Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T02:00:22.178Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2013

Alexandre S. Alexandrov
Affiliation:
Loughborough University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bednorz, J G & Müller, K A 1986 Possible high Tc superconductivity in the Ba-La-Cu-O systemZ. Phys.B 64 189–193Google Scholar
[2] Gough, C E, Colclough, M S, Forgan, E M, Jordan, R G, Keene, M, Muirhead, C M, Rae, A I M, Thomas, N, Abell, J S & Sutton, S 1987 Flux quantization in a high-Tc superconductorNature 326 855Google Scholar
[3] Alexandrov, A S & Kabanov V, V 2011 Unconventional high-temperature superconductivity from repulsive interactions: Theoretical constraintsPhys. Rev. Lett. 106 136–403Google Scholar
[4] Aimi, T & Imada, M J 2007 Does the simple two-dimensional Hubbard model account for high-Tc superconductivity in copper oxides?Phys. Soc. Jpn. 76 113–708Google Scholar
[5] Hardy, T M, Hague, J P, Samson, J H & Alexandrov, A S 2009 Superconductivity in a Hubbard-Frohlich model and in cupratesPhys. Rev.B 79 212–501Google Scholar
[6] Alexandrov, A S 1998 in Models and Phenomenology for Conventional and High-temperature Superconductivity (Course CXXXVI of the International School of Physics ‘Enrico Fermi’) (eds. Iadonisi, G, Schrieffer, J R & Chio-falo, M LAmsterdam: IOS Press) 309
[7] Alexandrov, A S 2003 Theory of Superconductivity: From Weak to Strong Coupling (Bristol: IoP Publishing)
[8] London, F 1938 On the Bose-Einstein condensationPhys.Rev. 54 947-954Google Scholar
[9] Ogg, R A Jr 1946 Bose-Einstein condensation of trapped electron pairs. Phase separation and superconductivity of metal-ammonia solutionsPhys. Rev. 69 243–244Google Scholar
[10] Schafroth, M R 1955 Superconductivity of a charged ideal Bose gasPhys. Rev. 100 463–475Google Scholar
[11] Blatt, J M & Butler, S T 1955 Superfluidity of an ideal Bose-Einstein gasPhys. Rev. 100 476–480Google Scholar
[12] Bardeen, J, Cooper, L N & Schrieffer, J R 1957 Theory of superconductivityPhys. Rev. 108 1175–11204Google Scholar
[13] Frohlich, H 1950 Theory of the superconducting state. I. The ground state at the absolute zero of temperaturePhys. Rev. 79 845–856Google Scholar
[14] Eliashberg, G M 1960 Interactions between electrons and lattice vibrations in a superconductorSov. Phys. JETP 11 696–702Google Scholar
[15] Migdal, A B 1958 Interaction between electrons and lattice vibrations in a normal metalSov. Phys. JETP 7 996–1001Google Scholar
[16] Gor'kov, L P 1959 Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivitySoviet Phys. JETP 9 1364–1367Google Scholar
[17] Ginzburg, V L & Landau, L D 1950 On the theory of superconductivityZh. Eksp. Teor. Fiz. 20 1064–1082Google Scholar
[18] Abrikosov, A A 1957 On the magnetic properties of superconductors of the second groupSoviet Phys. JETP 5 1174–1183Google Scholar
[19] Alexandrov, A S & Ranninger, J 1981 Theory of bipolarons and bipolaronic bandsPhys. Rev.B 23 1796–1801Google Scholar
[20] Alexandrov, A S & Ranninger, J 1981 Bipolaronic superconductivityPhys. Rev.B 24 1164–1169Google Scholar
[21] Alexandrov, A S 1983 Bipolarons in narrow-band crystalsZh. Fiz. Khim. 57 273 [1983 Russ. J. Phys. Chem. 57 167]Google Scholar
[22] For a comprehensive review see Plakida, N 2010 High-temperature Cuprate Superconductors: Experiment, Theory and Applications (Springer Series in Solid State Science 166, Heidelberg: Springer)
[23] Anisimov, V I, Zaanen, J & Andersen, O K 1991 Band theory and Mott insulators: Hubbard U instead of StonerI Phys. Rev.B 44 943–954Google Scholar
[24] Korshunov, M M, Gavrichkov, V A, Ovchinnikov, S G, Nekrasov, I A, Pchelkina, Z V & Anisimov, V I 2005 Hybrid LDA and generalized tight-binding method for electronic structure calculations of strongly correlated electron systemsPhys. Rev.B 72 165 104Google Scholar
[25] Das, T, Markiewicz, R S & Bansil, A 2010 Optical model-solution to the competition between a pseudogap phase and a charge-transfer-gap phase in high-temperature cuprate superconductorsPhys. Rev.B 81 174–504Google Scholar
[26] Fournier, D, Levy, G, Pennec, Y, McChesney, J L, Bostwick, A, Rotenberg, E, Liang, R, Hardy, W N, Bonn, D A, Elfimov, I S & Damascelli, A 2010 Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+xNature Physics 6 905–911Google Scholar
[27] Bauer, T & Falter, C 2009 Impact of dynamical screening on the phonon dynamics of metallic La2CuO4Phys. Rev.B 80 094–525Google Scholar
[28] Yndurain, F & Soler, J M 2009 Anomalous electron-phonon interaction in doped LaFeAsO: First-principles calculationsPhys. Rev.B 79 134–506Google Scholar
[29] Shuey, R T 1965 Electron-phonon interaction for indirect interband transitions in GermaniumPhys. Rev. 139 A1675–A1684Google Scholar
[30] Maximov, E G, Savrasov, D Yu & Savrasov, S Yu 1997 The electron-phonon interaction and the physical properties of metalsPhysics-Uspekhi 40 337–358 [1997 Uspechi Fiz. Nauk. 167 353]Google Scholar
[31] Mahan, G D 1990 Many-Particle Physics (New York: Plenum Press)
[32] Eagles, D M 1969 Theory of transitions from large to nearly-small polarons, with application to Zr-doped superconducting SrTiO3Phys. Rev. 181 1278–1290Google Scholar
[33] Alexandrov, A S 1996 Bipolaron anisotropic flat bands, Hall mobility edge, and metal-semiconductor duality of overdoped high-Tc oxidesPhys. Rev.B 53 286–32869Google Scholar
[34] Alexandrov, A S & Bratkovsky, A M 1999 The essential interactions in oxides and spectral weight transfer in doped manganitesJ. Phys.: Condens. Matter 11 L531-L539Google Scholar
[35] Müller, K A 2000 Recent experimental insights into HTSC materialsPhysicaC 341–348 11–18Google Scholar
[36] Wagner, M 1986 Unitary Transformations in Solid State Physics (Amsterdam: North Holland)
[37] Lee, T D, Low, F, & Pines, D 1953 The motion of slow electrons in a polar crystalPhys. Rev. 90 297–302Google Scholar
[38] Lang, I G & Firsov, Yu A 1962 Kinetic theory of semiconductors with low mobilityZh. Eksp. Teor. Fiz. 43 1843 [1963 Sov. Phys. JETP 16 1301-1312]Google Scholar
[39] Wilcox, R M 1967 Exponential operators and parameter differentiation in quantum physicsJ. Math. Phys. 8 962–982Google Scholar
[40] Alexandrov, A S & Devreese, J T 2009 Advances in Polaron Physics (Heidelberg: Springer)
[41] Holstein, T 1959 Studies of polaron motion. 2. The small polaronAnn. Phys. 8 343–389Google Scholar
[42] Alexandrov, A S & Kornilovitch, P E 1999 Mobile small polaronPhys. Rev. Lett. 82 807–810Google Scholar
[43] Hague, J P, Kornilovitch, P E, Alexandrov, A S & Samson, J HEffects of lattice geometry and interaction range on polaron dynamicsPhys. Rev.B 73 054–303
[44] Cataudella, V, De Filippis, G & Perroni, C A 2007 Single polaron properties in different electron phonon modelsPolarons in Advanced Materials ed. Alexandrov, A S (Dordrecht: Springer) 149–189
[45] Fehske, H & Trugman, S A 2007 Numerical solution of the Holstein polaron problemPolarons in Advanced Materials ed. Alexandrov, A S (Dordrecht: Springer) 393–461
[46] Mishchenko, A S & Nagaosa, N 2007 Spectroscopic properties of polarons in strongly correlated systems by exact diagrammatic Monte Carlo methodPolarons in Advanced Materials ed. Alexandrov, A S (Dordrecht: Springer) 503–544
[47] Landau, L DÜber die Bewegung der Elektronen in KristalgitterPhys. Z. Sowjetunion 3 644–645
[48] Pekar, S I 1951 Issledovanija po Ekektronnoj Teorii Kristallov (Moscow: Gostekhizdat)
[49] Berciu, M 2006 Green's function of a dressed particlePhys. Rev. Lett. 97 036–402Google Scholar
[50] Alexandrov, A S 1992 Many-body effects in the normal-state polaron systemPhys. Rev.B 46 2838–2844Google Scholar
[51] Alexandrov, A S 2011 Theory of high-temperature superconductivity in doped polar insulatorsEPL 95 27004Google Scholar
[52] Matsubara, T 1955 A new approach to quantum-statistical mechanicsProg. Theor. Phys. 14 351–378Google Scholar
[53] Firsov, Yu A & Kudinov, E K 1997 Two-site model and its relation to the polaron- crystal modelPhys. Solid State 39 1930–1937Google Scholar
[54] Alexandrov, A S & Mott, N F 1995 Polarons and Bipolarons (Singapore: World Scientific)
[55] Yamashita, J & Kurosawa, T 1958 On the electric current in NiOJ. Phys. Chem. Solids 5 34–43Google Scholar
[56] Sewell, G L 1958 Electrons in polar crystalsPhil. Mag. 3 1361–1380Google Scholar
[57] Rietschel, H, Pintschovius, L & Reichardt, W 1989 Selected aspects of the lattice-dynamics in high-Tc oxide superconductorsPhysicaC 162 1705–1708Google Scholar
[58] Devreese, J T & Alexandrov, A S 2009 Fröhlich polaron and bipolaron: recent developmentsRep. Prog. Phys. 72 066–501Google Scholar
[59] Gogolin, A A 1982 The spectrum of an intermediate polaron and its bound-states with phonons at strong couplingPhysica Status SolidiB 109 95–108Google Scholar
[60] Geilikman, B. T. 1975 Adiabatic perturbation theory for metals and problem of lattice equilibriumUsp. Fiz. Nauk 115 403–426 [1975 Sov. Phys. Usp. 18 190]Google Scholar
[61] Alexandrov, A S 2001 Breakdown of the Migdal-Eliashberg theory in the strong-coupling adiabatic regimeEurophys. Lett. 56 92–98Google Scholar
[62] Vinetskii, V L & Giterman, M S 1957 On the theory of the interaction of excess charges in ionic crystalsZh. Eksp. Teor. Fiz. 33 730 [1958 Sov. Phys. JETP 6 560-564]Google Scholar
[63] Schrieffer, J R & Wolff, P A 1966 Relation between the Anderson and Kondo Hamil- toniansPhys. Rev. 149 491–492Google Scholar
[64] Cohen, M L 1964 Superconductivity in many-valley semiconductors and in semimetalsPhys. Rev. 134 A511-A521Google Scholar
[65] Allen, P B & Cohen, M L 1969 Pseudopotential calculation of the mass enhancement and superconducting transition temperature of simple metalsPhys. Rev. 187 525–538Google Scholar
[66] Hirsch, J E 2009 BCS theory of superconductivity: it is time to question its validityPhys. Scr. 80 035–702Google Scholar
[67] Abrikosov, A A, Gorkov, L P & Dzyaloshinskii, I E 1963 Methods of Quantum Field Theory in Statistical Physics (Englewood Cliffs, New Jersey: Prentice Hall)
[68] Alexandrov, A S 2008 Unconventional pairing symmetry of layered superconductors caused by acoustic phononsPhys. Rev.B 77 094–502Google Scholar
[69] Tolmachev, V V 1958 in A New Method in the Theory of Superconductivity eds Bogoliubov, N N, Tolmachev, V V & Shirkov, D V (New York: Consultants Bureau)
[70] Morel, P & Anderson, P W 1962 Calculation of the superconducting state parameters with retarded electron-phonon interactionPhys. Rev. 125 1263–1271Google Scholar
[71] Hirsch, J E 1985 Attractive interaction and pairing in fermion systems with strong on-site repulsionPhys. Rev. Lett. 54 1317–1320Google Scholar
[72] Spalek, J 1988 Effect of pair hopping and magnitude of intra-atomic interaction on exchange-mediated superconductivityPhys. Rev.B 37 533–536Google Scholar
[73] Gros, C, Joynt, R & Rice, T M 1987 Antiferromagnetic correlations in almost-localized Fermi liquidsPhys. Rev.B 36 381–393Google Scholar
[74] Anderson, P W, Lee, P A, Randeria, M, Rice, T M, Tiverdi, N & Zhang, F C 2004 The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVBJ. Phys.: Condens. Matter 16 R755-R769 and references thereinGoogle Scholar
[75] Zhang, F C, Gros, C, Rice, T M & Shiba, H 1988 A renormalised Hamiltonian approach to a resonant valence bond wavefunctionSupercond. Sci. Technol. 1 36–46Google Scholar
[76] Emery, V J, Kivelson, S A & Lin, H Q 1990 Phase separation in the t -J modelPhys. Rev. Lett. 64 475–478Google Scholar
[77] Samson, J H 2012 Trimer energies in the t - Jp model (unpublished)
[78] Alexandrov, A S & Kornilovitch, P E 2002 The Frohlich-Coulomb model of high-temperature superconductivity and charge segregation in the cupratesJ. Phys.: Condens. Matter 14 5337–5348Google Scholar
[79] Bonca, J & and Trugman, S A 2001 Bipolarons in the extended Holstein-Hubbard modelPhys. Rev.B 64 094507Google Scholar
[80] Alexandrov, A S, Samson, J H & Sica, G 2012 Superlight small bipolarons from realistic long-range Coulomb and Fröhlich interactionsPhys. Rev.B 85 104–520Google Scholar
[81] Alexandrov, A S, Kabanov, V V, & Mott, N F 1996 Coherent ab and c transport theory of high-Tc cupratesPhys. Rev. Lett. 77 4796–4799Google Scholar
[82] Alexandrov, A S (Aleksandrov) & and Kabanov, V V 1986 Mass of small radius bipolaronFiz. Tverd. Tela 28 1129–1135 [1986 Soviet Phys. Solid State. 28 631].Google Scholar
[83] Alexandrov, A S, Ranninger, J & Robaszkiewicz, S 1986 Bipolaronic superconductivity: Thermodynamics, magnetic properties, and possibility of existence in real substancesPhys. Rev.B 33 4526–4542Google Scholar
[84] Alexandrov, A S, Samarchenko, D A & Traven, S V 1987 Magnetic properties of a charged Bose gas and the electrodynamics of a strongly coupled electron-phonon systemZh. Eksp. Teor. Fiz. 93 1007–1019 [1987 Sov. Phys. JETP 66 567]Google Scholar
[85] Peierls, R 1933 On the theory of diamagnetism of conduction electronsZ. Physik 80 763–791Google Scholar
[86] Alexandrov, A S & Kabanov, V V 1999 Parameter-free expression for superconducting Tc in cupratesPhys. Rev.B 59 13628–13631Google Scholar
[87] Alexandrov, A S & Mott, N F 1994 High Temperature Superconductors and Other Superfluids (London: Taylor & Francis)
[88] Mermin, N D & Wagner, H 1966 Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg modelsPhys. Rev. Lett. 17 113–31136Google Scholar
[89] Berezinskii, V L 1971 Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. 2. Quantum systemsZh. Eksp. Teor. Fiz. 61 1144 [1972 Soviet Physics JETP-USSR 34 610]Google Scholar
[90] Kosterlitz, J M & Thouless, D J 1973 Ordering, metastability and phase-transitions in 2 dimensional systemsJ. Phys. C – Solid State Physics 6 1181–1203Google Scholar
[91] Popov, V N 1983 Functional Integrals in Quantum Field Theory and Statistical Physics (Dordrecht: Reidel)
[92] Fisher, D S & Hohenberg, P C 1988 Dilute Bose gas in two dimensionsPhys. Rev.B 37 4936–4943Google Scholar
[93] Alexandrov, A S 2007 Superlight small bipolarons: a route to room temperature superconductivityHigh-Tc Superconductors and Related Transition Metal Oxides eds. Bussmann-Holder, A & Keller, H (Berlin: Springer) 1–15
[94] Alexandrov, A S, Samson, J H & Sica, G 2012 High temperature superconductivity from realistic long-range Coulomb and Fröhlich interactions arXiv:1205.3436
[95] Eagles, D M 1969 Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductorsPhys. Rev. 186 456–463Google Scholar
[96] Leggett, A J 1980 Cooper pairing in spin-polarized Fermi systemsJ. Phys. Colloques 41 C7-19–C7–26Google Scholar
[97] Nozieres, P & Schmitt-Rink, S 1985 Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivityJ. Low Temp. Phys. 59 195–211Google Scholar
[98] Micnas, R, Ranninger, J & Robaszkiewicz, S 1990 Superconductivity in narrow-band systems with local nonretarded attractive interactionsRev. Mod. Phys. 62 113–171Google Scholar
[99] Alexandrov, A S & Rubin, S G 1993 Path-integral approach to Cooper pairs and charged bosonsPhys. Rev.B 47 5141–5145Google Scholar
[100] Belkhir, L & Randeria, M 1994 Crossover from Cooper pairs to composite bosons: A generalized RPA analysis of collective excitationsPhys. Rev.B 49 6829–6840Google Scholar
[101] Pistolesi, F & Strinati, G C 1996 Evolution from BCS superconductivity to Bose condensation: Calculation of the zero-temperature phase coherence lengthPhys. Rev.B 53 15168–15192Google Scholar
[102] Loktev, V M, Quick, R M & Sharapov, S G 2001 Phase fluctuations and pseudogap phenomenaPhys. Rep. 349 1–123Google Scholar
[103] Piegari, E & Caprara, S 2003 Superconducting transition in a mixture of bosons and fermionsPhys. Rev.B 67 214–503Google Scholar
[104] Chen, Q J, Stajic, J, Tan, S & Levin, K 2005 BCS-BEC crossover: fromhigh temperature superconductors to ultracold superfluidsPhys. Rep. 412 1–88Google Scholar
[105] Alexandrov, A S 2006 Strong coupling theory of high temperature superconductivityStudies in High Temperature Superconductors ed Narlikar, A V (New York: Nova Publishers) 50 - Golden Jubilee Volume 1-69
[106] Alexandrov, A S, Bratkovsky, A M & Mott, N F 1994 Hall effect and resistivity of high-Tc oxides in the bipolaron modelPhys. Rev. Lett. 72 1734–1737Google Scholar
[107] Aleksandrov, A S (Alexandrov) & Khmelinin, A B 1986 Dielectric constant of the 2–component boson-fermion plasma in solidsFiz. Tverd. Tela 28 3403–3408 [1986 Sov. Phys. Solid State 28 1915]Google Scholar
[108] Alexandrov, A S & Andreev, A F 2001 Gap and subgap tunnelling in cupratesEurophys. Lett. 54 373–379Google Scholar
[109] Bogoliubov, N N 1958 A new method in the theory of superconductivity.1.Sov. Phys.-JETP 7 41–46Google Scholar
[110] Alexandrov, A S 1998 d-wave Bose-Einstein condensate and tunnelling in superconducting cupratesPhysicaC 305 46–56Google Scholar
[111] Alexandrov, A S & Beanland, J 2010 Superconducting gap, normal state pseudogap, and tunneling spectra of bosonic and cuprate superconductorsPhys. Rev. Lett. 104 026401Google Scholar
[112] Beanland, J & Alexandrov, A S 2010 Theory of extrinsic and intrinsic tunnelling in cuprate superconductorsJ. Phys.: Cond. Matter 22 403202Google Scholar
[113] Friedberg, R & Lee, T D 1989 Gap energy and long-range order in the boson-fermion model of superconductivityPhys. Rev.B 40 6745–6762Google Scholar
[114] Friedberg, R, Lee, T D, & Ren, H C 1990 Coherence length and vortex filament in the boson-fermion model of superconductivityPhys. Rev.B 42 4122–4134Google Scholar
[115] Ranninger, J & and Robin, J M 1995 The boson-fermion model of high-Tc superconductivity. Doping dependencePhysicaC 253 279–291Google Scholar
[116] Ranninger, J, Robin, J M & Eschrig, M 1995 Superfluid precursor effects in a model of hybridized bosons and fermionsPhys. Rev. Lett. 74 4027–4030Google Scholar
[117] Kostyrko, T & Ranninger, J 1996 Spectral properties of the boson-fermion model in the superconducting statePhys. Rev.B 54 13105–13120Google Scholar
[118] Geshkenbein, V B, Ioffe, L B & Larkin, A I 1997 Superconductivity in a system with preformed pairsPhys. Rev.B 55 3173–3180Google Scholar
[119] Domanski, T 2002 Effect of on-site Coulomb repulsion on superconductivity in the boson-fermion modelPhys. Rev.B 66 134–512Google Scholar
[120] Domanski, T, Maska, M M & Mierzejewski, M 2003 Upward curvature of the upper critical field in the boson-fermion modelPhys. Rev.B 67 134–507Google Scholar
[121] Anderson, P W 1975 Model for the electronic structure of amorphous semiconductorsPhys. Rev. Lett. 34 953–955Google Scholar
[122] Street, R A & Mott, N F 1975 States in the gap in glassy semiconductorsPhys. Rev. Lett. 35 1293–1296Google Scholar
[123] Simanek, E 1979 Superconductivity at disordered interfacesSolid State Commun. 32 731–733Google Scholar
[124] Ting, C S, Talwar, D N & Ngai, K L 1980 Possible mechanism of superconductivity in metal-semiconductor eutectic alloysPhys. Rev. Lett. 45 1213–1216Google Scholar
[125] Ionov, S P 1985 Paired electron precesses of localization-delocalization in condensed mediaIzv. AN SSSR Fiz 49 310–325Google Scholar
[126] Alexandrov, A S 1996 Boson-fermion model beyond the mean-field approximationJ. Phys.: Condens. Matter 8 6923–6932Google Scholar
[127] Alexandrov, A S 1997 Condensation of charged bosons hybridised with fermionsPhysicaC 274 237–247Google Scholar
[128] Alexandrov, A S 1999 Self-energy catastrophe of the boson-fermion model of high-temperature superconductorsPhysicaC 316 239–242Google Scholar
[129] Grosu, I, Blaga, C & Crisan, M 2000 Two-dimensional boson-fermion modelJ. Supercond. 13 459–462Google Scholar
[130] Alexandrov, A S 2004 Pairing of bosons in the condensed state of the boson-fermion modelEur. Phys. J.B 39 55–60Google Scholar
[131] Maksimov, E G, Kulic, M L & Dolgov, O V 2010 Bosonic spectral function and the electron-phonon interaction in HTSC cupratesAdvances in Condensed Matter Physics Volume 2010 (Special Issue on Phonons and Electron Correlations in High-Temperature and Other Novel Superconductors) 2010 423–725Google Scholar
[132] Kohn, W and Luttinger, J M 1965 New mechanism for superconductivityPhys. Rev. Lett. 15 524–526Google Scholar
[133] Luttinger, J M 1966 New mechanism for superconductivityPhys. Rev. 150 202–214Google Scholar
[134] Fay, D & Layzer, A 1968 Superconductivity of low-density fermion systemsPhys. Rev. Lett. 20 187–189Google Scholar
[135] Baranov, M A, Chubukov, A V & Kagan, M Yu 1992 Superconductivity and superfluidity in Fermi systems with repulsive interactionsInt. J. Mod. Phys. 6 2471–2497Google Scholar
[136] Kuchenhoff, S & Wolfle, P 1988 Superconductivity in the delute electron gasPhys. Rev.B 38 R935–937Google Scholar
[137] Alexandrov, A S & and Golubov, A A 1992 Effects of retardation and long-range forces on pairing in a Fermi gas with repulsionPhys. Rev.B 45 4769–4773Google Scholar
[138] Raghu, S, Kivelson, S A & Scalapino, D J 2010 Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling solutionPhys. Rev.B 81 224505Google Scholar
[139] Raghu, S & Kivelson, S A 2011 Superconductivity from repulsive interactions in the two-dimensional electron gasPhys. Rev.B 83 094–518Google Scholar
[140] Raghu, S, Berg, E, Chubukov, A V & Kivelson, S A 2012 Effects of longer-range interactions on unconventional superconductivityPhys. Rev.B 85 024–516Google Scholar
[141] Baeriswyl, D, Eichenberger, D & Menteshashvili, M 2009 Variational ground states of the two-dimensional Hubbard modelNew J. Phys. 11 075010Google Scholar
[142] Alexandrov, A S 1984 Doctoral thesis (Moscow, Russia: Moscow Engineering Physics Institute), Ref. [19] in [83].
[143] Alexandrov, A S 1993 Bose-Einstein condensation of charged bosons in a magnetic fieldPhys. Rev.B 48 10571–10574Google Scholar
[144] Alexandrov, A S, Beere, W H & Kabanov, V V 1996 Theory of the charged Bose gas: Bose-Einstein condensation in an ultrahigh magnetic fieldPhys. Rev.B 54 15363–15371Google Scholar
[145] Bucher, B, J, Karpinski, J, Kaldis, E & Wachter, P 1990 Anisotropic behavior in untwinned YBa2Cu4O8: Optical, magnetic and transport measurements at high pressurePhysicaC 167 324–334Google Scholar
[146] Mackenzie, A P, Julian, S R, Lonzarich, G G, Carrington, A, Hughes, S D, Liu, R S & Sinclair, D C 1993 Resistive upper critical field of Tl2Ba2CuO6 at low temperatures and high magnetic fieldsPhys. Rev. Lett. 71 1238–1241Google Scholar
[147] Osofsky, M A, Soulen, R J, Wolf, A A, Broto, J M, Rakoto, H, Ousset, J C, Coffe, G, Askenazy, S, Pari, P, Bozovic, I, Eckstein, J N & Virshup, G F 1993 Anomalous temperature dependence of the upper critical magnetic field in Bi-Sr-Cu-OPhys. Rev. Lett. 71 2315–2318; ibid 1994 Phys. Rev. Lett. 72 3292Google Scholar
[148] Lawrie, D D, Franck, J P, Beamish, J R, Molz, E B, Chen, W M & Graf, M J 1997 Doping dependence of the critical field Hc2 and the transition temperature in Zn doped YBa2(Cu1−xZnxJ. Low Temp. Phys. 107 491–496Google Scholar
[149] Gantmakher, V F, Tsydynzhapov, G E, Kozeeva, L P & Lavrov, A N 1999 Resistive transition and upper critical field in underdoped YBa2Cu3O6+x single crystalsZh. Eksp. Teor. Fiz. 88 148–156Google Scholar
[150] Alexandrov, A S, Zavaritsky, V NLiang, W Y & Nevsky, P L 1996 Resistive upper critical field of high-Tc single crystals of Bi2Sr2CaCu2O8Phys. Rev. Lett. 76 983–986Google Scholar
[151] Zavaritsky, V N, Kabanov, V V & Alexandrov, A S 1998 Universal upper critical field of unconventional superconductorsEurophys. Lett. 60 127–133Google Scholar
[152] Nakanishi, T, Motoyama, N, Mitamura, H, Takeshita, N, Takahashi, H, Eisaki, H, Uchida, S & Môri, N 2000 Resisitve upper critical field of superconducting spin-ladder Sr14−xCaxCu24O41Int. J. Mod. Phys.B 14 3617–3622Google Scholar
[153] Lee, I J, Chaikin, P M & Naughton, M J 2000 Exceeding the Pauli paramagnetic limit in the critical field of (TMTSF)2PF6Phys. Rev.B 62 R14669-R14672Google Scholar
[154] Alexandrov, A S, Beere, W H, V, Kabanov, V V & Liang, W Y 1997 Contrasting effects of magnetic field on thermodynamic and resistive transitions in high-TccupratesPhys. Rev. Lett. 79 1551–1554Google Scholar
[155] Alexandrov, A S 1988 Giant oxygen isotope effect in high-Tc metal-oxide superconductorsJETP Lett. 47 741–743Google Scholar
[156] Alexandrov, A S 1992 Transition from Fermi liquid to charged Bose liquid: A possible explanation of the isotope shift in high-Tc oxidesPhys. Rev.B 46 14932–14935Google Scholar
[157] Alexandrov, A S & Ray, D K 1991 Theory of high-Tc superconductivity: Back to small bipolaronsPhilos. Mag. Lett. 63 295–302Google Scholar
[158] Pippard, B 1998 Sir Nevill Francis Mott, C. H. 30 September 1905-8 August 1996Biogr. Mems Fell. R. Soc. 44 315–328Google Scholar
[159] Alexandrov, A S & Zhao, G M 2012 Isotope effects in high-Tc cuprate superconductors as support for the bipolaron theory of superconductivityNew J. Phys. 14 013–046Google Scholar
[160] Maxwell, E 1950 Isotope effect in the superconductivity of mercuryPhys. Rev. 78 477Google Scholar
[161] Reynolds, C A, Serin, B, Wright, W H & Nesbitt, L B 1950 Superconductivity of isotopes of mercuryPhys. Rev. 78 487Google Scholar
[162] G. M., Zhao 2007 Polarons in colossal magnetoresistive and high-temperature superconducting materialsPolarons in Advanced Materials ed. Alexandrov, A S (Dordrecht: Springer) 569–597
[163] Bussmann-Holder, A & Keller, H 2007 Polaron effects in high-temperature cuprate superconductorsPolarons in Advanced Materials ed. Alexandrov, A S (Dordrecht: Springer) 599–621
[164] Zhao, G M & Morris, D E 1995 Observation of a possible oxygen isotope effect on the effective mass of carriers in YBa2Cu3O6.94Phys. Rev.B 51 16487–16490Google Scholar
[165] Zhao, G M, Singh, K K, Sinha, A P B & Morris, D E 1995 Oxygen isotope effect on the effective mass of carriers from magnetic measurements on La2−x Srx CuO4Phys. Rev.B 52 6840–6844Google Scholar
[166] Zhao, G M, Hunt, M B, Keller, H & Muller, K A 1997 Evidence for polaronic supercarriers in the copper oxide superconductors La2−x Srx CuO4Nature 385 236–239Google Scholar
[167] Zhao, G M, Konder, K, Keller, H & Muller, K A 1998 Oxygen isotope effects in La2−x SrxCuO4: evidence for polaronic charge carriers and their condensationJ. Phys.: Condens. Matter 10 9055–9066Google Scholar
[168] Zhao, G M, Kirtikar, V & Morris, D E 2001 Isotope effects and possible pairing mechanism in optimally doped cuprate superconductorsPhys. Rev.B 63 220506Google Scholar
[169] Khasanov, R, Eshchenko, D G, Luetkens, H, Morenzoni, E, Prokscha, T, Suter, A, Garifianov, N, Mali, M, Roos, J, Conder, K & Keller, H 2004 Direct observation of the oxygen isotope effect on the in-plane magnetic field penetration depth in optimally doped YBa2Cu3O7−-dPhys. Rev. Lett. 92 057–602Google Scholar
[170] Lanzara, A, Bogdanov, P V, Zhou, X J, Kellar, S A, Feng, D L, Lu, E D, Yoshida, T, Eisaki, H, Fujimori, A, Kishio, K, Shimoyama, J I, Noda, T, Uchida, S, Hussain, Z & Shen, Z X 2001 Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductorsNature 412 510–514Google Scholar
[171] W., Meevasana, N. J. C., Ingle, D. H., Lu, J. R., Shi, F., Baumberger, Shen, K M, Lee, W S, Cuk, T, Eisaki, H, Devereaux, T P, Nagaosa, N, Zaanen, J & Shen, Z X 2006 Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductorPhys. Rev. Lett. 96 157003Google Scholar
[172] Johnston, S, Vishik, I M, Lee, W S, Schmitt, F, Uchida, S, Fujita, K, Ishida, S, Nagaosa, N, Shen, Z X & Devereaux, T P 2012 Evidence for the importance of extended Coulomb interactions and forward scattering in cuprate superconductorsPhys. Rev. Lett. 108 166404Google Scholar
[173] Mihailovic, D, Foster, C M, Voss, K & Heeger, A J 1990 Application of the polaron-transport theory to σ (ω)inTl2Ba2Ca1−xGdxCu2O8, YBa2Cu3O7−d, and La2−xSrxCuO4Phys. Rev.B 42 7989–7993Google Scholar
[174] Sendyka, T R, Dmowski, W, Egami, T, Seiji, N, Yamauchi, H & Tanaka, S 1995 Temperature dependence of the local structure of YBa2Cu4O8Phys. Rev.B 51 6747–6750Google Scholar
[175] Reznik, D, Pintschovius, L, Ito, M, Iikubo, S, Sato, M, Goka, H, Fujita, M, Yamada, K, Gu, G D & Tranquada, J M 2006 Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductorsNature 440 1170–1173Google Scholar
[176] Zhao, G M 2007 Strong coupling to multiple phonon modes in high-temperature superconductorsPhys. Rev.B 75 214–507Google Scholar
[177] Shim, H, Chaudhari, P, Logvenov, G & Bozovic, I 2008 Electron-phonon interactions in superconducting La1.84Sr0.16CuO4 filmsPhys. Rev. Lett. 101 247004Google Scholar
[178] Zhao, G M 2009 Fine structure in the tunneling spectra of electron-doped cuprates: No coupling to the magnetic resonance modePhys. Rev. Lett. 103 236–403Google Scholar
[179] Temprano, D R, Mesot, J, Janssen, S, Conder, K, Furrer, A, Mutka, H & Müller, K A 2000 Large isotope effect on the pseudogap in the high-temperature superconductor HoBa2Cu4O8Phys. Rev. Lett. 84 1990–1993Google Scholar
[180] Uemura, Y J, Luke, G M, Sternlieb, B J, Brewer, J H, Carolan, J F, Hardy, W N, Kadono, R, Kempton, J R, Kiefl, R F, Kreitzman, S R, Mulhern, P, Riseman, T M, Williams, DLl, , Yang, B X, Uchida, S, Takagi, H, Gopalakrishnan, J, Sleight, A W, Subramanian, M A, Chien, C L, Cieplak, M Z, Xiao, G, Lee, V Y, Statt, B W, Stronach, C E, Kossler, W J & Yu, X H 1989 Universal correlations between Tc and ns/m* (carrier density over effective mass) in high-Tc cuprate superconductorsPhys. Rev. Lett. 62 2317–2320Google Scholar
[181] Alexandrov, A S & Kabanov, V V 1999 Parameter-free expression for superconducting Tc in cupratesPhys. Rev.B 59 13628–13631Google Scholar
[182] Chmaissem, O, Eckstein, Y & Kuper, C G 2001 Structure and a bond-valence-sum study of the 1-2-3 superconductors (CaxLa1−x)(Ba1.75−La0.25+x)Cu3Oy and YBa2Cu3OyPhys. Rev.B 63 174–510Google Scholar
[183] Basov, D N, Liang, R, Bonn, D A, Hardy, W N, Dabrowski, B, Quijada, M, Tanner, D B, Rice, J P, Ginsberg, D M & Timusk, T 1995 In-plane anisotropy of the penetration depth in YBa2Cu3O7−x and YBa2Cu4O8 superconductorsPhys. Rev. Lett. 74 598–601Google Scholar
[184] Franck, J P, Harker, S & Brewer, J H 1993 Copper and oxygen isotope effects in La2−xSrxCuO4Phys. Rev. Lett. 71 283–286Google Scholar
[185] Zhao, G M, Kirtikar, V, Singh, K K, Sinha, A P B, Morris, D E & Inyushkin, A V 1996 Large copper isotope effect in oxygen depleted YBa2Cu3Oy: Importance of Cudominated phonon modes in the pairing mechanismPhys. Rev.B 54 14956–14959Google Scholar
[186] Pickett, W E 1989 Electronic structure of the high-temperature oxide superconductorsRev. Mod. Phys 61 433–512Google Scholar
[187] Hussey, N E, Nozawa, K, Takagi, H, Adachi, S & Tanabe, K 1997 Anisotropic resistivity of YBa2Cu4O8: Incoherent-to-metallic crossover in the out-of-plane transportPhys. Rev.B 56 R11423-R11426Google Scholar
[188] Alexandrov, A S 1999 Comment on ‘Experimental and theoretical constraints of bipolaronic superconductivity in high Tc materials: An impossibility’Phys. Rev. Lett. 82 2620Google Scholar
[189] Willemin, M, Rossel, C, Hofer, J, Keller, H & Revcolevschi, A 1999 Anisotropy scaling close to the ab plane in La1.9Sr0.1CuO4 by torque magnetometryPhys. Rev.B 59 R717-R720Google Scholar
[190] Tajima, S, Schutzmann, J, Miyamoto, S, Terasaki, I, Sato, Y & Hauff, R 1997 Optical study of c-axis charge dynamics in YBa2Cu3Oy: Carrier self-confinement in the normal and the superconducting statesPhys. Rev.B 55 6051-5059Google Scholar
[191] Takenaka, K, Fukuzumi, Y, Mizuhashi, K, Uchida, S, Asaoka, H & Takei, H 1997 In-plane thermal conductivity and Lorenz number in YBa2Cu3O7−yPhys. Rev.B 56 5654–5661Google Scholar
[192] Hill, R W, Proust, C, Taillefer, L, Fournier, P & Greene, R L 2001 Breakdown of Fermi-liquid theory in a copper-oxide superconductorNature 414 711–715Google Scholar
[193] Proust, C, Boaknin, E, Hill, R W, Taillefer, L & Mackenzie, A P 2002 Heat transport in a strongly overdoped cuprate: Fermi liquid and a pure d-wave BCS superconductorPhys. Rev. Lett. 89 147003Google Scholar
[194] Smith, M F, Paglione, J, Walker, M B & Taillefer, L 2005 Origin of anomalous low-temperature downturns in the thermal conductivity of cupratesPhys. Rev.B 71 014506Google Scholar
[195] Zhang, Y, Ong, N P, Xu, Z A, K., Krishana, K, Gagnon, R & Taillefer, L 2000 Determining the Wiedemann-Franz ratio from the thermal Hall conductivity: Application to Cu and YBa2Cu3O6.95Phys. Rev. Lett. 84 2219–2222Google Scholar
[196] Alexandrov, A S & Mott, N F 1993 Thermal transport in a charged Bose gas and in high-Tc oxidesPhys. Rev. Lett. 71 1075–1078Google Scholar
[197] Lee, K K, Alexandrov, A S & Liang, W Y 2003 Lorenz number in high Tc superconductors: Evidence for bipolaronsPhys. Rev. Lett. 90 217001Google Scholar
[198] Matusiak, M & Wolf, Th 2005 Lorenz number in the optimally doped and underdoped superconductor EuBa2Cu3OyPhys. Rev.B 72 054–508Google Scholar
[199] Matusiak, M, Rogacki, K & Veal, B W 2009 Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O7−σEPL 88 47005Google Scholar
[200] Alexandrov, A S 2006 Hall-Lorenz number paradox in cuprate superconductorsPhys. Rev.B 73 100–501(R)Google Scholar
[201] Anselm, A 1981 Introduction of Semiconductor Theory (New Jersey: Prentice and Hall)
[202] Alexandrov, A S, Zavaritsky, V N & Dzhumanov, S 2004 Hall effect and resistivity in underdoped cupratesPhys. Rev.B 69 052505Google Scholar
[203] Takeda, J, Nishikawa, T & M., Sato, M 1994 Transport studies of La1.92Sr0.8Cu1−xMxO4 (M = Ni and Zn) and Nd2−yCeyCuO4 up to about 900 KPhysicaC 231 293–299Google Scholar
[204] Hwang, H Y, Batlogg, B, Takagi, H, Kao, H L, Kwo, J, Cava, R J, Krajewski, J J & Peck, W F Jr 1994 Scaling of the temperature dependent Hall effect in La2−xSrx CuO41994Phys. Rev. Lett 72 2636–2639Google Scholar
[205] Carrington, A, Walker, D J C, Mackenzie, A P & Cooper, J R 1993 Hall effect and resistivity of oxygen-deficient YBa2Cu3O7−σ thin filmsPhys. Rev.B 48 130–5113059Google Scholar
[206] Loram, J W, Mirza, K A & Cooper, J R 1998 in High Temperature Superconductivity Research Review ed. Liang, W Y (Cambridge: IRC Superconductivity) 77
[207] Mihailovic, D, Kabanov, V V, Zagar, K & Demsar, J 1999 Distinct charge and spin gaps in underdoped YBa2Cu3O7−σ from analysis of NMR, neutron scattering, tunneling, and quasiparticle relaxation experimentsPhys. Rev.B 60 R6995-R6997Google Scholar
[208] Chen, X H, Yu, M, Ruan, K Q, Li, S Y, Gui, Z, Zhang, G C & Cao, L Z 1998 Anisotropic resistivities of single-crystal Bi2Sr2CaCu2O8+σ with different oxygen contentPhys. Rev.B 58 14219–14222Google Scholar
[209] Zverev, V N & Shovkun, D V 2000 Anisotropy of normal resistivity in oxygen-deficient YBa2Cu3O7−xPis'ma Zh. Eksp. Teor. Fiz. 72 103–108 [JETP Lett. 72 73-76]Google Scholar
[210] Hofer, J, Karpinski, J, Willemin, M, Meijer, G I, Kopnin, E M, Molinski, R, Schwer, H, Rossel, C & Keller, H 1998 Doping dependence of superconducting parameters in HgBa2CuO4+σ single crystalsPhysicaC 297 103–110Google Scholar
[211] Anderson, P W 1995 Condensed matter: the continuous revolutionPhysics World 8 (December) 37–40Google Scholar
[212] Mott, N F 1996 High-temperature superconductivity debate heats upPhysics World 9 (January) 16Google Scholar
[213] Harris, J M, Yan, Y F, Matl, P, Ong, N P, Anderson, P W, Kimura, T & Kitazawa, K 1995 Violation of Kohler's rule in the normal-state magnetoresistance of YBa2Cu3O7−σand La2SrxCuO4Phys. Rev. Lett. 75 1391–1394Google Scholar
[214] Alexandrov, A S 1997 Comment on ‘Violation of Kohler's rule in the normal-state magnetoresistance of YBa2Cu3O7−σ and La2SrxCuO4’Phys. Rev. Lett. 79 4717Google Scholar
[215] Alexandrov, A S 1991 Polaron theory of nuclear relaxation in YBa2Cu408 and other metal oxidesPhysicaC 182 327–332Google Scholar
[216] Machi, T, Tomeno, I, Miyatake, T, Koshizuka, N, Tanaka, S, Imai, T & Yasuoka, H 1991 Nuclear spin-lattice relaxation and Knight shift in YBa2Cu408PhysicaC 173 32–36Google Scholar
[217] Martindale, J A, Hammel, P C, Hults, W L & Smith, J L 1998 Temperature dependence of the anisotropy of the planar oxygen nuclear spin-lattice relaxation rate in YBa2Cu3OyPhys. Rev.B 57 11769–11774Google Scholar
[218] Warren, W W Jr, Walstedt, R E, Brennert, G F, Cava, R J, Tycko, R, Bell, R F & Dabbagh, G 1989 Cu spin dynamics and superconducting precursor effects in planes above Tc in YBa2Cu306.7Phys. Rev. Lett. 62 1193–1196Google Scholar
[219] Bergemann, C, Tyler, A W, Mackenzie, A P, Cooper, J R, Julian, S R & Farrell, D E 1998 Superconducting magnetization above the irreversibility line in Tl2Ba2CuO6+σPhys. Rev.B 57 14387–14396Google Scholar
[220] Junod, A, Genouda, J-Y, Triscone, G & Schneider, T 1998 Crossing point of the magnetisation in high-temperature superconductorsPhysicaC 294 115–121Google Scholar
[221] Naughton, M J 2000 High-field magnetization of HgBa2Ca2Cu3O8+σ: Fluctuations, scaling, and the crossing pointPhys. Rev.B 61 1605–1609Google Scholar
[222] Hofer, J, Schneider, T, Singer, J M, Willemin, M, Keller, H, Sasagawa, T, Kishio, K, Conder, K & Karpinski, J 2000 Torque magnetometry on single-crystal high-temperature superconductors near the critical temperature: A scaling approachPhys. Rev.B 62 631–639Google Scholar
[223] Iguchi, I, Sugimoto, A & Sato, H 2003 Quantized vortices and diamagnetic precursor to the Meissner state in high-Tc superconductorsJ. Low Temp. Phys. 131 451–460Google Scholar
[224] Wang, Y, Li, Lu, Naughton, M J, Gu, G D, Uchida, S & Ong, N P 2005 Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8+σ superconductor in an intense magnetic fieldPhys. Rev. Lett. 95 247002Google Scholar
[225] Wang, Y, Li, Lu & Ong, N P 2006 Nernst effect in high-Tc superconductorsPhys. Rev.B 73 024–510Google Scholar
[226] Li, Lu, Wang, Y, Komiya, S, Ono, S, Ando, Y, Gu, G D & Ong, N P 2010 Diamagnetism and cooper pairing above Tc in cupratesPhys. Rev.B 81 054–510Google Scholar
[227] Alexandrov, A S 2006 Normal-state diamagnetism of charged bosons in cuprate superconductorsPhys. Rev. Lett. 96 147003Google Scholar
[228] Alexandrov, A S 2010 Diamagnetism of real-space pairs above Tc in hole doped cupratesJ. Phys.: Condens. Matter 22 426004Google Scholar
[229] Zavaritsky, V N & Alexandrov, A S 2005 Normal state of extremely anisotropic superconducting cuprates as revealed by magnetotransportPhys. Rev.B 71 012–502Google Scholar
[230] Emery, V J and Kivelson, S A 1995 Importance of phase fluctuations in superconductors with small superfluid densityNature 374 434–437Google Scholar
[231] Alexandrov, A S & Zavaritsky, V N 2004 Nernst effect in poor conductors and in the cuprate superconductorsPhys. Rev. Lett. 93, 217002Google Scholar
[232] Alexandrov, A S 2005 ReplyPhys. Rev. Lett. 95 259–704Google Scholar
[233] Elliot, S R 1983 Physics of Amorphous Materials (New York: Longman) 222–225
[234] Friedman, L 1971 Hall conductivity of amorphous semiconductors in the random phase modelJ. Non-Cryst. Sol. 6 329–341Google Scholar
[235] Cutler, M & Mott, N F 1969 Observation of Anderson localization in an electron gasPhys. Rev. 181 1336–1340Google Scholar
[236] Capan, C, Behnia, K, Hinderer, J, Jansen, A G M, Lang, W, Marcenat, C, Marin, C & Flouquet, J 2002 Entropy of vortex cores near the superconductor-insulator transition in an underdoped cupratePhys. Rev. Lett. 88 056–601Google Scholar
[237] Capan, C & Behnia, K 2005 Comment on ‘Nernst effect in poor conductors and in the cuprate superconductors’Phys. Rev. Lett. 95 259–703Google Scholar
[238] Alexandrov, A S 1997 Logarithmic normal state resistivity of high-Tc cupratesPhys. Lett.A 236 132–136Google Scholar
[239] Ando, Y, Boebinger, G S, Passner, A, Kimura, T & Kishio, K 1995 Logarithmic divergence of both in-plane and out-of-plane normal-state resistivities of superconducting La2−xSrxCuO4 in the zero-temperature limitPhys. Rev. Lett. 75 4662–4665 and references thereinGoogle Scholar
[240] Bottger, H & Bryksin, V 1985 Hopping Conduction in Solids (Berlin: Academie-Verlag)
[241] Eagles, D M 1963 Optical absorption in ionic crystals involving small polaronsPhys. Rev. 130 1381–1400Google Scholar
[242] Klinger, M I 1963 Quantum theory of non-steady-state conductivity in low mobility solidsPhys. Lett. 7 102–104Google Scholar
[243] Reik, H G 1963 Optical properties of small polarons in the infraredSol. St. Commun. 1 67–71Google Scholar
[244] Emin, D 1993 Optical properties of large and small polarons and bipolaronsPhys. Rev.B 48 13691–13702Google Scholar
[245] Calvani, P 2001 Optical Properties of Polarons (Bologna: Editrice Compositori)
[246] Devreese, J T 1972 Polarons in Ionic Crystals and Polar Semiconductors (Amsterdam: North-Holland) p 83
[247] Alexandrov, A S, Kabanov, V V & Ray, D K 1994 Polaron theory of mid-infrared conductivity: A numerical cluster solutionPhysicaC 224 247–255Google Scholar
[248] Capone, M, Stephan, W & Grilli, M 1997 Small-polaron formation and optical absorption in Su-Schrieffer-Heeger and Holstein modelsPhys. Rev.B 56 4484–4493Google Scholar
[249] Wellein, G & Fehske, H 1998 Self-trapping problem of electrons or excitons in one dimensionPhys. Rev.B 58 6208–6212Google Scholar
[250] El Shawish, S, Bonca, J, Ku, L C & Trugman, S A 2003 Numerical study of the Jahn-Teller polaron and bipolaronPhys. Rev.B 67 014–301Google Scholar
[251] Barisic, O S 2004 Calculation of excited polaron states in the Holstein modelPhys. Rev.B 69 064–302Google Scholar
[252] Schubert, G, Wellein, G, Weiße, A, Alvermann, A & Fehske, H 2005 Optical absorption and activated transport in polaronic systemsPhys. Rev.B 72 104–304Google Scholar
[253] Damascelli, A, Z Hussain, Z & Zhi-Xun, Shen 2003 Angle-resolved photoemission studies of the cuprate superconductorsRev. Mod. Phys. 75 473–541Google Scholar
[254] Hussey, N E, Abdel-Jawad, M, Carrington, A, Mackenzie, A P & Balicas, L 2003 A coherent three-dimensional Fermi surface in a high-transition-temperature superconductorNature 425 814–817Google Scholar
[255] Plate, M, Mottershead, J D F, Elfimov, I S, Peets, D C, Liang, R, Bonn, D A, Hardy, W N, Chiuzbaian, S, Falub, M, Shi, M, Patthey, L & Damascelli, A 2005 Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+σPhys. Rev. Lett. 95 077001Google Scholar
[256] Vignolle, B, Carrington, A, Cooper, R A, French, M M J, Mackenzie, A P, Jaudet, C, Vignolles, D, Proust, C & Hussey, N E 2008 Quantum oscillations in an overdoped high-Tc superconductorNature 455 952–955Google Scholar
[257] Doiron-Leyraud, N, Proust, C, LeBoeuf, D, Levallois, J, Bonnemaison, J B, Liang, R, Bonn, D A, Hardy, W N & Taillefer, L 2007 Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductorNature 447 565–568Google Scholar
[258] Bangura, A F, Fletcher, J D, Carrington, A, Levallois, J, Nardone, M, Vignolle, B, Heard, P J, Doiron-Leyraud, N, LeBoeuf, D, Taillefer, L, Adachi, S, Proust, C & Hussey, N E 2008 Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov-de Haas oscillations in YBa2Cu4O8Phys. Rev. Lett. 100 047004Google Scholar
[259] Yelland, E A, Singleton, J, Mielke, C H, Harrison, N, Balakirev, F F, Dabrowski, B & Cooper, J R 2008 Quantum oscillations in the underdoped cuprate YBa2Cu4O8Phys. Rev. Lett. 100 047003Google Scholar
[260] Elfimov, I S, Sawatzky, G A & Damascelli, A 2008 Theory of Fermi-surface pockets and correlation effects in underdoped YBa2Cu3O6.5Phys. Rev.B 77 060-504(R) and references therein.Google Scholar
[261] Alexandrov, A S 2008 Theory of quantum magneto-oscillations in underdoped cuprate superconductorsJ. Phys. Condens. Matter 20 192–202Google Scholar
[262] Ramshaw, B J, Vignolle, B, Day, J, Liang, R, Hardy, W N, Proust, C & Bonn, D A 2011 Angle dependence of quantum oscillations in YBa2Cu3O6.59 shows free-spin behaviour of quasiparticlesNature Phys. 7 234–238Google Scholar
[263] Helm, T, Kartsovnik, M V, Bartkowiak, M, Bittner, N, Lambacher, M, Erb, A, Wosnitza, J & Gross, R 2009 Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd2−xCexCuO4 revealed by Shubnikov-de Haas oscillationsPhys. Rev. Lett. 103 157002Google Scholar
[264] Kartsovnik, M V, Helm, T, Putzke, C, Wolff-Fabris, F, Sheikin, I, Lepault, S, Proust, C, Vignolles, D, Bittner, N, Biberacher, W, Erb, A, Wosnitza, J & Gross, R 2011 Fermi surface of the electron-doped cuprate superconductor Nd2−xCexCuO4 probed by high-field magnetotransportNew J. Phys. 13 015001Google Scholar
[265] Hossain, M A, Mottershead, J D F, Fournier, D, Bostwick, A, McChesney, J L, Rotenberg, E, Liang, R, Hardy, W N, Sawatzky, G A, Elfimov, I S, Bonn, D A & Damascelli, A 2008 In situ doping control of the surface of high-temperature superconductorsNature Phys. 4 527–531Google Scholar
[266] Alexandrov, A S 2012 Quantum magnetic oscillations and angle-resolved photoemission from impurity bands in cuprate superconductorsPhys. Rev.B 85 092–501Google Scholar
[267] Bozovic, I, Logvenov, G, Verhoeven, M A J, Caputo, P, Goldobin, E & Geballe, T H 2003 No mixing of superconductivity and antiferromagnetism in a high-temperature superconductorNature 422 873–875Google Scholar
[268] Denisov, V N, Taliani, C, Mal'shukov, A G & Burlakov, V M 1993 Infrared-excited Raman scattering and photoluminescence of deep intragap states in semiconducting YBa2Cu3O6+xPhys. Rev.B 48 16714–16721Google Scholar
[269] Yu, G, Lee, C H, Mihailovic, D, Heeger, A J, Fincher, C, Herron, N & McCarron, E M 1993 Photoconductivity in insulating YBa2Cu3O6+x: From Mott-Hubbard insulator to Fermi glass via oxygen dopingPhys. Rev.B 48 7545–7553Google Scholar
[270] Alexandrov, A S & Reynolds, K 2007 Angle-resolved photoemission spectroscopy of band tails in lightly doped cupratesPhys. Rev.B 76 132–506Google Scholar
[271] Riggs, S C, Vafek, O, Kemper, J B, Betts, J B, Migliori, A, Balakirev, F F, Hardy, W N, Liang, R, Bonn, D A & Boebinger, G S 2011 Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductorNature Phys. 7 332–335Google Scholar
[272] Silva Neto, M B, 2011 Anisotropy of acceptor states in lightly doped cuprate superconductorsJ. Phys.: Condens. Matter 23 365–601Google Scholar
[273] Bascones, E, Rice, T M, Shorikov, A O, Lukoyanov, A V & Anisimovm, V I 2005 Optical conductivity of ortho-II YBa2Cu3O6.5Phys. Rev.B 71 012–505Google Scholar
[274] Zhai, Z, Parimi, P V, Sokoloff, J B, Sridhar, S & Erb, A 2001 Onset of dielectric modes at 110 K and 60 K due to local lattice distortions in nonsuperconducting YBa2Cu3O6.0 crystalsPhys. Rev.B 63 092–508Google Scholar
[275] Behrooz, A & Zettl, A 1989 Normal state a.c. conductivity of YBa2Cu3O7−σSol. St. Commun. 70 1059–1063Google Scholar
[276] Peierls, R 1933 Zur Theorie des Diamagnetismus von LeitungselektronenZ. Physik 80 763–791Google Scholar
[277] Fisher, R A, Kim, S, Lacy, S E, Phillips, N E, Morris, D E, Markelz, A G, Wei, J Y T & Ginley, D S 1988 Specific-heat measurements on superconducting Bi-Ca-Sr-Cu and Tl-Ca-Ba-Cu oxides: absence of a linear term in the specific heat of Bi-Ca-Sr-Cu oxidesPhys. Rev.B 38 11942–11945Google Scholar
[278] Loram, J W, Cooper, J R, Wheatley, J M, Mirza, K A & Liu, R S 1992 Critical and Gaussian fluctuation effects in the specific heat and conductivity of high-Tc superconductorsPhil. Mag.B 65 1405–1417Google Scholar
[279] Inderhees, S E, Salamon, M B, Goldenfeld, N, Rice, J P, Pazol, B G & Ginzberg, D M 1988 Specific heat of single crystals of YBa2Cu3O7−σ: Fluctuation effects in a bulk superconductorPhys. Rev. Lett. 60 1178–1181Google Scholar
[280] Junod, A, Eckert, D, Triscone, G, Lee, V Y & Muller, J 1989 Specific heat (1−330 K), Meissner effect and magnetic susceptibility of Tl2Ba2Ca2Cu3O10,Tl2Ba2CaCu2O8 and Tl2Ba2CuO6 ceramic samplesPhysicaC 159 215–225Google Scholar
[281] Schnelle, W, Braun, E, Broicher, H, Domel, R, Ruppel, S, Braunisch, W, Harnischmacher, J & Wohlleben, D 1990 Fluctuation specific heat and thermal expansion of YBaCuOand DyBaCuOPhysicaC 168 465–474Google Scholar
[282] Salamon, M B, Inderhees, S E, Rice, J P & Ginsberg, D M 1990 Heat capacity of untwinned YBa2Cu3O7−x in magnetic fields: Dimensional cross-over near TcPhysicaA 168 283–290Google Scholar
[283] Alexandrov, A S & Ranninger, J 1992 Charged bose-liquid characteristics in high-Tc superconductorsSol. State Commun. 81 403–406Google Scholar
[284] Junod, A 1996 in Studies of High Temperature Superconductors ed. Narlikar, A (New York: Nova Science) 19 p 1
[285] Revaz, B, Junod, A & Erb, A 1998 Specific heat peaks observed up to 16 T on the melting line of vortex matter in DyBa2Cu3O7Phys. Rev.B 58 11153–11156Google Scholar
[286] Roulin, M, Junod, A & Walker, E 1998 Observation of second-order transitions below Tc in the specific heat of YBa2Cu3Ox: case for the melting of a vortex glassPhysicaC 296 137–152Google Scholar
[287] Alexandrov, A S, Beere, W H, Kabanov, V V & Liang, W Y 1997 Contrasting effects of magnetic field on thermodynamic and resistive transitions in high-Tc cupratesPhys. Rev. Lett. 79 1551–1554Google Scholar
[288] Tsuei, C C & Kirtley, J R 2000 Pairing symmetry in cuprate superconductorsRev. Mod. Phys. 72 969–1016Google Scholar
[289] Annett, J, Goldenfeld, N & Legget, A J 1996 Constraints on the pairing state of the cuprate superconductorsJ. Low Temp. Phys. 105 473–482Google Scholar
[290] Abrikosov, A A 1995 Parity of the order parameter in high-temperature superconductors with respect to a π/2 rotationPhys. Rev.B 52 R15738-R15740Google Scholar
[291] Hizhnyakov, V & Sigmund, E 1996 Anisotropic pairing caused by unscreened longrange interactionsPhys. Rev.B 53 5163–5165Google Scholar
[292] Shen, Z X, Lanzara, A, Ishihara, S & Nagaosa, N 2002 Role of the electron-phonon interaction in the strongly correlated cuprate superconductorsPhil Mag.B 82 134–91368Google Scholar
[293] Kulic, M L 2006 Importance of the electron-phonon interaction with the forward scattering peak for superconducting pairing in cupratesJ. Supercond. Novel Magnet. 19 213–249Google Scholar
[294] Klironomos, F D & Tsai, S W 2006 Phonon-mediated tuning of instabilities in the Hubbard model at half-fillingPhys. Rev.B 74 205109Google Scholar
[295] Schnell, I, Mazin, I I & Liu, A Y 2006 Unconventional superconducting pairing symmetry induced by phononsPhys. Rev.B 74 184–503Google Scholar
[296] Hague, J P 2006 d-wave superconductivity from electron-phonon interactionsPhys. Rev.B 73 060-503(R)Google Scholar
[297] Bardeen, J & Pines, D 1955 Electron-phonon interaction in metalsPhys. Rev. 99 1140–1150Google Scholar
[298] Migliori, A, Visscher, W M, Wong, S, Brown, S E, Tanaka, I, Kojima, H & Allen, P BComplete elastic constants and giant softening of c66 in superconducting La1.86Sr0.14CuO4 1990Phys. Rev. Lett. 64 2458–2461
[299] Chang, F, Ford, P J, Saunders, G A, Jiaqiang, L, Almond, D P, Chapman, B, Cankurtaran, M, Poeppel, R B & Goretta, K C 1993 Anisotropic elastic and nonlinear acoustic properties of very dense textured Bi2Sr2CaCu2O8+ySupercon. Sci. Technol. 6 484–489Google Scholar
[300] Landau, L D & Lifshitz, E M 1977 Quantum Mechanics (Oxford: Pergamon Press) pp 59, 237.
[301] Alexandrov, A S 2000 d-wave bipolaronic stripes in cupratesInt. J. Mod. Phys.B 14 3298–3305Google Scholar
[302] Alexandrov, A S 2004 Superlight bipolarons and a checkerboard d-wave condensate in cupratesJ. Supercond. Novel Magnet. 17 53–57Google Scholar
[303] Andreev, A F 2004 Electron pairs for HTSCPis'ma Zh. Eksp. Teor. Fiz. 79 100–103 [2004 JETP Letters 79 88-90]Google Scholar
[304] Quintanilla, J, Gyorffy, B L, Annett, J F & Wallington, J P 2002 Cooper pairing with finite angular momentum via a central attraction: From the BCS to the Bose limitsPhys. Rev.B 66 214–526Google Scholar
[305] Kubo, Y, Shimakawa, Y, Manako, T, & Igarashi, H 1991 Transport and magnetic properties of Tl2Ba2CuO6+σ showing a σ-dependent gradual transition from an 85-K superconductor to a nonsuperconducting metalPhys. Rev.B 43 7875–7882Google Scholar
[306] Hussey, N E, Cooper, R A, Xu, X, Wang, Y, Mouzopoulou, I, Vignolle, B, & Proust, C 2011 Dichotomy in the T-linear resistivity in hole-doped cupratesPhil. Trans. R. Soc.A 369 1626–1639Google Scholar
[307] Niedermayer, Ch, Bernhard, C, Binninger, U, Gluckler, H, Talion, J L, Ansaldo, E J & Budnick, J I 1993 Muon spin rotation study of the correlation between Tc and ns/m* in overdoped Tl2Ba2CuO6+σPhys. Rev. Lett. 71 1764–1767Google Scholar
[308] Alexandrov, A S and Bratkovsky, A M 2010 Key pairing interaction in layered doped ionic insulatorsPhys. Rev. Lett. 105 226–408Google Scholar
[309] Kliewer, K L & Fuchs, R 1969 Lindhard dielectric functions with a finite electron lifetimePhys. Rev. 181 552–558Google Scholar
[310] Mermin, N D 1970 Lindhard dielectric function in the relaxation-time approximationPhys. Rev.B 1 2362–2363Google Scholar
[311] Ando, T 1982 Effect of level broadening on the polarizability in a two-dimensional systemJ. Phys. Soc. Japan 51 3215–3218Google Scholar
[312] Stern, F 1967 Polarizability of a two-dimensional electron gasPhys. Rev. Lett. 18 546–548Google Scholar
[313] Alexandrov, A S & Giles, R T 1999 d-wave Bose-Einstein condensation and the London penetration depth in superconducting cupratesPhysicaC 325 35–40Google Scholar
[314] Hardy, W N, Bonn, D A, Morgan, D C, Liang, R & Zhang, K 1993 Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95: Strong evidence for nodes in the gap functionPhys. Rev. Lett. 70 3999–4002Google Scholar
[315] Xiang, T C, Panagopoulos, C and Cooper, J R 1998 Low temperature superfluid response of high-Tc superconductorsInt. J. Mod. Phys.B 12 1007–1032Google Scholar
[316] Walter, H, Prusseit, W, Semerad, R, Kinder, H, Assmann, W, Huber, H, Burkhardt, H, Rainer, D & Sauls, J A 1998 Low-temperature anomaly in the penetration depth of YBa2Cu3O7 films: Evidence for Andreev bound states at surfacesPhys. Rev. Lett. 80 3598–3601Google Scholar
[317] Alexandrov, A S, Bratkovsky, A M, Mott, N F & Salje, E K H 1993 Near-infrared absorption of YBa2Cu307−σ: Evidence for Bose-Einstein condensation of small bipolaronsPhysicaC 215 359–370Google Scholar
[318] Dewing, H L & Salje, E K H 1992 The effect of the superconducting phase transition on the near-infrared absorption of YBa2Cu3O7−σSupercond. Sci. Technol. 5 50–53Google Scholar
[319] Molegraaf, H J A, Presura, C, van der Marel, D, Kes, P H & Li, M, 2002 Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+σScience 295 2239–2241Google Scholar
[320] Santander-Syro, A F, Lobo, R P S M, Bontemps, N, Lopera, W, Girata, D, Konstantinovic, Z, Li, Z Z & Raffy, H 2004 In-plane electrodynamics of the superconductivity in Bi2Sr2CaCu2O8+σ: Energy scales and spectral weight distributionPhys. Rev.B 70 134504Google Scholar
[321] Carbone, F, Kuzmenko, A B, Molegraaf, H J A, van Heumen, E, Lukovac, V, Marsiglio, F, van der Marel, D, Haule, K, Kotliar, G, Berger, H, Kes, P H & Li, M 2006 Doping dependence of the redistribution of optical spectral weight in Bi2Sr2CaCu2O8+σPhys. Rev.B 74 064510Google Scholar
[322] Basov, D N, Averitt, R D, van der Marel, D, Dressel, M & Haule, K 2011 Electrodynamics of correlated electron materialsRev. Mod. Phys. 83 471–541Google Scholar
[323] Charnukha, A, Popovich, P, Matiks, Y, Sun, D L, Lin, C T, Yaresko, A N, Keimer, B & Boris, A V 2011 Superconductivity-induced optical anomaly in an iron arsenideNature Commun. 2 219Google Scholar
[324] Hirsch, J H 1992 Superconductors that change color when they become superconductingPhysicaC 201 347–361Google Scholar
[325] Maldague, P F 1977 Optical spectrum of a Hubbard chainPhys. Rev.B 16 243–72446Google Scholar
[326] Bozovic, I, Logvenov, G, Verhoeven, M A J, Caputo, P, Goldobin, E & Beasley, M R 2004 Giant proximity effect in cuprate superconductorsPhys. Rev. Lett. 93 157002 and references thereinGoogle Scholar
[327] Abbamonte, P, Venema, L, Rusydi, A, Sawatzky, G A, Logvenov, G & Bozovic, I 2002 A structural probe of the doped holes in cuprate superconductorsScience 297 581–584Google Scholar
[328] Alexandrov, A S 2007 Theory of giant and nil proximity effects in cuprate semiconductorsPhys. Rev.B 75 132–501Google Scholar
[329] Gross, E P 1961 Structure of a quantized vortex in boson systemsNuovo Cimento 20 454Google Scholar
[330] Pitaevskii, L P 1961 Vortex lines in an imperfect Bose gasZh. Eksp. Teor. Fiz. 40, 646 (1961) [1961 Soviet Phys. JETP 13 451-454]Google Scholar
[331] Lang, K M, Madhavan, V, Hoffman, J E, Hudson, E W, Eisaki, H, Uchida, S & Davis, J C 2002 Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+σNature 415 412–416Google Scholar
[332] Howald, C, Fournier, P & Kapitulnik, A 2001 Inherent inhomogeneities in tunneling spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting statePhys. Rev.B 64 100504(R)Google Scholar
[333] Machida, T, Kamijo, Y, Harada, K, Noguchi, T, Saito, R, Kato, T & Sakata, H 2006 Appearance of new energy gap and periodic local density-of-states modulation in Bi2Sr1.6La0.4CuO6+σJ. Phys. Soc. Jpn. 75 083–708Google Scholar
[334] McElroy, K, Lee, D H, Hoffman, J E, Lang, K M, Lee, J, Hudson, E W, Eisaki, H, Uchida, S & Davis, J C 2005 Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+σPhys. Rev. Lett. 94 197005Google Scholar
[335] Gomes, K K, Pasupathy, A N, Pushp, A, Ono, S, Ando, Y & Yazdani, A 2007 Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+σNature 447 569–572Google Scholar
[336] Pan, S H, O'Neal, J P, Badzey, R L, Chamon, C, Ding, H, Engelbrecht, J R, Wang, Z, Eisaki, H, Uchida, S, Gupta, A K, Ng, K W, Hudson, E W, Lang, K M & Davis, J C 2001 Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+xNature 413 282–285Google Scholar
[337] Kato, T, Okitsu, S & Sakata, H 2005 Inhomogeneous electronic states of La2−x SrxCuO4 probed by scanning tunneling spectroscopyPhys. Rev.B 72 144–518Google Scholar
[338] Kato, T, Maruyama, T, Okitsu, S & Sakata, H 2008 Doping dependence of two energy scales in the tunneling spectra of superconducting La2−x SrxCuO4J. Phys. Soc. Jpn. 77 054710Google Scholar
[339] Krasnov, V M, Yurgens, A, Winkler, D, Delsing, P & Claeson, T 2000 Evidence for coexistence of the superconducting gap and the pseudogap in Bi-2212 from intrinsic tunneling spectroscopyPhys. Rev. Lett. 84 5860–5963Google Scholar
[340] Suzuki, M & Watanabe, T 2000 Discriminating the superconducting gap from the pseudogap in Bi2Sr2CaCu2O8+σ by interlayer tunneling spectroscopyPhys. Rev. Lett. 85 4787–4790Google Scholar
[341] Zhu, X B, Zhao, S P, Wei, Y F, Yang, H F, Gu, C Z, Yu, H W & Ren, Y F 2007 Intrinsic tunneling spectroscopy of near optimally doped Bi2Sr2CaCu2O8+σ superconductors in magnetic fieldPhysicaC 460-462 963–964Google Scholar
[342] Krasnov, V M 2009 Temperature dependence of the bulk energy gap in underdoped Bi2Sr2CaCu2O8+σ: Evidence for the mean-field superconducting transitionPhys. Rev.B 79 214–510Google Scholar
[343] Yurgens, A, Winkler, D, Claeson, T, Ono, S & Ando, Y 2003 Intrinsic tunneling spectra of Bi2(Sr2−xLax)CuO6+σPhys. Rev. Lett. 90 147005Google Scholar
[344] Renner, Ch, Revaz, B, Genoud, J Y, Kadowaki, K & Fischer, O 1998 Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+σPhys. Rev. Lett. 80 149–152Google Scholar
[345] Miyakawa, N, P, Guptasarma, P, Zasadzinski, J F, Hinks, D G & Gray, K E 1998 Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi2Sr2CaCu2O8+σPhys. Rev. Lett. 80 157–160Google Scholar
[346] Vedeneev, S I, Jansen, A G M, Samuely, P, Stepanov, V A, Tsvetkov, A A & Wyder, P 1994 Tunneling in the ab plane of the high-Tc superconductor Bi2Sr2CaCu2O8+σ in high magnetic fields 1994Phys Rev.B 49 9823–9830Google Scholar
[347] Vedeneev, S I 1998 Tunneling investigations of single crystals of the single-layer cuprate Bi2Sr2CuOz in high magnetic fieldsPis'ma Zh. Exsp. Teor. Fiz. 68 217–222 [1998 JETP Lett. 68 230-235]Google Scholar
[348] Rantner, W & Wen, X G 2000 Tunneling density of states of high Tc superconductors: d-wave BCS model versus SU(2) slave-boson modelPhys. Rev. Lett. 85 3692–3695Google Scholar
[349] Won, H & Maki, K 1994 d-wave superconductor as a model of high-Tc superconductorsPhys. Rev.B 49 1397–1402Google Scholar
[350] Katterwe, S O, Rydh, A & Krasnov, V M 2008 Doping-induced change in the inter-layer transport mechanism of Bi2Sr2CaCu2O8+σ near the superconducting transition temperaturePhys. Rev. Lett. 101 087003Google Scholar
[351] Phillips, J C 1989 Physics of High-Tc Superconductors (New York: Academic Press) 1–391
[352] Alexandrov, A S & Mott, N F 1993 Do pairs exist above Tc?Supercond. Sci. Technol. 6 215–224Google Scholar
[353] Bruckel, T, Capellmann, H, Just, W, Kemmler-Sach, S, Kiemel, R & Schaefer, W 1987 Search for magnetic fluctuations in YBa2Cu3O7Europhys. Lett. 4 1189–1194Google Scholar
[354] Müller, K A 2012 The impact of ESR (EPR) on the understanding of the cuprates and their superconductivityEPR Newsletter 22 5–6Google Scholar
[355] Alexandrov, A S 2000 Unified theory of colossal magnetoresistance in manganites and high temperature superconductivity in cupratesPhysicaC 341-348 107–110Google Scholar
[356] Merz, M, Nucker, N, Schweiss, P, Schuppler, S, Chen, C T, Chakarian, V, Freeland, J, Idzerda, Y U, Klaser, M, Müller-Vogt, G & Wolf, Th 1998 Site-specific X-ray absorption spectroscopy of Y1−xCaxBa2Cu3O7−y: Overdoping and role of apical oxygen for high temperature superconductivityPhys. Rev. Lett. 80 5192–5195Google Scholar
[357] Ju, H L, Sohn, H C & Krishnan, K M 1997 Evidence for O2p hole-driven conductivity in La1−xSrxMnO3 (0 ≤ x ≤ 0.7) and La0.7Sr0.3MnOz thin filmsPhys. Rev. Lett. 79 3230–3233Google Scholar
[358] Saitoh, T, Bocquet, A E, Mizokawa, T, Namatame, H, Fujimori, A, Abbate, M, Takeda, Y & Takano, M 1995 Electronic structure of La1−xSrxMnO3 studied by photoemission and X-ray-absorption spectroscopyPhys. Rev.B 51 13942–13951Google Scholar
[359] Mannella, N, Yang, W, Zhou, X J, Zheng, H, Mitchell, J F, Zaanen, J, Devereaux, T P, Nagaosa, N, Hussain, Z & Shen, Z X 2005 Nodal quasiparticle in pseudogapped colossal magnetoresistive manganitesNature 438 474–478Google Scholar
[360] Jonker, G H & van Santen, J H 1950 Ferromagnetic compounds of manganese with perovskite structurePhysica 16 337–349Google Scholar
[361] van Santen, J H & Jonker, G H 1950 Electrical conductivity of ferromagnetic compounds of manganese with perovskite structurePhysica 16 599–600Google Scholar
[362] von Helmolt, R, Wecker, J, Holzapfel, B, Schultz, L & Samwer, K 1993 Giant negative magnetoresistance in perovskite-like La2/3Ba1/3MnOx ferromagnetic filmsPhys. Rev. Lett. 71 2331–2333Google Scholar
[363] Jin, S, Tiefel, T H, McCormack, M, Fastnacht, R A, Ramesh, R & Chen, L H 1994 Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O filmsScience 264 413–415Google Scholar
[364] Zener, C 1951 Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structurePhys. Rev. 82 403–405Google Scholar
[365] Millis, A.J., P.B., Littlewood, P B & Shraiman, B.I. 1995 Double exchange alone does not explain the resistivity of La1−x SrxMnO3Phys. Rev. Lett. 74 5144–5147Google Scholar
[366] Tyson, T A, Mustre de Leon, J, Conradson, S D, Bishop, A R, Neumeier, J J, Roder, H & Zang, J 1996 Evidence for a local lattice distortion in Ca-doped LaMnO3Phys. Rev.B 53 13985–13998Google Scholar
[367] Shimakawa, Y, Kubo, Y & Manako, T 1996 Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structureNature 379 53–55Google Scholar
[368] Ramirez, A P, Cava, R J & Krajewski, J 1997 Colossal magnetoresistance in Cr-based chalcogenide spinelsNature 386 156–159Google Scholar
[369] Ramirez, A P Colossal magnetoresistance 1997 J. Phys.: Condens. Matter 9 817–18199
[370] Zhao, G M 2000 Double exchange and the cause of ferromagnetism in doped manganitesPhys. Rev.B 62 11639–11643Google Scholar
[371] Alexandrov, A S & Bratkovsky, A M 1999 Carrier density collapse and colossal magnetoresistance in doped manganitesPhys. Rev. Lett. 82 141–144Google Scholar
[372] Alexandrov, A S & Bratkovsky, A M 1999 Theory of colossal magnetoresistance in doped manganitesJ. Phys, Condens. Matter 11 1989–2005Google Scholar
[373] Alexandrov, A S, Zhao, G M, Keller, H, Lorenz, B, Wang, Y S & Chu, C W 2001 Evidence for polaronic Fermi liquid in manganitesPhys. Rev.B 64 140–404Google Scholar
[374] Mannella, N, Yang, W L, Tanaka, K, Zhou, X J, Zheng, H, Mitchell, J F, Zaanen, J, Devereaux, T P, Nagaosa, N, Hussain, Z & Shen, Z X 2007 Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganitesPhys. Rev.B 76 233102Google Scholar
[375] Wang, L M, Yang, H C & Horng, H E 2001 Electrical transport and carrier density collapse in doped manganite thin filmsPhys. Rev.B 64 224–423Google Scholar
[376] Alexandrov, A S, Bratkovsky, A M & Kabanov, V V 2006 Phase coexistence and resistivity near the ferromagnetic transition of manganitesPhys. Rev. Lett. 96 117003Google Scholar
[377] Egilmez, M, Chow, K H, Jung, J, Fan, I, Mansourl, A I & Salman, Z 2008 Metal-insulator transition, specific heat, and grain-boundary-induced disorder in Sm0.55Sr0.45MnO3Appl. Phys. Lett. 92 132505-13508Google Scholar
[378] Westerburg, W, Martin, F, van Bentum, P J M, Perenboom, J A A J & Jakob, G 2000 Charge-carrier density collapse in La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 epitaxial thin filmsEur. Phys. J.B 14 509–513Google Scholar
[379] Perring, T G, Aeppli, G, Moritomo, Y & Tokura, Y 1997 Antiferromagnetic short range order in a two-dimensional manganite exhibiting giant magnetoresistancePhys. Rev. Lett. 78 3197–3200Google Scholar
[380] Vasiliu-Doloc, L, Rosenkranz, S, Osborn, R, Sinha, S K, Lynn, J W, Mesot, J, Seeck, O H, Preosti, G, Fedro, A J & Mitchell, J F 1999 Charge melting and polaron collapse in La1.2Sr1.8Mn2O7Phys. Rev. Lett. 83 4393–4396Google Scholar
[381] Dai, P, Fernandez-Baca, J A, Wakabayashi, N, Plummer, E W, Tomioka, Y & Tokura, Y 2000 Short-range polaron correlations in the ferromagnetic La1−xCaxMnO3Phys. Rev. Lett. 85 2553–2556Google Scholar
[382] Nelson, C S, Zimmermann, M V, Kim, Y J, Hill, J P, Gibbs, D, Kiryukhin, V, Koo, T Y, Cheong, S W, Casa, D, Keimer, B, Tomioka, Y, Tokura, Y, Gog, T & Venkataraman, C T 2001 Correlated polarons in dissimilar perovskite manganites 2001Phys. Rev.B. 64 174–405Google Scholar
[383] Zhao, G M, Conder, K, Keller, H & Müller, K A 1996 Giant oxygen isotope shift in the magnetoresistive perovskite La1−xCaxMnO3+yNature 381 676–678Google Scholar
[384] Zhao, G M, Wang, Y S, Kang, D J, Prellier, W, Rajeswari, M, Keller, H, Venkatesan, T, Chu, C W & Greene, R L 2000 Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganitesPhys. Rev.B 62 R11949Google Scholar
[385] Chuang, Y D, Gromko, A D, Dessau, D S, Kimura, T & Tokura, Y 2001 Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxidesScience 292 1509–1513Google Scholar
[386] Gordon, J E, Marcenat, C, Franck, J P, Isaac, I, Zhang, G W, Lortz, R, Meingast, C, Bouquet, F, Fisher, R A & Phillips, N E 2002 Specific heat and thermal expansion of La0.65Ca0.35MnO3: Magnetic-field dependence, isotope effect, and evidence for a first-order phase transitionPhys. Rev.B 65 024441Google Scholar
[387] Adams, C P, Lynn, J W, Smolyaninova, V N, Biswas, A, Greene, R L, Ratcliff, W, Cheong, S W, Mukovskii, Y M & Shulyatev, D A 2004 First-order nature of the ferromagnetic phase transition in (La-Ca)MnO3 near optimal dopingPhys. Rev.B 70 134–414Google Scholar
[388] Green, D O J 2011 Mapping colossal magnetoresistance phase transitions with the charge-carrier density collapse model arXiv:11G5.2507
[389] Tournier-Colletta, C, Cardenas, L, Fagot-Revurat, Y, Kierren, B, Tejeda, A, Malterre, D, Le Fevre, P & Bertran, F 2010 Bipolaronic insulator on alkali/Si(111):B-2√3 × 2√3 R30° interfacesPhys. Rev.B 82 165429Google Scholar
[390] Enderby, J E & Barnes, A C 1990 Liquid semiconductorsRep. Prog. Phys. 53 85–179Google Scholar
[391] Edwards, P P, Rao, C N R, Kumar, N & Alexandrov, A S 2006 The possibility of a liquid superconductorChemPhysChem 7 2015–2021Google Scholar
[392] Lindemann, F A 1910 Z. Phys. 11 609–615.
[393] Ahmed, N A G, Calderwood, J H, Frohlich, H & Smith, C W 1975 Evidence for collective magnetic effects in an enzyme likelihood of room temperature superconductive regionsPhys. Lett.A 53 129–130Google Scholar
[394] Zurek, E, Edwards, P P & Hoffmann, R 2009 A molecular perspective on lithium-ammonia solutionsAngew. Chem. Int. Ed. 48 8198–8232Google Scholar
[395] Alexandrov, A S 1988 New theory of strong-coupling superconductors and high-temperature superconductivity of metallic oxidesPhys. Rev.B 38 925–927Google Scholar
[396] Gadermaier, C, Alexandrov, A S, Kabanov, V V, Kusar, P, Mertelj, T, Yao, X, Manzoni, C, Brida, D, Cerullo, G & Mihailovic, D 2010 Electron-phonon coupling in high-temperature cuprate superconductors determined from electron relaxation ratesPhys. Rev. Lett. 105 257001Google Scholar
[397] Gadermaier, C, Kabanov, V V, Alexandrov, A S, Stojchevska, L, Mertelj, T, Manzoni, C, Cerullo, G, Zhigadlo, N D, Karpinski, J, Cai, Y Q, Yao, X, Toda, Y, Oda, M, Sugai, S & Mihailovic, D 2012 High superconducting critical temperatures depend universally on the electron-phonon interaction strength arXiv:1205.4978
[398] Phillips, J C, Bishop, A R and Saxena, A 2003 Pseudogaps, dopants, and strong disorder in cuprate high-temperature superconductorsRep. Prog. Phys. 66 211–12182Google Scholar
[399] Hague, J P, Kornilovitch, P E & Alexandrov, A S 2008 Trapping of lattice polarons by impuritiesPhys. Rev.B 78 092–302Google Scholar
[400] Poccia, N, Fratini, M, A Ricci, A, Campi, G, L Barba, L, Vittorini-Orgeas, A, Bianconi, G, Aeppli, G & Bianconi, A 2011 Evolution and control of oxygen order in a cuprate superconductorNature Materials 10 733–736Google Scholar
[401] Phillips, J C 2010 Hard-wired dopant networks and the prediction of high transition temperatures in ceramic superconductorsAdv. Condens. Matter Phys. 2010 250–891Google Scholar
[402] Eagles, D M 2011 Modification of a charged-Bose-gas model for observed room-temperature superconductivity in narrow channels through films of oxidized atactic polypropyleneInt. J. Mod. Phys.B 25 1845–1875Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alexandre S. Alexandrov, Loughborough University
  • Book: Strong-Coupling Theory of High-Temperature Superconductivity
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139088176.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alexandre S. Alexandrov, Loughborough University
  • Book: Strong-Coupling Theory of High-Temperature Superconductivity
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139088176.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alexandre S. Alexandrov, Loughborough University
  • Book: Strong-Coupling Theory of High-Temperature Superconductivity
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139088176.012
Available formats
×