Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T16:48:43.922Z Has data issue: false hasContentIssue false

6 - Algorithmic aspects of graph homomorphisms

Published online by Cambridge University Press:  05 May 2013

P. Hell
Affiliation:
Simon Fraser University
C. D. Wensley
Affiliation:
University of Wales, Bangor
Get access

Summary

Abstract

Homomorphisms are a useful model for a wide variety of combinatorial problems dealing with mappings and assignments, typified by scheduling and channel assignment problems. Homomorphism problems generalize graph colourings, and are in turn generalized by constraint satisfaction problems; they represent a robust intermediate class of problems – with greater modeling power than graph colourings, yet simpler and more manageable than general constraint satisfaction problems. We will discuss various homomorphism problems from a computational perspective. One variant, with natural applications, gives each vertex a list of allowed images. Such list homomorphisms generalize list colourings, precolouring extensions, and graph retractions. Many algorithms for finding homomorphisms adapt well to finding list homomorphisms. Semi-homomorphisms are another variant; they generalize the kinds of partitions that homomorphisms induce, to allow both homomorphism type constraints, and constraints that correspond to homomorphisms of the complementary graphs. Surprisingly, semi-homomorphism partition problems cover a great variety of concepts arising in the study of perfect graphs. We illustrate some of the ideas leading to efficient algorithms for all these problems.

Introduction

Graphs we consider may be directed or undirected, and, correspondingly, uv can denote a directed arc or an undirected edge, depending on the context. Both kinds of graphs will be allowed to have loops, but no parallel edges, and all graphs will be assumed to be finite. A homomorphism of a graph G to a graph H is a mapping f: V(G)V(H) such that uv ∈ (G) implies f(u)f(v)E(H).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×