Published online by Cambridge University Press: 23 May 2024
Chow rings of toric varieties, which originate in intersection theory, feature a rich combinatorial structure of independent interest. We survey four different ways of computing in these rings, due to Billera, Brion, Fulton–Sturmfels, and Allermann–Rau. We illustrate the beauty and power of these methods by giving four proofs of Huh and Huh–Katz’s formula μk(Μ) = degΜ(αr–k βk) for the coefficients of the reduced characteristic polynomial of a matroid M as the mixed intersection numbers of the hyperplane and reciprocal hyperplane classes α and β in the Chow ring of Μ. Each of these proofs sheds light on a different aspect of matroid combinatorics, and provides a framework for further developments in the intersection theory of matroids.
Our presentation is combinatorial, and does not assume previous knowledge of toric varieties, Chow rings, or intersection theory. This survey was prepared for the Clay Lecture to be delivered at the 2024 British Combinatorics Conference.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.