scholar
Shimogori, T., Banuchi, V., Ng, H. Y., Strauss, J. B. and Grove, E. A. (2004). “Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex.Development 131(22): 56395647.Google Scholar
Shimogori, T. and Grove, E. A. (2005). “Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation.J Neurosci 25(28): 65506560.Google Scholar
Sur, M., Garraghty, P. E. and Roe, A. W. (1988). “Experimentally induced visual projections into auditory thalamus and cortex.Science 242(4884): 14371441.Google Scholar
Sur, M. and Rubenstein, J. L. (2005). “Patterning and plasticity of the cerebral cortex.Science 310(5749): 805810.Google Scholar
Sussel, L., Marin, O., Kimura, S. and Rubenstein, J. L. (1999). “Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum.Development 126(15): 33593370.Google Scholar
Syed, M. M., Lee, S., He, S. and Zhou, Z. J. (2004). “Spontaneous waves in the ventricular zone of developing mammalian retina.J Neurophysiol 91(5): 19992009.Google Scholar
Thompson, A. D., Picard, N., Min, L., Fagiolini, M. and Chen, C. (2016). “Cortical feedback regulates feedforward retinogeniculate refinement.Neuron 91(5): 10211033.Google Scholar
Tissir, F., Bar, I., Jossin, Y., De Backer, O. and Goffinet, A. M. (2005). “Protocadherin Celsr3 is crucial in axonal tract development.Nat Neurosci 8(4): 451457.Google Scholar
Toldi, J., Farkas, T. and Volgyi, B. (1994). “Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study.Neurosci Lett 167(1–2): 14.Google Scholar
Toldi, J., Feher, O. and Wolff, J. R. (1996). “Neuronal plasticity induced by neonatal monocular (and binocular) enucleation.Prog Neurobiol 48(3): 191218.Google Scholar
Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K. and Kanold, P. O. (2012). “Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex.J Neurosci 32(2): 692702.Google Scholar
Tuncdemir, S. N., Wamsley, B., Stam, F. J., Osakada, F., Goulding, M., Callaway, E. M., Rudy, B. and Fishell, G. (2016). “Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits.Neuron 89(3): 521535.Google Scholar
Tuttle, R., Nakagawa, Y., Johnson, J. E. and O’Leary, D. D. (1999). “Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice.Development 126(9): 19031916.Google Scholar
Uemura, M., Nakao, S., Suzuki, S. T., Takeichi, M. and Hirano, S. (2007). “OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections.Nat Neurosci 10(9): 11511159.Google Scholar
Uesaka, N., Hayano, Y., Yamada, A. and Yamamoto, N. (2007). “Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching.J Neurosci 27(19): 52155223.Google Scholar
Uesaka, N., Ruthazer, E. S. and Yamamoto, N. (2006). “The role of neural activity in cortical axon branching.Neuroscientist 12(2): 102106.Google Scholar
Usrey, W. M. and Sherman, S. M. (2019). “Corticofugal circuits: communication lines from the cortex to the rest of the brain.J Comp Neurol 527(3): 640650.Google Scholar
Vanderhaeghen, P. and Polleux, F. (2004). “Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between.Trends Neurosci 27(7): 384391.Google Scholar
Viswanathan, S., Bandyopadhyay, S., Kao, J. P. and Kanold, P. O. (2012). “Changing microcircuits in the subplate of the developing cortex.J Neurosci 32(5): 15891601.Google Scholar
Vue, T. Y., Aaker, J., Taniguchi, A., Kazemzadeh, C., Skidmore, J. M., Martin, D. M., Martin, J. F., Treier, M. and Nakagawa, Y. (2007). “Characterization of progenitor domains in the developing mouse thalamus.J Comp Neurol 505(1): 7391.Google Scholar
Vue, T. Y., Bluske, K., Alishahi, A., Yang, L. L., Koyano-Nakagawa, N., Novitch, B. and Nakagawa, Y. (2009). “Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice.J Neurosci 29(14): 44844497.Google Scholar
Vue, T. Y., Lee, M., Tan, Y. E., Werkhoven, Z., Wang, L. and Nakagawa, Y. (2013). “Thalamic control of neocortical area formation in mice.J Neurosci 33(19): 84428453.Google Scholar
Wang, W. Z., Oeschger, F. M., Montiel, J. F., Garcia-Moreno, F., Hoerder-Suabedissen, A., Krubitzer, L., Ek, C. J., Saunders, N. R., Reim, K., Villalon, A. and Molnár, Z. (2011). “Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals.Cereb Cortex 21(10): 21872203.Google Scholar
Wang, Y., Thekdi, N., Smallwood, P. M., Macke, J. P. and Nathans, J. (2002). “Frizzled-3 is required for the development of major fiber tracts in the rostral CNS.J Neurosci 22(19): 85638573.Google Scholar
Wang, Y., Zhang, J., Mori, S. and Nathans, J. (2006). “Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling.J Neurosci 26(2): 355364.Google Scholar
Wong, S. Z. H., Scott, E. P., Mu, W., Guo, X., Borgenheimer, E., Freeman, M., Ming, G. L., Wu, Q. F., Song, H. and Nakagawa, Y. (2018). “In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis.PLoS Biol 16(4): e2005211.Google Scholar
Yaka, R., Yinon, U. and Wollberg, Z. (1999). “Auditory activation of cortical visual areas in cats after early visual deprivation.Eur J Neurosci 11(4): 13011312.Google Scholar
Yamada, A., Uesaka, N., Hayano, Y., Tabata, T., Kano, M. and Yamamoto, N. (2010). “Role of pre- and postsynaptic activity in thalamocortical axon branching.Proc Natl Acad Sci USA 107(16): 75627567.Google Scholar
Yamamoto, N. and Lopez-Bendito, G. (2012). “Shaping brain connections through spontaneous neural activity.Eur J Neurosci 35(10): 15951604.Google Scholar
Yun, M. E., Johnson, R. R., Antic, A. and Donoghue, M. J. (2003). “EphA family gene expression in the developing mouse neocortex: regional patterns reveal intrinsic programs and extrinsic influence.J Comp Neurol 456(3): 203216.Google Scholar
Zhang, J. S., Kaltenbach, J. A., Wang, J. and Bronchti, G. (2003). “Changes in [14 C]-2-deoxyglucose uptake in the auditory pathway of hamsters previously exposed to intense sound.Hear Res 185(1–2): 1321.Google Scholar
Zhang, R. W., Wei, H. P., Xia, Y. M. and Du, J. L. (2010). “Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells.J Physiol 588(Pt 14): 25572569.Google Scholar
Zhou, L., Goffinet, A. M. and Tissir, F. (2008). “[Role of the cadherin Celsr3 in the connectivity of the cerebral cortex].Med Sci (Paris) 24(12): 10251027.Google Scholar
Zhou, L., Qu, Y., Tissir, F. and Goffinet, A. M. (2009). “Role of the atypical cadherin Celsr3 during development of the internal capsule.Cereb Cortex 19 Suppl 1: i114119.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×